
A Proof of Equation 5

Proof. We introduce the latent variable C to indicate whether the next-state encoding st+1 the
representation zt are drawn from the joint density (C = 1) or from the product of marginals (C = 0).
For the positive sample with C = 1, we have

p(zt, st+1|C = 1) = p(zt, st+1),

which is the joint density. For the negative example, we have

p(zt, st+1|C = 0) = p(zt)p(st+1),

which is the product of marginals. In the sequel, we use contrastive objective containing one positive
pair and N negative pairs. Correspondingly, the priors of latent C takes the form of

p(C = 1) = 1/(N + 1), p(C = 0) = N/(N + 1).

The following computation is adopted from [36]. By Bayesian rule, the posterior of C = 1 takes the
form of

log p(C = 1|zt, st+1)

= log
p(C = 1)p(zt, st+1|C = 1)

p(C = 0)p(zt, st+1|C = 0) + p(C = 1)p(zt, st+1|C = 1)

= log
p(C = 1)p(zt, st+1)

p(C = 0)p(zt)p(st+1) + p(C = 1)p(zt, st+1)

= log
p(zt, st+1)

Np(zt)p(st+1) + p(zt, st+1)

= − log(1 +N
p(zt)p(st+1)

p(zt, st+1)
)

≤ − logN + log
p(zt, st+1)

p(zt)p(st+1)
.

(16)

By taking expectation with respect to p(zt, st+1|C = 1) on both sides of (16) and rearranging, we
obtain

I(Zt, St+1) ≥ logN + Ep(zt,st+1)[log p(C = 1|zt, st+1)], (17)

where I(Zt;St+1) = Ep(zt,st+1)[log p(zt,st+1)
p(zt)p(st+1) ] is the mutual information between the distributions

of the dynamics-relevant representation Zt and next-observation encoding St+1. In the sequel, we
follow [36] and fit a score function h(zt, st+1) to maximize the log-likelihood of positive samples by
solving a binary classification problem,

Lnce(h) = Ep(zt,st+1)ES−
[

log
exp(h(zt, st+1))∑

sj∈S−∪st+1
exp(h(zt, sj))

]
. (18)

where the denominator involves both the positive and negative pairs. If h is sufficiently expressive,
the optimal solution of the binary classifier is h∗(zt, st+1) = p(C = 1|zt, st+1). Thus, we have

I(Zt, St+1) ≥ logN + Ep(zt,st+1)[log p(C = 1|zt, st+1)]

= logN + Ep(zt,st+1)[log h∗(zt, st+1)]

≥ logN + Ep(zt,st+1)[log h∗(zt, st+1)− log
∑

sj∈S−∪st+1

exp(h∗(zt, sj))]

= logN + Lnce(h∗) = logN + max
h
Lnce(h)

≥ logN + Lnce(h).

(19)

The third line holds since h∗(zt, st+1) ∈ [0, 1] and, hence, the added term is strictly negative. Since
N is a constant decided by the training batch in DB, it suffices to maximize Lnce(h) in (19) to
maximize the mutual information I(Zt, St+1).
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B Pseudocode for DB training

The network of DB in Fig. 2 contains four modules, we introduce the network architecture as follows.

• Observation Encoder fSo (·; θo) and fSm(·; θm). The observation encoder contains a main net-
work and a momentum network, which are used to extract features of ot and ot+1, respectively.
Each network contains three convolution layers as Conv(filter=32, kernel-size=8, strides=4)→
Conv(filter=64, kernel-size=4, strides=2)→ Conv(filter=64, kernel-size=3, strides=1). We adopt
Leaky ReLU as teh activation function. The architecture is similar to DQN without FCNs [35].
The input to observation encoder is image and the output is a vector s ∈ R512.

• Representation Posterior gZ(·;φ). The posterior gZ(st, at;φ) represents the dynamics-relevant
information extracted from state and action. We concatenate st ∈ R512 and one-hot vector
at ∈ R|A| as the input. The processing flow is FCN(units=256)→ ResNet(units=(256,256))→
ResNet(units=(256,256))→ FCN(units=256), where ResNet is a residual network with two layers.
The output of gZ is a diagonal Gaussian with mean µz ∈ R128 and variance σz ∈ R128. We use
soft-plus activation to make the variance positive. The representation z ∈ R128 ∼ N (µz, σz).

• Prediction Head q(·;ψ). The prediction head q(z;ψ) contains three ResNets and two
FCNs. We process the input z ∈ R128 by FCN(units=256) → ResNet(units=(256,256)) →
ResNet(units=(256,256)) → FCN(units=512) → ResNet(units=(512,512)), where ResNet is a
residual network with two layers. The output is a mean vector, which has the same dimensions as
st+1, and an additional variance estimation. The output of qψ is a diagonal Gaussian that has the
same variance in each dimension.

