
A Appendix
A.1 Notation and preliminaries
We consider the metric space (X , d(·, ·)) where d : X × X → R+. We consider `(·, ·) to be the
cross-entropy loss

`log(M(x), y) , −y log σ(M(x))− (1− y) log σ((1−M(x)))

(where σ(x) = 1
1+exp(−x) is the sigmoid function) or the `2 loss. c(x, x′) : X × X → R+ is any

differentiable cost function as defined in Section 3.1. Assume that (X , d) has bounded diameter,
i.e. D = supx,x′∈X < ∞. We restrict to the class of linear models i.e. M(x) = wTx. W.l.o.g,
we assume no bias term. As in Equation 3, the robust models are trained with additive shifts, i.e.
Mδ(x) = (w + δ)Tx.

Let x′′ be the recourse obtained as the solution of the proposed objective 4. That is:

x′′ = arg minx′′∈Ax max
δ∈∆

λc(x, x′′) + `(Mδ(x
′′), 1) (7)

Denote
δ = arg max

δ∈∆
`(Mδ(x

′′), 1) + λc(x′′, x)

Lemma 1. φ(x) = log (1 + exp (−wTx)) is Lipschitz with L = ‖w‖2.

Proof.

L = sup
x
‖φ′(x)‖2= sup

x
‖− exp (−wTx)

1 + exp (−wTx)
w‖2= ‖w‖2. (8)

Lemma 2. van Handel [27] If (X , d) has bounded diameter D = supx,x′∈X d(x, x′), then for any
probability measure ν on X and 1-Lipschitz function φ(x) over (X , d),

ν{φ ≥ Eνφ+ ε} ≤ exp
−2ε2

D2
(9)

B Proof of Theorem 1
Theorem 1. For a given instance x ∼ N (µ,Σ), let x′ be the recourse that lies on the original data
manifold (conditioned on the event thatM(x′) > 0.5) and is obtained without accounting for model

shifts. Let Σ = UDUT . Then, for some true model shift δ, such that, wTµ
(w+δ)Tµ

≥ ‖
√
DUw‖

‖
√
DU(w+δ)‖ , and√

2e
π

√
β−1
β exp

−β (wT µ)2

4‖
√
DUw‖2 ≥ erfc(− (w+δ)Tµ√

2‖w+δ‖ ), for β ≥ 1, the probability that x′ is invalidated on

fw+δ is at least: 1
2

√
2e
π

√
β−1
β exp

−β (wT µ)2

4‖
√
DUw‖2 − 1

2 erfc(− (w+δ)Tµ√
2‖w+δ‖ ) where erfc is the complementary

gaussian error function

Proof. A x′ obtained without accounting for model shifts is valid for fw(·) is invalidated on the
robust classifierMδ(·) if, x′ ∈ Ω where

Ω = {x′:wTx′ > 0 ∩ (w + δ)Tx′ ≤ 0}

Integrating over the set Ω under the Gaussian pdf, we have:

P (x′ is invalidated) =
1

(2π)
D/2
√
|Σ|
×∫

Ω

exp

(
− 1

2
(x′ − µ)TΣ−1(x′ − µ)

)
dx

(10)
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Transforming variables s.t. v = x′ − µ, and Ωv = {v:wT (v + µ) > 0 ∩ (w + δ)T (v + µ) ≤ 0}:

P (x′ is invalidated) =
1

(2π)
D/2
√
|Σ|

∫
Ωv

exp

(
− 1

2
vTΣ−1v

)
dv (11)

Let Σ = UDUT , and z = Uv, the transformed hyperplanes are given by: w1 = Uw i.e. w = UTw1.
Similarly, Let Uδ = δ1, then U(w+ δ) = Uw+Uδ = w1 + δ1 i.e., (w+ δ) = UT (w1 + δ1). Then
Ωz = {z:wT1 z + wTµ > 0 ∩ (w1 + δ1)T z + (w + δ)Tµ ≤ 0} and:

P (x′ is invalidated) =
1

(2π)
D/2
√
|Σ|

∫
Ωz

exp

(
− 1

2
zTD−1z

)
dz (12)

Finally, transforming z such that, t =
√
D
−1
z or z =

√
Dt w2 =

√
Dw1 and δ2 =

√
Dδ1, we have,

Ωt = {t:wT2 t+ wTµ > 0 ∩ (w2 + δ2)T t+ (w + δ)Tµ ≤ 0}
. Therefore:

P (x′ is invalidated) =
1

(2π)
d/2

∫
Ωt

exp

(
− 1

2
tT t

)
dt (13)

Finally, let P be an orthogonal projection matrix s.t. Pw2 = ‖w2‖ed where ed is the basis vector for
dimension d. By definition of the projection matrix in 1-d, we have P =

ede
T
d

‖ed‖2 = ede
T
d . Thus the

projection P (w2 + δ2) = ‖w2‖ed + ede
T
d δ2 = ‖w2 + δ2‖ed. Transforming t s.t. b = Pt, we have

Ωb = {b: bT (‖w2‖ed) + wTµ > 0 ∩ bT (‖w2 + δ2‖ed) + (w + δ)Tµ ≤ 0}

P (x is invalidated) =
1√
(2π)

∫
Ωb

exp

(
− 1

2
bT b

)
db (14)

Simplifying Ωb, we have that:
Ωb = {b:RD−1 × [c1, c2]}

s.t. c1 = −wTµ
‖w2‖ and c2 = −(w+δ)Tµ

‖w2+δ2‖ and:

P (x is invalidated) =
1√
(2π)

∫ c2

c1

exp

(
− 1

2
s2

)
ds (15)

We restrict to the case of c1 ≤ c2 i.e. :

wTµ

(w + δ)Tµ
≥ ‖w2‖
‖w2 + δ2‖

=
‖
√
DUw‖

‖
√
DU(w + δ)‖

(16)

If c1 > c2, this implies that the true shift δ is such that non-robust recourse not invalid. We bound
Eq. 15 using the Gaussian Error Function defined as follows:

erf(z) =
2√
π

∫ z

0

exp−t2dt (17)

and the complementary error function as: erfc(z) = 1− erf(z).

From Glaisher [9], we have that:

(
c

π
)
1/2
∫ q

p

exp (−cx2)dx =
1

2
(erf(q

√
c)− erf(p

√
c)) (18)

with c = 1
2 , we have,

P (x′ is invalidated) =
1

2
(erf(c2/

√
2)− erf(c1/

√
2))

=
1

2
(erfc(c1/

√
2)− erfc(c2/

√
2))

(19)
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From Chang et al. [5], we note the following upper and lower bounds of the error function:

erfc(c) ≤ exp−c
2/2 (20)

erfc(c) ≥
√

2e

π

√
β − 1

β
exp−βc

2/2 (21)

where β ≥ 1.

Then if the condition
√

2e
π

√
β−1
β exp

−β (wT µ)2

4‖
√
DUw‖2 ≥ erfc(− (w+δ)Tµ√

2‖w+δ‖ ) is satisfied, mainly to confirm
that the lower bound on the left side still dominates the second term, we have a lower bound given by:

P (x′ is invalidated) =
1

2
(erf(c2/

√
2)− erf(c1/

√
2))

≥ 1

2

√
2e

π

√
β − 1

β
exp−βc

2
1/4−1

2
erfc(c2/

√
2)

=
1

2

√
2e

π

√
β − 1

β
exp
−β (wT µ)2

4‖
√
DUw‖2 −1

2
erfc(− (w + δ)Tµ√

2‖w + δ‖
)

(22)

We notice that for any constant, ∃β s.t. the RHS is maximized. An optimal β can be found for every
example in this manner. For this bound, βopt = 1.080 when x is normally distributed.

B.1 Discussion on other distributions
Here we give illustrations of how recourses can be invalidated for other distributions like Bernoulli,
Uniform, and Categorical.

Remark 1. Let x ∼ Bernoulli(p), where 0 ≤ p ≤ 1. To bound the probability that a recourse
provided for samples from this distribution is invalidated due to model shifts, we observe the following.
Let the classifier for such samples be given by a threshold τ where 0 < τ < 1 that is, y = 1(x > τ).
Then recourse is provided for all samples where x = 0 and is given by x′ = 1. Now consider model
shifts δ to τ . Then, we have that for all δ such that τ + δ < 1, p(x′is invalidated) = 0. On the
other hand, for all δ such that τ + δ ≥ 1, p(x′is invalidated) = 1 and in fact no sample is favorably
classified (y = 1 is favorable).

