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In this supplemental material, we provide additional details on the theory, the algorithms, and the
experiments. In Section 1, we provide a formal description of persistent homology, as well as the
bottleneck distance. In Section 2, we continue analyzing the population level difference between
Trojaned and clean models, with a focus on the short-cuts. Section 3 includes the proof of the
proposition and theorem on (1) the existence of a topological discrepancy between Trojaned and
clean models; (2) the convergence of the estimation of persistent homology in terms of the bottleneck
distance. In Section 4, we provide more technical details on the experiments, including our sampling
method based on pixel-wise perturbation, used baselines, and experiment configuration.

1 Persistent Homology and Bottleneck Distance

In the language of algebraic topology [9, 7], we can formulate a p-chain as a set of p-simplices. A
boundary operator on a p-simplex takes all its adjacent (p− 1)-simplices. In particular, the boundary
of an edges consists of its adjacent nodes; the boundary of a triangle consists of its three edges.
More generally, the boundary of a p-chain is the formal sum1 of the boundary of all its elements,
∂(c) =

∑
σ∈c ∂(c). Assume we have mp p-simplices for p = 0, 1, 2. If we fix an index of all the

p-simplices, a p-chain uniquely corresponds to a mp-dimensional binary vector. In dimension p, the
boundary operator can be viewed as anmp−1×mp matrix, called the p-dimensional boundary matrix.
It consists of the boundaries of all p-simplices, ∂p = [∂(σ1), · · · , ∂(σmp)]. It is often convenient to
consider one big boundary matrix, whose blocks are the p-dimensional boundary matrices.

To compute persistent homology, we sort the rows and columns of the big boundary matrix according
to the filter function values of the simplices. Then we apply a matrix reduction algorithm, similar to a
Gaussian elimination – except we only allow left-to-right column additions. The classic algorithm [7]
reduces the matrix from left to right, proceeding column by column. After the reduction, the pivoting
entries of the reduced matrix correspond to pairs of simplices. We can interpret them as critical
simplices that create and kill each topological structure. Their filter function values are the birth and
death times of the corresponding persistence dot. The algorithm has worst-case cubic complexity,
but modern implementations exhibits linear behaviour on practical inputs. This is an area of active
research, and various algorithms were proposed to improve the algorithm either in theory [8, 4] or in
practice [3, 2, 1]. In Figure 1, we show sample filtration complexes and the corresponding persistence
diagram.

Aside from the birth-death pairs, we also add the set of all points on the diagonal line to the persistence
diagram, i.e., Dg(M,S) = {(birthi,deathi)} ∪ {(birth,death)|birth = death}.

1We remark that we focus on homology over the Z2 field, which is the simplest, but practical, setup. In this
case the sums simply correspond to subsets of chains.
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Figure 1: A finite set of points in R2 sampled with noise from an annulus. We see the union of
Euclidean balls and the superimposed complex. Its vertices, edges and triangles depict the centers
of the balls, pair-wise, and triple-wise intersections at two different radii. In our method we use the
Vietoris–Rips complex, and here we only show its subcomplex to avoid visual clutter. The big loop
indicated by the yellow closed curve is born on the left and dies on the middle. On the right we see
the corresponding persistence diagram. The single dot in the upper part corresponds to the prominent
feature, namely the big 1-dimensional cycle.

Bottleneck distance. We will use the bottleneck distance between two persistence diagrams [5].
Let X and Y be multisets of points corresponding to two diagrams we plan to compare. Let
Γ = {γ : X → Y } be the family of bijections from X to Y . The bottleneck distance is:

db(X,Y ) = inf
γ∈Γ

sup
x∈X
||x− γ(x)||∞.

It was shown that the bottleneck distance between diagrams is stable with regard to L∞ perturbation
of the input filter function. Later on, Cohen-Steiner et al. [6] introduced the p-Wasserstein distance
between diagrams and showed its stability, when assuming a Lipschitz condition of the filter function.

2 Statistical Inference Results on the Shortcut

In this section, we further investigate the existence of shortcuts through statistical analysis. In the
main paper, we found that the Trojaned model can be identified through both 0D and 1D persistence
diagrams, i.e., average death time of 0D diagram and maximum persistence of 1D diagram. Based
on this, we hypothesize edges relevant to these topological features can be the shortcuts. For 0D, a
shortcut could be an edge that kills connected component during the filtration. The filter function
value (1− ρi,j) of such edge is the death time. As shown in the main paper, the average death time
of 0D diagrams clearly separates Trojaned and clean models. For 1D, a shortcut could also be the
longest edge (i.e., the edge crossing the most layers of a neural network) in the high persistence 1D
cycles.