• Projection head fPo (·;ϕo) and fPm(·;ϕm). The projection heads map q̄(zt) and st+1 to low-
dimensional space for contrastive estimation. The projection head contains two FCNs with 256 and
128 units, respectively. We follow Chen et al. [14] and adopt a normalization layer at each layer.

Algorithm 2 Pseudocode for DB training, PyTorch-like

# fS
o , fS

m: observation encoders, gZ: representation posterior, q: prediction head
# fP

o , fP
m: projection heads, W: weight matrix in contrastive loss

for (o, a, o_next) in loader: # Load 16 episodes from 16 actors. N=128*16-1.
s, s_next = fS

o (o), fS
m(o_next).detach() # observation encoder

z_dis = gZ(s,a) # Gaussian distribution of Z
I_upper = KL(z_dis, N(0, I)) # KL-divergence to compress representation (a upper

bound)

z = r_sample(z_dis) # reparameterization
s_pred_dis = q(z) # prediction head, the output is a Gaussian distribution
I_pred = log(s| s_pred_dis) # predictive objective (lower bound)

s_pred = mean(s_pred_dis) # take the mean value of prediction
s_pred_proj = fP

o (s_pred) # projection head
s_next_proj = fP

m(s_next).detach() # momentum projection head

logits = matmul(s_pred_proj, matmul(W, s_next_proj.T)) # (N-1) x (N-1)
logits = logits - max(logits, axis=1) # subtract max from logits for stability
labels = arange(logits.shape[0])
I_nce = -CrossEntropyLoss(logits, labels) # contrastive estimation (lower bound)

L = α1·I_upper - α2·I_pred - α3·I_nce # total loss function
L.backward() # back-propagate
update(fS

o , gZ, q, fP
o , W) # Adam update the parameters

θm = τ · θm+(1-τ) ·θo
θm = τ · ϕm+(1-τ) ·ϕm

We use 128 actors in experiments, and each episode contains 128 steps. Since the batch size
128*128 is too large for GPU memory (RTX-2080Ti), we follow the implementation of ICM and
Disagreement by using experiences from 16 actors for each training step. We iterate 8 times to
sample all experiences from 128 actors. As a result, the corresponding negative sample size |S−| is
16 ∗ 128− 1 for contrastive estimation.
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C Proof of the DB-bonus

C.1 Background: LSVI-UCB

The algorithmic description of LSVI-UCB [24] is given in Algorithm 3. The feature map of the
state-action pair is denoted as η : S × A → Rd. The transition kernel and reward function are
assumed to be linear in η. Under such a setting, it is known that for any policy π, the corresponding
action-value function Qt(s, a) = χ>t η(s, a) is linear in η [24]. Each iteration of LSVI-UCB consists
of two parts. First, in line 3-6, the agent executes the policy according to Qt for an episode. Second,
in line 7-11, the parameter χt of Q-function is updated in closed-form by following the regularized
least-squares

χt ← arg min
χ∈Rd

∑m

i=0

[
rt(s

i
t, a

i
t) + max

a∈A
Qt+1(sit+1, a)− χ>η(sit, a

i
t)
]2

+ λ‖χ‖2,

where m is the number of episodes, and i is the index of episodes. The least-squares problem has the
following closed form solution ,

χt = Λ−1
t

m∑
τ=0

η(xit, a
i
t)
[
rt(x

i
t, a

i
t) + max

a
Qt+1(xit+1, a)

]
,

where Λt is the Gram matrix. The action-value function is estimated by Qt(s, a) ≈ χ>t η(s, a).

LSVI-UCB uses UCB-bonus (line 10) to construct the confidence bound of Q-function as rucb =

β
[
η(s, a)>Λ−1

t η(s, a)
]1/2

[1], which measures the epistemic uncertainty of the corresponding state-
action pairs. Theoretical analysis shows that LSVI-UCB achieves a near-optimal worst-case regret of
Õ(
√
d3T 3L3) with proper selections of β and λ, where L is the total number of steps. We refer to

Jin et al. [24] for the detailed analysis.

Algorithm 3 LSVI-UCB for linear MDP
1: Initialize: Λt ← λ · I and wh ← 0
2: for episode m = 0 to M − 1 do
3: Receive the initial state s0

4: for step t = 0 to T − 1 do
5: Take action at = arg maxa∈AQt(st, a) and observe st+1.
6: end for
7: for step t = T − 1 to 0 do
8: Λt ←

∑m
i=0 η(xit, a

i
t)η(xit, a

i
t)
> + λ · I

9: χt ← Λ−1
t

∑m
i=0 η(xit, a

i
t)[rt(x

i
t, a

i
t) + maxaQt+1(xit+1, a)]

