
Supplementary Material for
Learned Robust PCA: A Scalable Deep Unfolding
Approach for High-Dimensional Outlier Detection

A Proofs

In this section, we provide the mathematical proofs for the claimed theoretical results. Note that the
proof of our convergence theorem follows the route established in [12]. However, the details of our
proof are quite involved since we replaced the sparsification operator which substantially changes the
method of outlier detection.

Let L? := U?Σ
1/2
? and R? := V?Σ

1/2
? where U?Σ?V

>
? is the compact SVD of X?. For theoretical

analysis, we consider the error metric for decomposed rank-r matrices:

dist(L,R;L?,R?) := inf
Q∈Rr×r,rank(Q)=r

(
‖(LQ−L?)Σ

1/2
? ‖2F + ‖(RQ−> −R?)Σ

1/2
? ‖2F

)1/2

.

Notice that the optimal alignment matrix Q exists and invertible if L and R are sufficiently close to
L? and R?. In particular, one can have the following lemma.

Lemma 2 ([12, Lemma 9]). For any L ∈ Rn1×r and R ∈ Rn2×r, if

dist(L,R;L?,R?) < cσr(X?)

for some 0 < c < 1, then the optimal alignment matrix Q between [L,R] and [L?,R?] exists and is
invertible.

More notation. In addition to the notation introduced in Section 1, we provide some more notation
for the analysis. ∨ denotes the logical disjunction, which takes the max of two operands. For any
matrix M , ‖M‖2 = σ1(M) denotes the spectral norm and ‖M‖1,∞ = maxi

∑
j |[M ]i,j | denotes

the largest row-wise `1 norm.

For ease of presentation, we take n := n1 = n2 in the rest of this section, but we emphasize that
similar results can be easily drawn for the rectangular matrix setting. Furthermore, we introduce
following shorthand for notational convenience: Qk denotes the optimal alignment matrix between
(Lk,Rk) and (L?,R?), L\ := LkQk, R\ := RkQ

−>
k , ∆L := L\ − L?, ∆R := R\ −R?, and

∆S := Sk+1 − S?.

A.1 Proof of Theorem 1

We first present the theorems of local linear convergence and guaranteed initialization. The proofs of
these two theorems can be find in Sections A.3 and A.4, respectively.

Theorem 3 (Local linear convergence). Suppose that X? = L?R
>
? is a rank-r matrix with µ-

incoherence and S? is an α-sparse matrix with α ≤ 1
104µr1.5 . Let Qk be the optimal alignment

matrix between [Lk,Rk] and [L?,R?]. If the initial guesses obey the conditions

dist(L0,R0;L?,R?) ≤ ε0σr(X?),

‖(L0Q0 −L?)Σ
1/2
? ‖2,∞ ∨ ‖(R0Q

−>
0 −R?)Σ

1/2
? ‖2,∞ ≤

√
µr

n
σr(X?)

with ε0 := 0.02, then by setting the thresholding values ζk = ‖X? − Lk−1R
>
k−1‖∞ and the fixed

step size ηk = η ∈ [ 1
4 ,

8
9 ], the iterates of Algorithm 1 satisfy

dist(Lk,Rk;L?,R?) ≤ ε0τ
kσr(X?),

‖(LkQk −L?)Σ
1/2
? ‖2,∞ ∨ ‖(RkQ

−>
k −R?)Σ

1/2
? ‖2,∞ ≤

√
µr

n
τkσr(X?),

where the convergence rate τ := 1− 0.6η.
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Theorem 4 (Guaranteed initialization). Suppose that X? = L?R
>
? is a rank-r matrix with µ-

incoherence and S? is an α-sparse matrix with α ≤ c0
µr1.5κ for some small positive constant c0 ≤ 1

35 .
Let Q0 be the optimal alignment matrix between [L0,R0] and [L?,R?]. By setting the thresholding
values ζ0 = ‖X?‖∞, the initial guesses satisfy

dist(L0,R0;L?,R?) ≤ 10c0σr(X?),

‖(L0Q0 −L?)Σ
1/2
? ‖2,∞ ∨ ‖(R0Q

−>
0 −R?)Σ

1/2
? ‖2,∞ ≤

√
µr

n
σr(X?).

In addition, we present a lemma that verifies our selection of thresholding values is indeed effective.
Lemma 5. At the (k + 1)-th iteration of Algorithm 1, taking the thresholding value ζk+1 :=
‖X? −Xk‖∞ gives

‖S? − Sk+1‖∞ ≤ 2‖X? −Xk‖∞ and supp(Sk+1) ⊆ supp(S?).

Proof. Denote Ω? := supp(S?) and Ωk+1 := supp(Sk+1). Recall that Sk+1 = Sζk+1
(Y −Xk) =

Sζk+1
(S? + X? −Xk). Since [S?]i,j = 0 outside its support, so [Y −Xk]i,j = [X? −Xk]i,j for

the entries (i, j) ∈ Ωc?. Applying the chosen thresholding value ζk+1 := ‖X? −Xk‖∞, one have
[Sk+1]i,j = 0 for all (i, j) ∈ Ωc?. Hence, the support of Sk+1 must belongs to the support of S?, i.e.,

supp(Sk+1) = Ωk+1 ⊆ Ω? = supp(S?).

This proves our first claim.