We use persistent homology to select these shortcut candidates, and compare the length of these
shortcut candidates from Trojaned models and clean models. Formally, we measure the length of an
edge as the number of layers that an edge crossed (the index of layer contains the terminal neuron
minus the index of layer contains the beginning neuron). For the purpose of verification, we use
purely Trojaned examples to excite neurons and calculate the correlation matrix and VR filtration.

We first find all edges that kill a 0D homology class (called death edges) and measure their average
length. The distribution of the average death edge length is displayed in Figure 2-(a). For each model,
we only use the top 1000 edges (w.r.t. death time). Note many edges are connecting neurons within a
same layer and have 0 length. As a result, their average length can be smaller than 1. We observe
a significant difference between average lengths of the death edges of Trojaned and clean models.
Trojaned models tend to have longer death edges. The two sample independent t-test average death
edge length between Trojaned models and clean models is rejected at significance level smaller than
≤ 0.001. Due to the computation precision reason, we round the p-value to the 4th digit. In reality,
the significance level should be smaller than 0.001.

For 1D homology, we collect the longest edge in high persistence 1D homology cycles. For each
model, we collect top 500 persistent 1D cycles. We extract the longest edges of these cycles and take
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their average length. The distribution of the average length of these edges for different models is
presented in Figure 2-(b). Similar to in 0D, the average length is generally low as we are averaging
over many cycles. The distribution for clean models presents a bi-modal shape while the Trojaned
models’ is right skewed. On average, these type of edges in Trojaned models bypass more layers than
those in clean models. The t-test’s result corroborate our conclusion (p-value = 0.017), meaning a
significance level of 95%.

(a) (b)

Figure 2: Distribution of average lengths of shortcut edge candidates. (a). Average length of death
edges in 0D persistence. Trojaned models generally have longer death edges. (b). Average length of
the longest edges in high persistent 1D cycles. In Trojaned models, these edges are longer than in
clean models.

We note that even though not all Trojaned models have significantly longer short cut edges than clean
models, we do discover a significant subset of Trojaned models (about 10 out of 70) with long short
cut edges from the top persistence cycles. We show a few samples in Figure 3. The behavior of these
Trojaned models and their difference with the rest is yet to be further studied.

Figure 3: More examples of the top persistence cycles from Trojaned models.

3 Theorems and Proofs

In this section, we provide proof of the two theorems in the main paper.

3.1 Proof: Existence of Topological Discrepancy

Recall the definition of Trojaned Mix-Gaussian Triplet. An illustration can be found in Figure 4

Definition 1 (Trojaned Mix-Gaussian Triplet). Let µ1 = 2(−e2 − e1)σ
√

log( 1
η ), µ2 = 2(−e2 +

e1)σ
√

log( 1
η ), µ3 = 2(e2 − e1)σ

√
log( 1

η ), µ4 = 2(e2 + e1)σ
√

log( 1
η ). Let i ∼ uniform({1, 2})

and j ∼ uniform({1, 2, 3, 4}). We define the following triple of distributions (D1,D2,D3) to be
Trojaned Mix-Gaussian Triplet (see supplementary section 1), where:

D1(Original data) = {(x,y) : x ∼ N (µi, σ
2Id), y = i MOD 2}

D2(Trojaned feature with correct labels) = {(x,y) : x ∼ N (µi, σ
2Id), y = j MOD 2}

D3(Trojaned feature with modified labels) = {(x,y) : x ∼ N (µi, σ
2Id), y = 1j∈{2,3}}
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We study the hypothesis classH of binary output neural networks with two hidden layers and four
neurons in each hidden layer equipped with an indicator activation function.

Proposition 1. Let (D1,D2,D3) be Trojaned Mix-Gaussian Triplet and H be the hypothesis
class defined as above. Let R(f, x, y) = 1 (f(x) 6= y). There exists f1, f2 ∈ H where
E(x,y)∼D1

[R(f1, x, y)] ≤ η, E(x,y)∼D3
[R(f2, x, y)] ≤ η , E(x,y)∼D2

[R(f2, x, y)] ≥ 1
2 , such

that:

db[Dg(M(f1,D2),S)−Dg(M(f2,D2),S)] ≥ 0.9

where db is bottleneck distance. Dg(M(fi,D2),S) is the 1D persistence diagram of the Vietoris–Rips
filtration S that is built on top of the correlation matrix M(fi,Dj).