10: Qt(·, ·) = min{χ>t η(·, ·) + α[η(·, ·)>Λ−1
t η(·, ·)]1/2, T}

11: end for
12: end for

C.2 Proof of connection to LSVI-UCB

In linear function approximation, we set the representation of DB to be linear in state-action encoding,
namely, zt = Wtη(st, at) ∈ Rc, where Wt ∈ Rc×d and η(st, at) ∈ Rd. To capture the prediction er-
ror in DB, we conduct regression to recover the next state st+1 and consider the following regularized
least-square problem,

wt ← arg min
W

m∑
i=0

∥∥sit+1 −Wtη(sit, a
i
t)
∥∥2

F
+ λ‖W‖2F , (20)

where ‖ · ‖F denotes the Frobenius norm. In the sequel, we consider a Bayesian linear regression
perspective of (20) that captures the intuition behind the DB-bonus. Our objective is to approximate
the next-state prediction st+1 via fitting the parameter W , such that

Wη(st, at) ≈ st+1,

where st+1 is given. We assume that we are given a Gaussian prior of the initial parameter W ∼
N (0, I/λ). With a slight abuse of notation, we denote by Wt the Bayesian posterior of the parameter
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W given the set of independent observations Dm = {(sit, ait, sit+1)}i∈[0,m]. We further define the
following noise with respect to the least-square problem in (20),

ε = st+1 −Wtη(st, at) ∈ Rc, (21)

where (st, at, st+1) follows the distribution of trajectory. The following theorem justifies the DB-
bonus under the Bayesian linear regression perspective.

Theorem 3 (Formal Version of Theorem 1). We assume that ε follows the standard multivariate
Gaussian distribution N (0, I) given the state-action pair (st, at) and the parameter W . Assuming
W follows the Gaussian prior N (0, I/λ). We define

Λt =

m∑
i=0

η(xit, a
i
t)η(xit, a

i
t)
> + λ · I. (22)

It then holds for the posterior of Wt given the set of independent observations Dm =
{(sit, ait, sit+1)}i∈[0,m] that√

c

4

[
η(t)>Λ−1

t η(t)
]1/2 ≤ I(Wt; [st, at, St+1]|Dm)

1/2 ≤
√
c

2

[
η(t)>Λ−1

t η(t)
]1/2

.

Proof. The proof follows the standard analysis of Bayesian linear regression. See, e.g., West
[57] for the details. We introduce the following notations for Wt ∈ Rc×d, η(st, at) ∈ Rd, and
Wtη(st, at) ∈ Rc,

Wt =

w11 · · · w1d

...
...

wc1 · · · wcd

 ∈ Rc×d, η(st, at) =


η1

η2

...
ηd

 ∈ Rd, Wtη(st, at) =


∑d

k=1 w1kηk∑d
k=1 w2kηk

...∑d
k=1 wckηk

 ∈ Rc.

(23)

For the analysis, we vectorize matrix Wt and define a new matrix η̃. Meanwhile, we define η̃
by repeating η(st, at) for c times in the diagonal. Specifically, we define vec(Wt) ∈ Rcd and
η̃(st, at) ∈ Rcd×c as follows,

vec(Wt) =



w11

...
w1d
w21

...
w2d

...

...
wc1

...
wcd


∈ Rcd, η̃(st, at) =

 η(st,at) 0 ··· 0
0 η(st,at) ··· 0

...
...

. . .
...

0 0 ··· η(st,at)

 =



η1 0 ··· 0

...
ηd 0 ··· 0

η1 ··· 0

...
...

...
ηd ··· 0

...
...

...
...

...
...

0 0 ··· η1
...

...
...

0 0 ··· ηd


∈ Rcd×c,

(24)
Then we have vec(Wt)

>η̃(st, at) = Wtη(st, at) according to block matrix multiplication and (24).
Formally,

vec(Wt)
>η̃(st, at) =


∑d
k=1 w1kηk∑d
k=1 w2kηk

...∑d
k=1 wckηk


>

= Wtη(st, at) ∈ Rc. (25)

Our objective is to compute the posterior density Wt = W |Dm, where Dm = {(sit, ait, sit+1)}i∈[0,m]

is the set of observations. The target of the linear regression is st+1. By the assumption that ε follows
the standard Gaussian distribution, we obtain that

st+1|(st, at),Wt ∼ N
(
Wtη(st, at), I

)
. (26)
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Because we have vec(Wt)
>η̃(st, at) = Wtη(st, at) according to (25), we have

st+1|(st, at),Wt ∼ N
(
vec(Wt)

>η̃(st, at), I
)
. (27)

Recall that we have the prior distribution W ∼ N (0, I/λ), then the prior of vec(W ) ∼ N (0, I/λ).
It holds from Bayes rule that

log p(vec(Wt)|Dm) = log p(vec(Wt)) + log p(Dm|vec(Wt)) + Const. (28)
Plugging (27) and the probability density function of Gaussian distribution into (28) yields

log p(vec(Wt)|Dm) = −‖vec(Wt)‖2/2−
m∑
i=1

‖vec(Wt)η̃(sit, a
i
t)− sit+1‖2/2 + Const

= −(vec(Wt)− µ̃t)>Λ̃−1
t (vec(Wt)− µ̃t)/2 + Const,

(29)

where we define

µ̃t = Λ̃−1
t

m∑
i=0

η̃(sit, a
i
t)s

i
t+1 ∈ Rcd, Λ̃t =

m∑
i=0

η̃(sit, a
i
t)η̃(xit, a

i
t)
> + λ · I ∈ Rcd×cd.