Obviously, [S? − Sk+1]i,j = 0 for all (i, j) ∈ Ωc?. Moreover, we can split the entries in Ω? into two
groups:

Ωk+1 = {(i, j) | |[Y −Xk]i,j | > ζk+1 and [S?]i,j 6= 0} and
Ω?\Ωk+1 = {(i, j) | |[Y −Xk]i,j | ≤ ζk+1 and [S?]i,j 6= 0},

and it holds

|[S? − Sk+1]i,j | =
{
|[Xk −X?]i,j − sign([Y −Xk]i,j)ζk+1|
|[S?]i,j |

≤
{
|[Xk −X?]i,j |+ ζk+1

|[X? −Xk]i,j |+ ζk+1

≤
{

2‖X? −Xk‖∞ (i, j) ∈ Ωk+1,

2‖X? −Xk‖∞ (i, j) ∈ Ω?\Ωk+1.

Therefore, we can conclude ‖S? − Sk+1‖∞ ≤ 2‖X? −Xk‖∞.

Now, we are already to prove Theorem 1.

Proof of Theorem 1. Take c0 = 10−4 in Theorem 4. Thus, the results of Theorem 4 satisfy the
condition of Theorem 3, and gives

dist(Lk,Rk;L?,R?) ≤ 0.02(1− 0.6η)kσr(X?),

‖(LkQk −L?)Σ
1/2
? ‖2,∞ ∨ ‖(RkQ

−>
k −R?)Σ

1/2
? ‖2,∞ ≤

√
µr

n
(1− 0.6η)kσr(X?)

for all k ≥ 0. [12, Lemma 3] states that

‖LkR>k −X?‖F ≤ 1.5 dist(Lk,Rk;L?,R?)

as long as ‖(LkQk−L?)Σ
1/2
? ‖2,∞∨‖(RkQ

−>
k −R?)Σ

1/2
? ‖2,∞ ≤

√
µr
n σr(X?). Hence, our first

claim is proved.

When k ≥ 1, the second claim is directly followed by Lemma 5. When k = 0, take X−1 = 0, then
one can see S0 = Sζ0(Y ) = Sζ0(Y −X−1) where ζ0 = ‖X?‖∞ = ‖X? −X−1‖∞. Applying
Lemma 5 again, we have the second claim for all k ≥ 0.

This finishes the proof.
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A.2 Auxiliary lemmata

Before we can present the proofs for Theorems 3 and 4, several important auxiliary lemmata must be
processed.
Lemma 6. For any α-sparse matrix S ∈ Rn×n, the following inequalities hold:

‖S‖2 ≤ αn‖S‖∞,
‖S‖2,∞ ≤

√
αn‖S‖∞,

‖S‖1,∞ ≤ αn‖S‖∞.

Proof. The first claim has been shown as [6, Lemma 4]. The rest two claims are directly followed by
the fact S has at most αn non-zero elements in each row and each column.

Lemma 7. If

dist(Lk,Rk;L?,R?) ≤ ε0τ
kσr(X?),

then the following inequalities hold

‖∆LΣ
1/2
? ‖F ∨ ‖∆RΣ

1/2
? ‖F ≤ ε0τ

kσr(X?)

‖∆LΣ
1/2
? ‖2 ∨ ‖∆RΣ

1/2
? ‖2 ≤ ε0τ

kσr(X?)

Proof. Recall that dist(Lk,Rk;L?,R?) =

√
‖∆LΣ

1/2
? ‖2F ∨ ‖∆RΣ

1/2
? ‖2F. The first claim is di-

rectly followed by the definition of dist.

By the fact that ‖A‖2 ≤ ‖A‖F for any matrix, we deduct the second claim from the first claim.

Lemma 8. If

dist(Lk,Rk;L?,R?) ≤ ε0τ
kσr(X?),

then it holds

‖L\(L>\ L\)−1Σ
1/2
? ‖2 ∨ ‖R\(R

>
\ R\)

−1Σ
1/2
? ‖2 ≤

1

1− ε0
.

Proof. [12, Lemma 12] provides the following inequalities:

‖L\(L>\ L\)−1Σ
1/2
? ‖2 ≤

1

1− ‖∆LΣ
−1/2
? ‖2

,

‖R\(R
>
\ R\)

−1Σ
1/2
? ‖2 ≤

1

1− ‖∆RΣ
−1/2
? ‖2

,

as long as ‖∆LΣ
−1/2
? ‖2 ∨ ‖∆RΣ

−1/2
? ‖2 < 1.

By Lemma 7, we have ‖∆LΣ
−1/2
? ‖2 ∨ ‖∆RΣ

−1/2
? ‖2 ≤ ε0τ

k ≤ ε0, given τ = 1− 0.6η < 1. The
proof is finished since ε0 = 0.02 < 1.

Lemma 9. If

‖(Lk+1Qk −L?)Σ
1/2
? ‖2 ∨ ‖(Rk+1Q

−>
k −R?)Σ

1/2
? ‖2 ≤ ε0τ

k+1σr(X?),

then

‖Σ1/2
? Q−1

k (Qk+1 −Qk)Σ
1/2
? ‖2 ∨ ‖Σ1/2

? Q>k (Qk+1 −Qk)−>Σ
1/2
? ‖2 ≤

2ε0

1− ε0
σr(X?).