Proof: The proof is constructive. Let f1, f2 be parametrized by U1, V1,W1, b
U
1 , b

V
1 , b

W
1 and

U2, V2,W2, b
U
2 , b

V
2 , b

W
2 and let

U1 =


e>1
−e>1
e>1
−e>1

 V1 =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

W1 =

 0 1
1 0
0 1
1 0



bU1 =

 0
0
0
0

 bV1 =

 −1
−1
−1
−1

bW1 =

 0
0
0
0


(1)

U2 =


e>1
−e>1
e>2
−e>2

 V2 =

 1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

W2 =

 0 1
1 0
0 1
1 0



bU2 =

 0
0
0
0

 bV2 =

 −2
−2
−2
−2

bW2 =

 0
0
0
0


(2)

One can see f1(x) = 1(x>e1 < 0) and f2(x) = 1(x>e1x
>e2 ≥ 0) are Bayes optimal classi-

fier for D1 and D3. Since ‖µi − µj‖ ≥ 4σ
√

log( 1
η ), the Bayes risk is at most η which implies

E(x,y)∼D1
[R(f1, x, y)] ≤ η and E(x,y)∼D3

[R(f2, x, y)] ≤ η. If we use 1(x>e1x
>e2 ≥ 0) as de-

cision boundary for classifying (x, y) generated from D2, due its symmetricity exactly half of the
samples will be misclassified thus E(x,y)∼D2

[R(f2, x, y)] ≥ 1
2 . Next we analyze the second moment

matrix of neurons. Let a1 =

[
p1

q1

]
and a2 =

[
p2

q2

]
, we next calculate Ex∼D1

[a1 ⊗ a1] and

Ex∼D1 [a2 ⊗ a2].

Ex∼D2
[p1 ⊗ p1] =


1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2

Ex∼D2
[q1 ⊗ q1] =


1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2



Ex∼D2
[p1 ⊗ q1] = Ex∼D2

[(q1 ⊗ p1)>] =


1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2


(3)
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And Ex∼D2 [p1] = [1
2 ,

1
2 ,

1
2 ,

1
2 ]>, Ex∼D2 [q1] = [1

2 ,
1
2 ,

1
2 ,

1
2 ]>

Ex∼D2
[p2 ⊗ p2] =


1
2 0 1

4
1
4

0 1
2

1
4

1
4

1
4

1
4

1
2 0

1
4

1
4 0 1

2

Ex∼D2
[q2 ⊗ q2] =


1
4 0 0 0
0 1

4 0 0
0 0 1

4 0
0 0 0 1

4



Ex∼D2
[p2 ⊗ q2] = Ex∼D2

[(q2 ⊗ p2)>] =


1
4

1
4 0 0

0 0 1
4

1
4

1
4 0 1

4 0
0 1

4 0 1
4


(4)

And Ex∼D2 [p2] = [1
2 ,

1
2 ,

1
2 ,

1
2 ]>, Ex∼D2 [q2] = [1

4 ,
1
4 ,

1
4 ,

1
4 ]>

A simple calculation completes the proof.

(a) D1 (Original Data) (b)D2 (Trojaned Feature with Clean Labels) (c) D3 (Trojed Data)

Figure 4: Demonstration of the Trojaned Gaussian Triplet. (a). D1 is the original data distribution.
(b). D2 is the mixture data distribution of original distribution and the shifted distribution caused
by trigger overlaying (note the classification risk is not necessary to be 0 to separate any two of
these 4 Gaussian distribution). (c).D3 is the Trojaned dataset where labels will be modified for those
Trojaned examples.

3.2 Proof: Convergence Theorem

Theorem 1. Let M(fk, Xk) ∈ Rmk×mk with mk ≤ m∗,∀k ∈ [N ] and its entries M i,j
k =

Ψ(vi(Xk),vj(Xk))√
Ψ(vi(Xk),vi(Xk))Ψ(vj(Xk),vj(Xk))

and the its target value M∗(fk,Dk) ∈ Rmk×mk with its en-

tries M∗k
i,j =

EXk∼Dk [Ψ(vi(Xk),vj(Xk))]√
EXk∼Dk [Ψ(vi(Xk),vi(Xk))]EXk∼Dk [Ψ(vj(Xk),vj(Xk))]

as defined in section 3 with

Ψ(vi(X), vj(X)) = 1
n

∑
xl∈X ψ(vi(xl), vj(xl)). Suppose ∀k ∈ [N ], Xk are iid sampled from

distribution Dk and |ψ(vi(x), vj(x))| ≤ R for all x ∼ Dk, vi, vj , 0 < r ≤ Ex∼Dkψ(vi(x), vi(x))
for all i ∈ [mk], if we have ∀k ∈ [N ]

|Xk| ≥
16R6

(
log(N) + 2 log(m∗) + log( 1

δ )
)

r4ε2

then with probability at least 1− δ, for all k ∈ [N ], db(Dg(M(fk, Xk),S),Dg(M(fk,Dk),S)) ≤ ε.