Thus, by (29), we obtain that vec(Wt) = W |Dm ∼ N (µ̃t, Λ̃
−1
t ). We have the covariance matrix of

vec(Wt) is
Var(vec(Wt)) = Λ̃−1

t (30)

The Λ̃t term accumulates previous η̃(sit, a
i
t)η̃(sit, a

i
t)
>. Since we have

η̃(sit, a
i
t)η̃(sit, a

i
t)
> =

 η(t) 0 ··· 0
0 η(t) ··· 0

...
...

. . .
...

0 0 ··· η(t)



η(t)> 0 ··· 0

0 η(t)> ··· 0

...
...

. . .
...

0 0 ··· η(t)>



=


η(t)η(t)> 0 ··· 0

0 η(t)η(t)> ··· 0

...
...

. . .
...

0 0 ··· η(t)η(t)>

 ∈ Rcd×cd,

(31)

where η(t) = η(sit, a
i
t) ∈ Rd, and η(t)η(t)> ∈ Rd×d repeats for c times, we further expand the

matrix Λ̃t as,

Λ̃t =

m∑
i=0

η̃(sit, a
i
t)η̃(xit, a

i
t)
> + λI =


∑
η(t)η(t)>+λI 0 ··· 0

0
∑
η(t)η(t)>+λI ··· 0

...
...

. . .
...

0 0 ···
∑
η(t)η(t)>+λI



=


Λt 0 · · · 0
0 Λt · · · 0
...

...
. . .

...
0 0 · · · Λt

 ,
(32)

where we follow the definition of Λt in (22). Further, the mutual information
I(vec(Wt); [st, at, St+1]|Dm) = H(vec(Wt)|Dm)−H(vec(Wt)|(st, at, St+1) ∪ Dm)

=
1

2
log det

(
Var(vec(Wt)|Dm)

)
− 1

2
log det

(
Var(vec(Wt)|(st, at, St+1) ∪ Dm)

)
.

(33)

Plugging (30) into (33), we have

I(vec(Wt); [st, at, St+1]|Dm) =
1

2
log det

(
Λ̃−1
t

)
− 1

2
log det

(
(Λ̃†t)

−1
)

=
1

2
log det

(
Λ̃†t
)
− 1

2
log det

(
Λ̃t
)

=
1

2
log det

(
Λ̃t + η̃(st, at)η̃(st, at)

>)− 1

2
log det

(
Λ̃t
)

=
1

2
log det

(
η̃(st, at)

>Λ̃−1
t η̃(st, at) + I

)
,

(34)
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where the last line follows Matrix Determinant Lemma. Then, plugging (32) into (34), we have

η̃(st, at)
>Λ̃−1

t η̃(st, at) =


η(t)> 0 ··· 0

0 η(t)> ··· 0

...
...

. . .
...

0 0 ··· η(t)>




Λ−1
t 0 ··· 0

0 Λ−1
t ··· 0

...
...

. . .
...

0 0 ··· Λ−1
t


 η(t) 0 ··· 0

0 η(t) ··· 0

...
...

. . .
...

0 0 ··· η(t)



=


η(t)>Λ−1

t η(t) 0 ··· 0

0 η(t)>Λ−1
t η(t) ··· 0

...
...

. . .
...

0 0 ··· η(t)>Λ−1
t η(t)

 ∈ Rc×c.

(35)

Thus, we have

I(vec(Wt); [st, at, St+1]|Dm) =
1

2
log det

(
η̃(st, at)

>Λ̃−1
t η̃(st, at) + I

)
=
c

2
· log

(
η(t)>Λ−1

t η(t) + 1
)
.

(36)

By assuming the L2-norm of feature vector ‖η‖2 ≤ 1 and λ = 1 [24, 56], we have η(t)>Λ−1
t η(t) ≤ 1.