Proof. [12, Lemma 14] provides the inequalities:

‖Σ1/2
? Q̃−1Q̂Σ

1/2
? −Σ?‖2 ≤

‖R(Q̃−> − Q̂−>)Σ
1/2
? ‖2

1− ‖(RQ̂−> −R?)Σ
−1/2
? ‖2
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‖Σ1/2
? Q̃>Q̂−>Σ

1/2
? −Σ?‖2 ≤

‖L(Q̃− Q̂)Σ
1/2
? ‖2

1− ‖(LQ̂−L?)Σ
−1/2
? ‖2

for any L,R ∈ Rn×r and invertible Q̃, Q̂ ∈ Rr×r, as long as ‖(LQ̂−L?)Σ
−1/2
? ‖2 ∨ ‖(RQ̂−> −

L?)Σ
−1/2
? ‖2 < 1.

We will focus on the first term for now. By the assumption of this lemma and the definition of Qk+1,
we have

‖(Rk+1Q
−>
k −R?)Σ

1/2
? ‖2 ≤ ε0τ

k+1σr(X?),

‖(Rk+1Q
−>
k+1 −R?)Σ

1/2
? ‖2 ≤ ε0τ

k+1σr(X?),

‖(Rk+1Q
−>
k+1 −R?)Σ

−1/2
? ‖2 ≤ ε0τ

k+1.

Thus, by taking R = Rk+1, Q̃ = Qk, and Q̂ = Qk+1, we obtain

‖Σ1/2
? Q−1

k (Qk+1 −Qk)Σ
1/2
? ‖2 = ‖Σ1/2

? Q−1
k Qk+1Σ

1/2
? −Σ?‖2

≤
‖Rk+1(Q−>k −Q−>k+1)Σ

1/2
? ‖2

1− ‖(Rk+1Q
−>
k+1 −R?)Σ

−1/2
? ‖2

≤
‖(Rk+1Q

−>
k −R?)Σ

1/2
? ‖2 + ‖(Rk+1Q

−>
k+1 −R?)Σ

1/2
? ‖2

1− ‖(Rk+1Q
−>
k+1 −R?)Σ

−1/2
? ‖2

≤ 2ε0τ
k+1

1− ε0τk+1
σr(X?)

≤ 2ε0

1− ε0
σr(X?),

provided τ = 1− 0.6η < 1. Similarly, one can see

‖Σ1/2
? Q>k (Qk+1 −Qk)−>Σ

1/2
? ‖2 ≤

2ε0

1− ε0
σr(X?).

This finishes the proof.

Notice that Lemma 9 will be only be used in the proof of Lemma 12. In the meantime, the assumption
of Lemma 9 is verified in (16) (see the proof of Lemma 11).
Lemma 10. If

dist(Lk,Rk;L?,R?) ≤ ε0τ
kσr(X?),

‖∆LΣ
1/2
? ‖2,∞ ∨ ‖∆RΣ

1/2
? ‖2,∞ ≤

√
µr

n
τkσr(X?),

then

‖X? −Xk‖∞ ≤ 3
µr

n
τkσr(X?).

Proof. Firstly, by Assumption 1 and the assumption of this lemma, we have

‖R\Σ
−1/2
? ‖2,∞ ≤ ‖∆RΣ

1/2
? ‖2,∞‖Σ−1

? ‖2 + ‖L?Σ−1/2
? ‖2,∞

≤
(
τk + 1

)√µr

n
≤ 2

√
µr

n
,

given τ = 1− 0.6η < 1. Moreover, one can see

‖X? −Xk‖∞ = ‖∆LR
>
\ + L?∆

>
R‖∞ ≤ ‖∆LR

>
\ ‖∞ + ‖L?∆>R‖∞

≤ ‖∆LΣ
1/2
? ‖2,∞‖R\Σ

−1/2
? ‖2,∞ + ‖L?Σ−1/2

? ‖2,∞‖∆RΣ
1/2
? ‖2,∞

≤
(

2

√
µr

n
+

√
µr

n

)√
µr

n
τkσr(X?)

= 3
µr

n
τkσr(X?).

This finishes the proof.
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A.3 Proof of local linear convergence

We will show the local convergence of the proposed algorithm by first proving the claims stand at
(k + 1)-th iteration if they stand at k-th iteration.

Lemma 11. If

dist(Lk,Rk;L?,R?) ≤ ε0τ
kσr(X?),

‖∆LΣ
1/2
? ‖2,∞ ∨ ‖∆RΣ

1/2
? ‖2,∞ ≤

√
µr

n
τkσr(X?),

then

dist(Lk+1,Rk+1;L?,R?) ≤ ε0τ
k+1σr(X?).

Proof. Since Qk+1 is the optimal alignment matrix between (Lk+1,Rk+1) and (L?,R?), so

dist2(Lk+1,Rk+1;L?,R?) := ‖(Lk+1Qk+1 −L?)Σ
1/2
? ‖2F + ‖(Rk+1Q

−>
k+1 −R?)Σ

1/2
? ‖2F

≤ ‖(Lk+1Qk −L?)Σ
1/2
? ‖2F + ‖(Rk+1Q

−>
k −R?)Σ

1/2
? ‖2F

We will focus on bounding the first term in this proof, and the second term can be bounded similarly.