Proof: By Hoeffding inequality for each Ψ(vi(Xk),vj(Xk)), if Xk has size nk ≥
16R6(log(N)+2 log(m∗)+log( 1

δ ))
r4ε2 we have |Ψ(vi(Xk),vj(Xk)) − EXk∼Dk [Ψ(vi(Xk),vj(Xk))]| ≤

εr2

4R2 with probability at least 1− δ
m∗2N .

Next we bound∣∣∣∣∣ Ψ(vi(Xk),vj(Xk))√
Ψ(vi(Xk),vi(Xk))Ψ(vj(Xk),vj(Xk))

− E [Ψ(vi(Xk),vj(Xk))]√
E [Ψ(vi(Xk),vi(Xk))]E [Ψ(vj(Xk),vj(Xk))]

∣∣∣∣∣
(5)

By setting a1 = Ψ(vi(Xk),vj(Xk)), a2 =
√
E [Ψ(vi(Xk),vj(Xk))], b1 =√

Ψ(vi(Xk),vi(Xk)), b2 = E [Ψ(vi(Xk),vi(Xk))] , c1 =
√

Ψ(vj(Xk),vj(Xk)), c2 =
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√
E [Ψ(vj(Xk),vj(Xk))], we can observe that a1

b1c1
− a2

b2c2
= a1b2c2−a2b1c1

b1c1b2c2
. Due to the fact that

|a1−a2| ≤ εr2

4R2 , |b21−b22| ≤ εr2

4R2 , |c21−c22| ≤ εr2

4R2 and a1 ≤ R, a2 ≤ R, r ≤ b22 ≤ R, r ≤ c22 ≤ R,
we have b1c1b2c2 ≥ r2

4 and |a1b2c2 − a2b1c1| ≤ 2εR2 which implies that Equation (5) is bounded
by ε. By taking a union bound on failure probability for all m2

k entries in matrix Mk and for all
Mk, k ∈ [N ] one will get with probability at least 1− δ:

∀k ∈ [N ], ‖M(fk, Xk)−M(fk,Dk)‖∞ ≤ ε

By stability theorem of bottleneck distance [5] with probability at least 1− δ for all k ∈ [N ]:

db(Dg(M(fk, Xk),S),Dg(M(fk,Dk),S)) ≤ ‖M(fk, Xk)−M(fk,Dk)‖∞ ≤ ε

4 Experimental Details

4.1 Pixel-wise Perturbation

For Trojan detection, we are only given a few clean samples for each model. We propose a pixel-wise
perturbation algorithm to obtain samples. See Algorithm 1.

Algorithm 1 Pixel-wise Perturbation

1: Input: Dataset X = {x1,x2, · · · ,xm}, Number of trials n, Input Range L =
{(l1,u1), (l2,u2), · · · , (lm,um)}

2: Output: Coordinate Perturbed Dataset X ′
3: X ′ = ∅
4: for i = 1, · · · ,m do
5: X ′i = ∅
6: while j ≤ n do
7: xci = xi
8: Sample k ∼ {1, 2, · · · , d}, sample a perturbed value v ∼ [li,ui]
9: Set kth coordinate of xci [k] = v

10: X ′i = X ′i ∪ xci
11: j + +
12: end while
13: X ′ = X ′ ∪X ′i
14: end for
15: Return: X ′

4.2 Synthetic Experiment Baseline Setting and Experiment Configuration

Baseline Setting. We compare our Trojan detector’s performance with several commonly cited
approaches. Neural cleanse (NC) introduces a reversed engineering approaches where the algorithm
tries to find a pattern when overlaying with input can flip the output of the model. It detects a Trojaned
model if the median absolute deviation of any resulting reverse engineered pattern goes beyond 2.
Data-limited Trojaned network detection (DFTND) identifies a Trojaned model if the difference
between the norm of the penultimate layer’s representation of a clean input and a adversarial input
goes above certain threshold. Universal litmus pattern (ULP) adopts a meta training idea where
several randomly initialized examples (ULP) are given to all models. These ULPs are optimized
to form representations that can be learned by a Trojan detector to discriminate clean and Trojaned
models. We also compare with a baseline classifier that exploits the correlation matrix directly (Corr).
We extract the top 5 singular values of the correlation matrix and calculate the Frobinius norm of
the matrix after thresholding using 25%, 50%, 75% percentile of the matrix separately. We combine
these values into a feature vector and train a classifier with these feature.

Experiment Configuration. We use 80% of the data as the training set and use the rest 20% as
the testing set. NC doesn’t need training set so we randomly choose 20% of data to measure the
performance. DFTND doesn’t require training set either. So we use the training set to search for a

6



optimal threshold that minimize the cross entropy loss on training set. We repeat each experiment 5
times and the results are record in Table 1 and Table 2 in the main text. Our detector’s performance is
consistently better than all baselines.
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