Moreover, since x
2 ≤ log(1 + x) ≤ x for x ∈ [0, 1], we have

η(t)>Λ−1
t η(t)

2
≤ log

(
η(t)>Λ−1

t η(t) + 1
)
≤ η(t)>Λ−1

t η(t). (37)

Therefore, we have√
c

4

[
η(t)>Λ−1

t η(t)
]1/2 ≤ I(vec(Wt); [st, at, St+1]|Dm)

1/2 ≤
√
c

2

[
η(t)>Λ−1

t η(t)
]1/2

. (38)

Moreover, since vec(Wt) is the vectorization of Wt, we have
I(Wt; [St, At]|Dm)=I(vec(Wt); [St, At]|Dm). Finally, we have√

c

4

[
η(t)>Λ−1

t η(t)
]1/2 ≤ I(Wt; [st, at, St+1]|Dm)

1/2 ≤
√
c

2

[
η(t)>Λ−1

t η(t)
]1/2

. (39)

Recall that we set rucb = β
[
η(t)>Λ−1

t η(t)
]1/2

. Thus, we obtain that
1√
2
β0 · rucb ≤ I(Wt; [st, at, St+1]|Dm)

1/2 ≤ β0 · rucb, (40)

where β0 =
√

c
2β2 is a tuning parameter. Thus, we complete the proof of Theorem 1.

C.3 Proof of Theorem 2

Proof. In the sequel, we consider the tabular setting with finite state and action spaces. We define
d = |S|×|A|. In the tabular setting, we define the state-action encoding by the one-hot vector indexed
by state-action pair (s, a) ∈ S ×A. For a state-action pair (sj , aj) ∈ S ×A, where j ∈ [0, d− 1],
we have

η(sj , aj) =


0
...
1
...
0

 ∈ Rd, η(sj , aj)η(sj , aj)
> =


0 · · · 0 · · · 0
...

. . .
...

0 1 0
...

. . .
...

0 · · · 0 · · · 0

 ∈ Rd×d, (41)

where the value is 1 at the j-th entry and 0 elsewhere. Moreover, the gram matrix Λj =∑m
i=0 η(xij , a

i
j)η(xij , a

i
j)
> + λ · I is the sum of all the matrices η(sj , aj)η(sj , aj)

> correspond-
ing to the batch Dm. That said, we have

Λj =



n0 + λ 0 · · · 0
0 n1 + λ · · · 0
...

. . .
...

0 nj + λ 0
...

. . .
...

0 · · · · · · nd−1 + λ


, (42)
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where the j-th diagonal element of Λj is the corresponding counts for state-action (sj , aj), i.e.,

nj = Nsj ,aj .

Thus, following the proof from §C.2, the mutual-information scales with log
(
η(t)>Λ−1

t η(t) +

1
)
. When the count Nsj ,aj of state-action pairs are large for all j ∈ [0, d − 1], we have

log
(
η(t)>Λ−1

t η(t) + 1
)
≈ η(t)>Λ−1

t η(t). Moreover, it holds that[
η(sj , aj)

>Λ−1
t η(sj , aj)

]1/2
=

1√
Nsj ,aj + λ

. (43)

Thus, in conclusion, we obtain that

rdb(sj , aj) = I
(
Wt;[sj , aj , Sj+1]|Dm

)
≈
√
c

2

[
η(sj , aj)

>Λ−1
t η(sj , aj)

]1/2
=

√
c

2

1√
Nsj ,aj + λ

= β0 · rcount
j ,

(44)

where c = |Z| is the same as the number of states |S| in tabular MDPs. Thus, we complete the proof
of Theorem 2. The bonus become smaller when the corresponding state-actions are visited more
frequent, which follows the principle of count-based exploration [9, 38].
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D Implementation Detail

Table 1: Experimental setup of PPO. The implementation of PPO is the same for all methods in our
experiments.

Hyperparameters Value Description

state space 84× 84× 4 Stacking 4 recent frames as the input to network.
action repeat 4 Repeating each action 4 times.
actor-critic net-
work

conv(32,8,4)
conv(64,4,2)
conv(64,3,1)
dense{512, 512}
dense|A|+ 1

Using convolution(channels, kernel size, stride) layers first, then feed
into two fully-connected layers, each with 512 hidden units. The
outputs of the policy and the value function are split in the last layer.
The output of policy is a Softmax function. The output of the value
function is a single linear unit.

entropy regular-
izer

10−3 The loss function of PPO includes an entropy regularizer of the policy
to prevent premature convergence

γppo 0.99 Discount factor of PPO
λppo 0.95 GAE parameters of PPO
normalization mean of 0, std

of 1
Normalizing the intrinsic reward and advantage function by follow-
ing [39, 11]. The advantage estimations in a batch is normalized to
achieve a mean of 0 and std of 1. The intrinsic rewards is smoothen
exponentially by dividing a running estimate of std.

learning starts 50000 The agent takes random actions before learning starts.
replay buffer
size

1M The number of recent transitions stored in the replay buffer.

training batches 3 The number of training batches after interacting an episode for all
actors.

optimizer Adam Adam optimizer is used for training. Detailed parameters: β1 = 0.9,
β2 = 0.999, εADAM = 10−7.

mini-batch size 32 The number of training cases for gradient decent each time.
learning rate 10−4 Learning rate for Adam optimizer.
max no-ops 30 Maximum number no-op actions before an episode starts.
actor number 128 Number of parallel actors to gather experiences.
T 128 Episode length.