Note that L\R>\ −X? = ∆LR
>
\ + L?∆

>
R. We have

Lk+1Qk −L? = L\ − η(L\R
>
\ −X? + Sk+1 − S?)R\(R

>
\ R\)

−1 −L?

= ∆L − η(L\R
>
\ −X?)R\(R

>
\ R\)

−1 − η∆SR\(R
>
\ R\)

−1

= (1− η)∆L − ηL?∆>RR\(R
>
\ R\)

−1 − η∆SR\(R
>
\ R\)

−1. (15)

Thus,

‖(Lk+1Qk −L?)Σ
1/2
? ‖2F

= ‖(1− η)∆LΣ
1/2
? − ηL?∆>RR\(R

>
\ R\)

−1Σ
1/2
? ‖2F − 2η(1− η) tr

(
∆SR\(R

>
\ R\)

−1Σ?∆
>
L

)
+ 2η2 tr

(
∆SR\(R

>
\ R\)

−1Σ?(R
>
\ R\)

−1R>\ ∆RL
>
?

)
+ η2‖∆SR\(R

>
\ R\)

−1Σ
1/2
? ‖2F

:= R1 −R2 + R3 + R4

Bound of R1. The component R1 here is identical to R1 in [12, Section D.1.1], and the bound of
this term was shown therein. We will clear this bound further by applying Lemma 7, that is,

R1 ≤
(

(1− η)2 +
2ε0

1− ε0
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε0 + ε2
0

(1− ε0)2
η2‖∆RΣ

1/2
? ‖2F

≤ (1− η)2‖∆LΣ
1/2
? ‖2F +

(
(1− η)

2ε3
0

1− ε0
+ η

2ε3
0 + ε4

0

(1− ε0)2

)
ητ2kσ2

r(X?).

Bound of R2. Lemma 5 implies ∆S = Sk+1 − S? is an α-sparse matrix. Thus, by Lemmata 6, 7,
8, 5, and 10, we have

| tr
(
∆SR\(R

>
\ R\)

−1Σ?∆
>
L

)
| ≤ ‖∆S‖2‖R\(R

>
\ R\)

−1Σ?∆
>
L‖∗

≤ αn
√
r‖∆S‖∞‖R\(R

>
\ R\)

−1Σ?∆
>
L‖F

≤ 2αn
√
r‖Xk −X?‖∞‖R\(R

>
\ R\)

−1Σ
1/2
? ‖2‖∆LΣ

1/2
? ‖F

≤ 6αµr1.5τ2k ε0

1− ε0
σ2
r(X?).

Hence,

|R2| ≤ 12η(1− η)αµr1.5τ2k ε0

1− ε0
σ2
r(X?).
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Bound of R3. Similar to R2, we have

| tr
(
∆SR\(R

>
\ R\)

−1Σ?(R
>
\ R\)

−1R>\ ∆RL
>
?

)
|

≤ ‖∆S‖2‖R\(R
>
\ R\)

−1Σ?(R
>
\ R\)

−1R>\ ∆RL
>
? ‖∗

≤ αn
√
r‖∆S‖∞‖R\(R

>
\ R\)

−1Σ?(R
>
\ R\)

−1R>\ ∆RL
>
? ‖F

≤ αn
√
r‖∆S‖∞‖R\(R

>
\ R\)

−1Σ
1/2
? ‖22‖∆RL

>
? ‖F

≤ 2αn
√
r‖Xk −X?‖∞‖R\(R

>
\ R\)

−1Σ
1/2
? ‖22‖∆RΣ

1/2
? ‖F‖U?‖2

≤ 6αµr1.5τ2k ε0

(1− ε0)2
σ2
r(X?).

Hence,
|R3| ≤ 12η2αµr1.5τ2k ε0

(1− ε0)2
σ2
r(X?).

Bound of R4.

‖∆SR\(R
>
\ R\)

−1Σ
1/2
? ‖2F ≤ r‖∆SR\(R

>
\ R\)

−1Σ
1/2
? ‖22

≤ r‖∆S‖22‖R\(R
>
\ R\)

−1Σ
1/2
? ‖22

≤ 4α2n2r‖Xk −X?‖2∞‖R\(R
>
\ R\)

−1Σ
1/2
? ‖22

≤ 36α2µ2r3τ2k 1

(1− ε0)2
σ2
r(X?).

Hence,

R4 ≤ 36η2α2µ2r3τ2k 1

(1− ε0)2
σ2
r(X?).

Combine all the bounds together, we have

‖(Lk+1Qk −L?)Σ
1/2
? ‖2F

≤ (1− η)2‖∆LΣ
1/2
? ‖2F +

(
(1− η)

2ε3
0

1− ε0
+ η

2ε3
0 + ε4

0

(1− ε0)2

)
ητ2kσ2

r(X?)

+ 12η(1− η)αµr1.5τ2k ε0

1− ε0
σ2
r(X?)

+ 12η2αµr1.5τ2k ε0

(1− ε0)2
σ2
r(X?)

+ 36α2µ2r3τ2k 1

(1− ε0)2
σ2
r(X?),

and a similar bound can be computed for ‖(Rk+1Q
−>
k −R?)Σ

1/2
? ‖2F. Add together, we have

dist2(Lk+1,Rk+1;L?,R?)