Table 2: Experimental setup of DB

Hyperparameters Value Description

network architecture Appendix B See Fig.2.
α1 {0.1, 0.001} Factor for Iupper.
α2 0.1 Factor for Ipred.
α3 {0.1, 0.01} Factor for Ince.
τ 0.999 Factor for momentum update.

Table 3: Comparison of model complexity. (1) ICM estimates the inverse dynamics for feature
extraction with 2.21M parameters. ICM also includes a dynamics model with 2.65M parameters
to generate intrinsic rewards. (2) Disagreement use a fixed CNN for feature extraction thus the
trainable parameters is 0. Disagreement uses an ensemble of dynamics with total 26.47M parameters
to estimate the uncertainty. (3) CB does not requires any additional parameters compared to the
actor-critic network. (4) DB requires slightly more parameters than ICM in representation learning,
while do not uses additional parameters in estimating the dynamics since the DB-bonus is directly
derived from the information gain of latent representation.

Feature extractor Dynamic model Total
ICM 2.21M 2.65M 4.86M
Disagreement 0M 26.47M 26.47M
CB 0M 0M 0M
DB (ours) 5.15M 0M 5.15M
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E Supplementary Experimental Results

E.1 Random-Box Noise

We present the evaluation curves of Atari games with random-box noise in Fig. 7.
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Figure 7: Evaluation curves in Atari games with random-box noise. SSE-DB outperforms all the
baselines in 17 out of the 18 tasks. Comparing to standard Atari, we observe that the performance of
SSE-DB with random-box noise is suboptimal in Breakout, Gopher, and WizardOfWar. In these tasks,
dynamic-relevant information (e.g., the ball in Breakout, the tunnels in Gopher, and the worriors
in WizardOfWar) are (partly) masked by random-boxes. Breakout is affected by random boxes
significantly as the ball is too small to be distinguished from the noise. In addition, we observe that
ICM is prone to random-box noise in most of the tasks. Disagreement also demonstrates decreased
(e.g., CrazyClimber, Gopher, Kangaroo) or unstable (e.g., Alien, Centipede, TimePilot) performance
in most of the tasks. A possible explanation is that the random-box noise affects the training of
the dynamics models, thus bring adverse impact in estimating the Bayesian uncertainty through
ensembles in Disagreement. In contrast, SSE-DB performs well in the presence of the random-box
noise.
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E.2 Pixel Noise

We present the evaluation curves in Atari games with pixel noise in Fig. 8 and Fig. 9.
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Figure 8: Evaluation curves in Atari games with pixel noise. SSE-DB outperforms all the baselines
in 15 out of the 18 tasks. For games with the pixel noise, the performance of SSE-DB is similar to
that for standard Atari games, expect for Breakout, in which the ball is too small to be distinguished
from the pixel noise. We refer to Fig. 9 for a comparison of results with and without pixel noise.
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Figure 9: A comparison of results on selected Atari games with and without pixel noise. SSE-DB
shows robustness to pixel noise since we discard the dynamics-irrelevant information. Nevertheless,
we find that the adverse effect of introducing pixel noise is limited for exploration, both in SSE-DB
and other baselines. Especially, in Gravitar and MsPacman, the performance of SSE-DB has sight
improvement compared to that of standard Atari games. A possible explanation is that introducing
the pixel noise leads to data augmentation for image inputs, thus bringing regularization for learning
and enhance the generalization ability of the policy.
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E.3 Sticky Actions

Evaluation curves in Atari games with sticky actions is give in Fig. 10.
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Figure 10: Evaluation curves in Atari games with sticky actions, which introduces additional stochas-
ticity to the transition dynamics. As shown in figures, SSE-DB outperforms all baselines in 15 out of
18 games. We observe that in Breakout, MsPacman, and UpNDown, SSE-DB performs suboptimal
in the early stage of training stage. Nevertheless, the performance gradually improves as the training
evolves and reaches to the optimum eventually, which occurs since DB removes the noisy information
for the state representation along the training process. We highlight that SSE-DB compresses the
latent representation of the corresponding state-action pair, thus minimizing the effect of noisy actions.
In addition, Disagreement method based on Bayesian uncertainty also demonstrates robustness to
sticky actions, despite the fact that it needs more parameters than other methods according to Table 3.
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E.4 Ablation Study

In this section, we present several ablation studies to analyze the components of the DB model. We
conduct experiments on different settings that remove different components in DB, namely,

• No-Upper, which is a variant of DB that removes Iupper from LDB (set α1 = 0) in (8);
• No-Pred, which is a variant of DB that removes Ipred from LDB (set α2 = 0);
• No-NCE, which is a variant of DB that removes Ince from LDB (set α3 = 0); and
• No-NCE-Momentum, which is a variant of DB that removes Ince and utilizes the same encoder
fS(; θ) for successive observations ot and ot+1, in contrast with the momentum observation
encoding for ot+1 of DB.

We conduct experiments on the Alien task with standard observation and random-Box noise. We
illustrate the results in Fig. 11 and Fig. 12, respectively. We illustrate the performance comparison on
extrinsic rewards in (a) of Fig. 11, and the change of Iupper, Ipred Ince in (b), (c) and (d), respectively,
of Fig. 11. We discuss the results in the sequel.

• No-Upper setting exhibits similar performance as SSE-DB in standard Atari. Without compressing
the representation through minimizing Iupper, the latentZ preserves more information and exhibits
well exploration with DB-bonus. However, in random-box setting, the latent Z contains distractors
features thus bringing adverse effects in exploration. Interestingly, Iupper first increases and
then decrease without minimizing the Iupper explicitly (see Fig. 11 (b) and Fig. 12 (b)). This
phenomenon is reminiscent of previous studies of Information Bottleneck in Deep Learning
[54, 48], suggesting that the neural network has the ability to actively compress the input for
efficient representation. Nevertheless, according to our experiments, such compression is still
not sufficient to handle the random-box noise in exploration. In such environments, the objective
Iupper needs to be minimized to discard dynamics-irrelevant features.

• No-Pred setting has significantly reduced performance and stability for both the standard observa-
tions and the observations with random-box noise, comparing with SSE-DB. According to our
results, the contrastive estimation cannot replace the role of predictive objective in maximizing the
mutual information of Zt and St+1. A possible explanation is that the contrastive loss is applied
in a transformed space through projection heads, thus part of the dynamics-relevant information is
encoded in the projection encoding but not the latent representation Z. However, our DB-bonus is
defined in Z, thus do not capture the information encoded in projection heads. Besides, according
to Fig. 11 (c) and Fig. 12 (c), the predictive objective does not increase through solely maximizing
Ince.

• No-NCE setting exhibits similar performance as DB in standard Atari. Since we use the momentum
observation encoder to prevent collapsing solution, the lack of contrastive estimation does not
bring significant performance loss. Meanwhile, according to Fig. 11 (d) and and Fig. 12 (d), we
find that Ince improves slightly without being optimized explicitly, since the predictive objective
helps improving Ince implicitly. Nevertheless, the lack of NCE-loss produces reduced performance
with random-box noise. Our experiments show that using contrastive estimation leads to a stronger
distillation for the dynamics-relevant feature of observations.

• No-NCE-No-Momentum setting leads to the collapsing solution in representation. According
to Fig. 11 (c) and and Fig. 12 (c), the predictive objective converges very fast by encoding all
observations to uninformative values. Such a trivial solution is undesirable as it does not capture
any meaningful information. The performance of such setting decrease significantly comparing
against SSE-DB.
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Figure 11: Ablation study in Alien. We measure (a) extrinsic rewards, (b) Iupper that indicates the
amount of information contained in the representation space, (c) the predictive objective Ipred, and
(d) the contrastive estimation Ince for comparison.
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Figure 12: Ablation study in Alien with random-box noise. We measure (a) extrinsic rewards,
(b) Iupper that indicates the amount of information contained in the representation space, (c) the
predictive objective Ipred, and (d) the contrastive estimation Ince for comparison.
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E.5 Visualizing DB-bonus

The proposed DB-bonus motivates the agent to explore states and actions that have high information
gain to the representation. To further understand the DB-bonus, we provide visualization in two
tasks to illustrate the effect of DB-bonuses. We choose two Atari games Breakout and Gopher, and
visualize the DB-bonus in an episode based on a trained DB model.

E.5.1 Breakout

In Breakout, the agent uses walls and the paddle to rebound the ball against the bricks and eliminate
them. We use a trained SSE-DB agent to interact with the environment for an episode in Breakout.
The whole episode contains 1942 steps, and we subsample them every 4 steps for visualization. The
curve in Fig. 13 shows the UCB-bonus in 481 sampled steps.

We select 16 spikes of the DB-bonus on the trajectory and then visualize their corresponding
observations. From the results, we find that the spikes typically correspond to some critical obser-
vations, including eliminating bricks (e.g., frames 1, 3, and 5-8), rebounding the ball (e.g., frames
2 and 4), digging a tunnel (e.g., frames 9-12), and throwing the ball onto the top of bricks (e.g.,
frames 13-16). These examples demonstrate that the DB-bonus indeed encourages the agent to
explore many crucial states, even without knowing the extrinsic rewards. The DB-bonus encourages
the agent to explore the potentially informative and novel state-action pairs to get high rewards.
We also record 15 frames after each spike for further visualization. The video is available at
https://www.dropbox.com/sh/gw7m38o29dfl9zx/AACF1AogB93spuD_Vsk_lsOBa?dl=0.
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Figure 13: Visualization of DB-bonus for an episode in Breakout. The curve corresponds to the
DB-rewards of a trajectory. The numbers from 1 to 16 corresponds to the selected spikes, and the
images are the corresponding observations.