≤ ‖(Lk+1Qk −L?)Σ
1/2
? ‖2F + ‖(Rk+1Q

−>
k −R?)Σ

1/2
? ‖2F

≤ (1− η)2
(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
+ 2

(
(1− η)

2ε3
0

1− ε0
+ η

2ε3
0 + ε4

0

(1− ε0)2

)
ητ2kσ2

r(X?)

+ 24η(1− η)αµr1.5τ2k ε0

1− ε0
σ2
r(X?)

+ 24η2αµr1.5τ2k ε0

(1− ε0)2
σ2
r(X?)

+ 72α2µ2r3τ2k 1

(1− ε0)2
σ2
r(X?)

≤

(
(1− η)2 + 2

(
(1− η)

2ε0

1− ε0
+ η

2ε0 + ε2
0

(1− ε0)2

)
η + 24η(1− η)αµr1.5 1

ε0(1− ε0)
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+ 24η2αµr1.5 1

ε0(1− ε0)2
+ 72α2µ2r3 1

ε2
0(1− ε0)2

)
ε2

0τ
2kσ2

r(X?)

≤ (1− 0.6η)2ε2
0τ

2kσ2
r(X?), (16)

where we use the fact ‖∆LΣ
1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F =: dist2(Lk,Rk;L?,R?) ≤ ε2

0τ
2kσ2

r(X?) in
the second step, and the last step use ε0 = 0.02, α ≤ 1

104µr1.5 , and 1
4 ≤ η ≤

8
9 . The proof is finished

by substituting τ = 1− 0.6η.

Lemma 12. If

dist(Lk,Rk;L?,R?) ≤ ε0τ
kσr(X?),

‖∆LΣ
1/2
? ‖2,∞ ∨ ‖∆RΣ

1/2
? ‖2,∞ ≤

√
µr

n
τkσr(X?),

then

‖(Lk+1Qk+1 −L?)Σ
1/2
? ‖2,∞ ∨ ‖(Rk+1Q

−>
k+1 −R?)Σ

1/2
? ‖2,∞ ≤

√
µr

n
τk+1σr(X?).

Proof. Using (15) again, we have

‖(Lk+1Qk −L?)Σ
1/2
? ‖2,∞

≤ (1− η)‖∆LΣ
1/2
? ‖2,∞ + η‖L?∆>RR\(R

>
\ R\)

−1Σ
1/2
? ‖2,∞ + η‖∆SR\(R

>
\ R\)

−1Σ
1/2
? ‖2,∞

:= T1 + T2 + T3.

Bound of T1. T1 ≤ (1− η)
√

µr
n τ

kσr(X?) is directly followed by the assumption of this lemma.

Bound of T2. Assumption 1 implies ‖L?Σ−1/2
? ‖2,∞ ≤

√
µr
n , Lemma 7 implies ‖∆RΣ

1/2
? ‖2 ≤

τkε0, and Lemma 8 implies Together, we have

T2 ≤ η‖L?Σ−1/2
? ‖2,∞‖∆RΣ

1/2
? ‖2‖R\(R

>
\ R\)

−1Σ
1/2
? ‖2

≤ η ε0

1− ε0

√
µr

n
τkσr(X?).

Bound of T3. By Lemma 5, supp(∆S) ⊆ supp(S?), which implies that ∆S is an α-sparse matrix.
Thus, by Lemma 6, we get

T3 ≤ η‖∆S‖2,∞‖R\(R
>
\ R\)

−1Σ
1/2
? ‖2

≤ η
√
αn

1− ε0
‖∆S‖∞

≤ 2η

√
αn

1− ε0
‖X? −Xk‖∞

≤ 6η

√
αµr

1− ε0

√
µr

n
τkσr(X?).

where the last two steps use Lemmata 5 and 10 respectively. Put together, we obtain

‖(Lk+1Qk −L?)Σ
1/2
? ‖2,∞ ≤ T1 + T2 + T3

≤
(

1− η + η
ε0

1− ε0
+ 6η

√
αµr

1− ε0

)√
µr

n
τkσr(X?)

≤
(

1− η
(

1− ε0

1− ε0
− 6

√
αµr

1− ε0

))√
µr

n
τkσr(X?). (17)

In addition, we also have

‖(Lk+1Qk −L?)Σ
−1/2
? ‖2,∞ ≤

(
1− η

(
1− ε0

1− ε0
− 6

√
αµr

1− ε0

))√
µr

n
τk. (18)
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Bound with Qk+1. Note that Q’s are the best align matrices under Frobenius norm but this is
not necessary true under `2,∞ norm. So we must show the bound of ‖(Lk+1Qk+1 −L?)Σ

1/2
? ‖2,∞

directly. Note that Qk+1 does exist, according to Lemmata 11 and 2. Applying (17), (18) and
Lemma 9, we have

‖(Lk+1Qk+1 −L?)Σ
1/2
? ‖2,∞

≤ ‖(Lk+1Qk −L?)Σ
1/2
? ‖2,∞ + ‖Lk+1(Qk+1 −Qk)Σ

1/2
? ‖2,∞

= ‖(Lk+1Qk −L?)Σ
1/2
? ‖2,∞ + ‖Lk+1QkΣ

−1/2
? Σ

1/2
? Q−1

k (Qk+1 −Qk)Σ
1/2
? ‖2,∞

≤ ‖(Lk+1Qk −L?)Σ
1/2
? ‖2,∞ + ‖Lk+1QkΣ

−1/2
? ‖2,∞‖Σ1/2

? Q−1
k (Qk+1 −Qk)Σ

1/2
? ‖2

≤ ‖(Lk+1Qk −L?)Σ
1/2
? ‖2,∞

+
(
‖(Lk+1Qk −L?)Σ

−1/2
? ‖2,∞ + ‖L?Σ−1/2

? ‖2,∞
)
‖Σ1/2

? Q−1
k (Qk+1 −Qk)Σ

1/2
? ‖2

≤

(
1− η

(
1− ε0

1− ε0
− 6

√
αµr

1− ε0

)
+

2ε0

1− ε0

(
2− η

(
1− ε0

1− ε0
− 6

√
αµr

1− ε0

)))
√
µr

n
τkσr(X?)

≤ (1− 0.6η)

√
µr

n
τkσr(X?),

where the last step use ε0 = 0.02, α ≤ 1
104µr1.5 , and 1

4 ≤ η ≤
8
9 . Similar result can be computed for

‖(Rk+1Q
−>
k+1 −R?)Σ

1/2
? ‖2,∞. The proof is finished by substituting τ = 1− 0.6η.

Now we have all the ingredients for proving the theorem of local linear convergence, i.e., Theorem 3.

Proof of Theorem 3. This proof is done by induction.

Base case. Since τ0 = 1, the assumed initial conditions satisfy the base case at k = 0.

Induction step. At the k-th iteration, we assume the conditions

dist(Lk,Rk;L?,R?) ≤ ε0τ
kσr(X?),

‖(LkQk −L?)Σ
1/2
? ‖2,∞ ∨ ‖(RkQ

−>
k −R?)Σ

1/2
? ‖2,∞ ≤

√
µr

n
τkσr(X?)

hold, then by Lemmata 11 and 12,

dist(Lk+1,Rk+1;L?,R?) ≤ ε0τ
k+1σr(X?),

‖(Lk+1Qk+1 −L?)Σ
1/2
? ‖2,∞ ∨ ‖(Rk+1Q

−>
k+1 −R?)Σ

1/2
? ‖2,∞ ≤

√
µr

n
τk+1σr(X?)

also hold. This finishes the proof.

A.4 Proof of guaranteed initialization

Now we show the outputs of the initialization step in Algorithm 1 satisfy the initial conditions
required by Theorem 3.

Proof of Theorem 4. Firstly, by Assumption 1, we obtain

‖X?‖∞ ≤ ‖U?‖2,∞‖Σ?‖2‖V?‖2,∞ ≤
µr

n
σ1(X?).

Invoking Lemma 5 with X−1 = 0, we have

‖S? − S0‖∞ ≤ 2
µr

n
σ1(X?) and supp(S0) ⊆ supp(S?), (19)
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which implies S? − S0 is an α-sparse matrix. Applying Lemma 6, we have
‖S? − S0‖2 ≤ αn‖S? − S0‖∞ ≤ 2αµrσ1(X?) = 2αµrκσr(X?).

Since X0 = L0R
>
0 is the best rank-r approximation of Y − S0, so
‖X? −X0‖2 ≤ ‖X? − (Y − S0)‖2 + ‖(Y − S0)−X0‖2

≤ 2‖X? − (Y − S0)‖2
= 2‖S? − S0‖2
≤ 4αµrκσr(X?),

where the equality uses the definition Y = X? + S?. By [12, Lemma 11], we obtain

dist(L0,R0;L?,R?) ≤
√√

2 + 1‖X? −X0‖F

≤
√

(
√

2 + 1)2r‖X? −X0‖2
≤ 10αµr1.5κσr(X?),

where we use the fact that X? −X0 has at most rank-2r. Given ε0 = 10c0 and α ≤ c0
µr1.5κ , our first

claim
dist(L0,R0;L?,R?) ≤ 10c0σr(X?) (20)

is proved.

Let ε0 := 10c0. Now, we will prove the second claim:

‖∆LΣ
1/2
? ‖2,∞ ∨ ‖∆RΣ

1/2
? ‖2,∞ ≤

√
µr

n
σr(X?)

where ∆L := L0Q0 − L? and ∆R := R0Q
−>
0 − R?. For ease of notation, we also denote

L\ = L0Q0, R\ = R0Q
−>
0 , and ∆S = S0 − S? in the rest of this proof.

We will work on ‖∆Σ
1/2
? ‖2,∞ first, and ‖∆Σ

1/2
? ‖2,∞ can be bounded similarly.

Since U0Σ0V
>

0 = Dr(Y − S0) = Dr(X? −∆S), so

L0 = U0Σ
1/2
0 = (X? −∆S)V0Σ

−1/2
0

= (X? −∆S)R0Σ
−1
0

= (X? −∆S)R0(R>0 R0)−1.

Multiplying Q0Σ
1/2
? on both sides, we have

L\Σ
1/2
? = L0Q0Σ

1/2
? = (X? −∆S)R0(R>0 R0)−1Q0Σ

1/2
?

= (X? −∆S)R\(R
>
\ R\)

−1Σ
1/2
? .