E.5.2 Gopher

Gopher is a popular Atari game. In this game, the gopher tunnels left, right, and up to the surface.
When the gopher makes a hole to the surface, he will attempt to steal a carrot. If the holes have been
tunneled to the surface, the farmer (i.e., the agent) can hit the gopher to send him back underground
or fill in the holes to prevent him from reaching the surface. Rewards are given when the agent hits
the holes and gopher. SSE-DB performs well in this task. To illustrate how DB-bonus works, we
use an SSE-DB agent to play this game for an episode and records the DB-bonus in all 4501 steps.
Fig. 14 shows the DB-bonus and the corresponding frames in 16 chosen spikes in 1125 subsampled
steps.
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We find almost all spikes (i.e., frames 1-3, 5-13, 15-16) of DB-bonus correspond to scenarios that the
gopher makes a hole to the surface, which is rarely occurs and signifies that the gopher will have a
chance to eat carrots. Also, these scenarios are crucial for the farmer to get rewards since the farmer
can hit the gopher and holes to prevent the carrots from being eaten. The DB-bonus encourages the
farmer to learn skills to move fast and hit the holes in the surface to obtain high scores. In addition,
the gopher moves underground in frames 4 and 14, and the farmer mends holes in the surface. The
transitions with high DB-bonuses make the agent explore the environment efficiently. The video of
spikes is available at https://www.dropbox.com/sh/gw7m38o29dfl9zx/AACF1AogB93spuD_
Vsk_lsOBa?dl=0.
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Figure 14: Visualization of DB-bonus for an episode in Gopher.
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E.6 Montezuma’s Revenge

Several exploration methods demonstrate superior performance on Montezuma’s Revenge [51].
However, these methods all use intrinsic rewards along with extrinsic rewards from the environment
in training. In the self-supervised exploration setting where the training hinges solely on the intrinsic
rewards, we find that SSE-DB and all the other baselines scores zero in this task.

Nevertheless, we observe that the agent trained with DB-bonus can pass half of the first room in
Montezuma’s Revenge. We conduct t-SNE [31] visualization to illustrate the learned representation of
DB. Form Fig. 15(a), we find that the latent representations are well aligned in several clusters, which
corresponds to stepping down the ladder, jumping to the pillar, and escaping an enemy, respectively.
We also visualize the raw states from the same episode with t-SNE in Fig. 15(b). In contrast, we do
not find any meaningful clusters form the visualization of raw states. DB enables to capture certain
aspects of such a hard task.

We give a video of the trained policy of DB 1. From the video, we find that the self-supervised agent
with DB-bonus can learn some skills, including stepping down the ladder, jumping to the pillar, and
trying to escape the enemy. Nevertheless, as the learning curve suggests, such learned skills along are
insufficient for obtaining scores.

(a) T-SNE visualization of the latent representation and the correspond-
ing frames
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Figure 15: (a) Visualization for 200 observations of Montezuma’s Revenge in an episode. We
visualize the latent representations of DB in 2 dimensions with t-SNE [31]. Numbers on top-left of
game frames correspond to numbers of representations in lower-dimensional space. (b) Visualization
for raw states (84× 84× 4 for each one) in the same episode.

1https://www.dropbox.com/s/boijqmt66mgnj17/montezuma-DB.mp4?dl=0
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E.7 Comparison with Entropy-Based Exploration

There exist several methods that perform entropy-based exploration for unsupervised representation
learning, and then use this representation for downstream task adaptation, including VISR [19], APT
[29], APS [28], RE3 [47] and Proto [59]. The entropy-based methods use k-nearest neighbor state
entropy estimator to estimate the entropy of stateH(s) and then use it as intrinsic rewards.

In this section, we focus on the unsupervised exploration stage and compare SSE-DB with entropy-
based exploration methods. Since APT and APS do not release code and ProtoRL conducts experi-
ments in DeepMind control rather than Atari, we conduct experiments with RE3 algorithm. Since
RE3 uses Rainbow as the basic algorithm, and uses both the extrinsic and intrinsic rewards in training,
we re-implement the RE3 bonus in our codebase to evaluate its performance in a self-supervised
setting with noisy environments. As shown in Fig. 16, RE3 performs reasonably in standard Atari
games. However, the performance decreased significantly in the Random-Box Atari environments.
A possible reason is that the entropy of the state increases significantly if we inject noises. Hence,
exploration is misled by the noises in these environments. Nevertheless, as shown in Fig. 17, the
entropy-based methods are robust to sticky actions since they use the entropy of states in exploration,
without considering the entropy of actions.
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Figure 16: A comparison of results on selected Atari games with and without Random-Box noise.
SSE-DB shows robustness to Random-Box noise while RE3 is sensitive to the noises.
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Figure 17: A comparison of results on selected Atari games with and without sticky actions. Both
SSE-DB and RE3 show robustness to sticky actions.
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