Subtracting X?R\(R
>
\ R\)

−1Σ
1/2
? on both sides, we have

L\Σ
1/2
? −L?R

>
? R\(R

>
\ R\)

−1Σ
1/2
? = (X? −∆S)R\(R

>
\ R\)

−1Σ
1/2
? −X?R\(R

>
\ R\)

−1Σ
1/2
?

∆LΣ
1/2
? + L?∆

>
RR\(R

>
\ R\)

−1Σ
1/2
? = −∆SR\(R

>
\ R\)

−1Σ
1/2
? ,

where the left operand of last step uses the fact L?Σ
1/2
? = L?R

>
\ R\(R

>
\ R\)

−1Σ1/2. Thus,

‖∆LΣ
1/2
? ‖2,∞ ≤ ‖L?∆>RR\(R

>
\ R\)

−1Σ
1/2
? ‖2,∞ + ‖∆SR\(R

>
\ R\)

−1Σ
1/2
? ‖2,∞

:= J1 + J2

Bound of J1. By Assumption 1, we get

J1 ≤ ‖L?Σ−1/2
? ‖2,∞‖∆RΣ

1/2
? ‖2‖R\(R

>
\ R\)

−1Σ
1/2
? ‖2

≤
√
µr

n

ε0

1− ε0
σr(X?)

where Lemma 7 implies ‖∆RΣ
1/2
? ‖2 ≤ ε0σr(X?), and Lemma 8 implies ‖R\(R

>
\ R\)

−1Σ
1/2
? ‖2 ≤

1
1−ε0 , given (20) holds.
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Bound of J2. (19) implies ∆S is α-sparse. Moreover, by (20), Lemmata 6 and 8, we have

J2 ≤ ‖∆S‖1,∞‖R\Σ
−1/2
? ‖2,∞‖Σ1/2

? (R>\ R\)
−1Σ

1/2
? ‖2

≤ αn‖∆S‖∞‖R\Σ
−1/2
? ‖2,∞‖R\(R

>
\ R\)

−1Σ
1/2
? ‖22

≤ αn2µr

n
σ1(X?)

1

(1− ε0)2
‖R\Σ

−1/2
? ‖2,∞

≤ 2αµrκ

(1− ε0)2

(√
µr

n
+ ‖∆RΣ

−1/2
? ‖2,∞

)
σr(X?)

where the first step uses that ‖AB‖2,∞ ≤ ‖A‖1,∞‖B‖2,∞ for any matrices. Note that

‖∆RΣ
−1/2
? ‖2,∞ ≤ ‖∆RΣ1/2

? ‖2,∞
σr(X?) . Hence,

‖∆LΣ
1/2
? ‖2,∞ ≤

(
ε0

1− ε0
+

2αµrκ

(1− ε0)2

)√
µr

n
σr(X?) +

2αµrκ

(1− ε0)2
‖∆RΣ

1/2
? ‖2,∞,

and similarly one can see

‖∆RΣ
1/2
? ‖2,∞ ≤

(
ε0

1− ε0
+

2αµrκ

(1− ε0)2

)√
µr

n
σr(X?) +

2αµrκ

(1− ε0)2
‖∆LΣ

1/2
? ‖2,∞.

Therefore, substituting ε0 = 10c0 gives

‖∆LΣ
1/2
? ‖2,∞ ∨ ‖∆RΣ

1/2
? ‖2,∞

≤ (1− ε0)2

(1− ε0)2 − 2αµrκ

(
ε0

1− ε0
+

2αµrκ

(1− ε0)2

)√
µr

n
σr(X?)

≤ (1− 10c0)2

(1− 10c0)2 − 2c0

(
10c0

1− 10c0
+

2c0
(1− 10c0)2

)√
µr

n
σr(X?)

≤
√
µr

n
σr(X?),

as long as c0 ≤ 1
35 . This finishes the proof.

B Complexity of LRPCA

We provide the breakdown of LRPCA’s computational complexity:

1. Compute LkR
>
k : n-by-r matrix times r-by-n matrix—n2r flops.

2. Compute Y −LkR
>
k : n-by-n matrix minus n-by-n matrix—n2 flops.

3. Soft-thresholding on Y −LkR
>
k : one pass on n-by-n matrix—n2 flops.

4. Compute LkR
>
k + Sk+1 − Y = Sk+1 − (Y − LkR

>
k ): n-by-n matrix minus n-by-n

matrix—n2 flops.
5. Compute R>kRk: r-by-n matrix times n-by-r matrix—nr2 flops.

6. Compute (R>kRk)−1: invert a r-by-r matrix—O(r3) flops.

7. Compute Rk(R>kRk)−1: n-by-r matrix times r-by-r matrix—nr2 flops.

8. Compute (LkR
>
k +Sk+1−Y ) ·Rk(R>kRk)−1: n-by-n matrix times n-by-r matrix—n2r

flops.
9. Compute Lk+1 = Lk − ζk+1(LkR

>
k + Sk+1 − Y )Rk(R>kRk)−1: n-by-r matrix minus

scalar times n-by-r matrix—2nr flops.
10. Repeat step 5 - 9 for computing Rk+1—another 2nr2 +O(r3) + n2r + 2nr flops.

In total, LRPCA costs 3n2r + 3n2 +O(nr2) flops per iteration provided r � n. Note that we count
abc flops for computing an a-by-b matrix times a b-by-c matrix in the above complexity calculation.
Some may argue that this matrix product should take 2abc flops. The per-iteration complexity can be
rectified to 6n2r + 3n2 +O(nr2) flops if the reader prefers the latter opinion.
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C Additional numerical results

C.1 Setup details

Random instance generation. We follow the setup in [8, 10] to generate synthetic data. Each
observation signal Y? ∈ Rn×n is generated by Y? = X? + S?. The underlying low-rank matrix X?

is generated with X? = L?R
>
? where L?,R? ∈ Rn×r have elements drawn i.i.d from zero-mean

Gaussian distribution with variance 1/n. Non-zero locations of the underlying sparse matrix S? is
uniformly and independently sampled without replacement. The magnitudes of the non-zeros of S?
are sampled i.i.d from the uniform distribution over the interval [−E|[X?]i,j |,E|[X?]i,j |].

Video instances preprocessing. To accelerate the training process, we first change the RGB videos
in the VIRAT dataset to gray videos and then downsample the videos by a fraction of 4. All training
videos are cut to sub-videos with number of frames no more than 1000, testing videos are not cut.

Details in training. In the layer-wise training phase, we adopt SGD with batch size 1; in the
parameter (β, φ) searching phase (i.e., RNN training), we adopt grid search with grid size 0.1. In
synthetic data experiments, the ground truth X? is known after each instance is generated. Thus,
the training pair (Y ,X?) is easy to obtain. We generate a new instance in each step of SGD in
the layer-wise training phase and generate 20 instances for the grid search phase. The testing set is
separately generated and consists of 50 instances. In the video experiment, the underlying ground
truth X? is unknown. We solve each training video with a classic RPCA algorithm [6] (without
learning) to precision 10−5 and use that solution as X?. Moreover, in synthetic data experiments,
we we set K = 10,K = 15; in video experiments, we set K = 5,K = 10 and the underlying rank
r = 2.

C.2 Training time

Our training time for different matrix sizes, ranks, and outlier densities are reported in Table 4.

Table 4: Training time summary.
Problem settings Training time
n = 1000, r = 5, α = 0.1 1208 secs
n = 1000, r = 5, α = 0.2 1209 secs
n = 1000, r = 5, α = 0.3 1208 secs
n = 1000, r = 5, α = 0.1 1208 secs
n = 3000, r = 5, α = 0.1 1615 secs
n = 5000, r = 5, α = 0.1 2405 secs
n = 1000, r = 5, α = 0.1 1208 secs
n = 1000, r = 10, α = 0.1 1236 secs
n = 1000, r = 15, α = 0.1 1249 secs

Different from the inference time reported in the main paper, the training was done on a workstation
equipped with two Nvidia RTX-3080 GPUs. Note that the training time is not proportional to the
problem size due to the high concurrency of GPU computing.

C.3 Visualizations of video background subtraction

In Figure 7, we visualize the results of LRPCA, ScaledGD and AltProj on the task of video background
subtraction.

C.4 Generalization

In this section, we study the generalization ability of our model. Specifically, we train our model on
small-size and low-rank instances, and test it on instances with larger size or higher rank.

First we train a FRMNN on instances of size 1000× 1000 and rank-5. This setting is denoted as the
“base” setting. We only train the model once on the base setting and test it on instances with different

24



Figure 7: Video background subtraction visual results. Each column represents a selected frame from
the tested videos. From left to right, they are ParkingLot1, ParkingLot2, ParkingLot3, and StreetView.
The first row contains the original frames. Rows 2 and 3 are the separated foreground and background
produced by LRPCA, respectively. Rows 4 and 5 are results for ScaledGD. The last two rows are
results for AltProj.

settings (denoted as “target” settings). When we test a model on instances, we use the step sizes {ηk}
directly and scale the thresholdings {ζk} by a factor of (nbase/ntarget)(rtarget/rbase) due to the `∞
bound estimation given in Lemma 10.

As a comparison, we also train FRMNNs individually on the target settings. The averaged iterations
to achieve 10−4 on the testing set are reported in Table 5.

From Table 5, we conclude that our model has good generalization ability w.r.t. n and r. For example,
if we train and test a model both with n = 3000, r = 5, it takes 6 iterations; if we train a model on
the base setting (i.e., n = 1000, r = 5) and test it with n = 3000, r = 5, it takes 7 iterations. Such
generalization of our model works fine with slight loss of performance. That is, a model trained once
on the base setting is good enough for larger size or higher rank problems from similar testing sets.
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Table 5: Results for generalization test.

Fix r = 5, test different n
Matrix size n 1000 3000 5000
Iterations (Model trained on base setting) 8 7 7
Iterations (Model trained on target setting) 8 6 5

Fix n = 1000, test different r
Matrix rank r 5 10 15
Iterations (Model trained on base setting) 8 10 11
Iterations (Model trained on target setting) 8 8 9

C.5 Analysis of trained parameters

We visualize the trained step sizes and thresholdings in Figures 8 and 9, respectively. Figure 9
demonstrates that the trained thresholdings decay in an exponential rate, which is aligned with our
theoretical bound in Lemma 10. Figure 8 shows that ηk takes larger value when k is small. In other
words, the algorithm goes very aggressively with large step sizes in the first several steps.
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Figure 8: Trained step sizes
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Figure 9: Trained thresholdings
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