Remark 2. Let x ∼ Unif(a, b). The argument for Uniform distribution follows similarly. Let the
classifier for such samples be given by a threshold τ where a < τ < b that is, y = 1(x > τ). Then
recourse is provided for all samples where x < τ and is given by x′ > τ . Now consider model shifts
δ to τ . Then, we have that:

p(x′ is invalidated ) =


0 for δ ≤ a− τ
δ
b−a , for a− τ ≤ δ ≤ b− τ
1 for δ ≥ b− τ


Remark 3. Let k ∼ Categorical(p, K) where p ∈ ∆K−1. For simplicity let [K] = {1, 2, · · · ,K}.
We motivate this remark for a classifier w where y = 1(wTx > τ) where x is the one-hot encoded
version of k i.e. xk = 1 and is x[K]\k = 0. Since only one of the elements of x is 1 at any time, it is
clear that y = 0 for all k such that K0 = {k : k ∈ [K] and wk ≤ τ} and y = 1 for K1 = {k : k ∈
[K] and wk > τ}. Assume that flipping to any category from the current category is equally costly.
Then for all samples s.t. k ∈ K0, the recourse provided is any one category randomly chosen from
K1. As before let δ be the vector representing model shift to the original model parametrized by w.
Then, with the same threshold τ , under this model, Kδ0 = {k : k ∈ [K] and wk + δk ≤ τ}. Then the

probability of a recourse being invalidated is: |K
δ

0∩K1|
|K1|

Generalizations to multivariate families like exponential family distributions is left to future
work.
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C Proof of Theorem 2

Theorem 2. Let x ∈ X , and x ∼ ν where ν is a distribution such that Eν [x] = µ < ∞, where
X is a metric space (X , d(·, ·)) and d : X × X → R+. Let d , `2 and assume that (X , d) has
bounded diameter D = supx,x′∈X d(x, x′). Let recourses obtained without accounting for model
shifts and constrained to the manifold be denoted by x′ ∼ ν, and robust recourses be denoted by x′′.
Let δ > 0 be the shift that maximizes Eq. 3 for sample x corresponding to x′′. Further assume that
the ROAR objective (Equation 3) is convex in x′′ for a fixed δ. For ` , `log (the cross-entropy loss),
some 0 < η′ � 1, w.h.p. (1− η′), we have that:

c(x′′, x)− c(x′, x) ≤ 1

λ

1

‖w + δ‖
Eν [exp−φ(w + δ)Tx′] +

√
D2

2
log (

1

η′
)

)
(23)

Proof. Since x′′ is the minimizer of Equation 7 and using convexity in x′ for a fixed δ,

1

‖w + δ‖ `log(Mδ(x
′′), 1) + λc(x′′, x) ≤ (24)

1

‖w + δ‖ `log(Mδ(x
′), 1) + λc(x′, x) (25)

c(x′′, x)− c(x′, x) ≤
(`log(Mδ(x

′), 1)− `log(Mδ(x
′′), 1))

λ‖w + δ‖ (26)

=
1

λ‖w + δ‖

{
− log σ(w + δ)Tx′ (27)

+ log σ(w + δ)Tx′′
}

(28)

=
1

λ‖w + δ‖ log
{ 1 + exp−(w + δ)Tx′

1 + exp−(w + δ)Tx′′

}
(29)

=
1

λ‖w + δ‖ ( log {1 + exp−(w + δ)Tx′} (30)

− log {1 + exp−(w + δ)Tx′′}) (31)

≤ 1

λ‖w + δ‖ log {1 + exp−(w + δ)Tx′} (32)

from re-arranging, and where the last bound comes from the fact that log {1 + exp−(w+δ)T x′} ≥ 0.

From Lemma 1, we know that 1
‖w+δ‖ log {1 + exp−(w+δ)T x′} is 1-Lipschitz. Therefore we can

apply the upper bound from Lemma 2, to Eq. 32. This results in the following, w.h.p:

c(x′′, x)− c(x′, x) ≤ 1

λ

1

‖w + δ‖
Eν [log {1 + exp−(w + δ)Tx′}] +

√
D2

2
log (

1

η′
)

)
(33)

We now bound the expectation Eν [log {1 + exp−(w + δ)Tx′}] , Eν [φ((w + δ)Tx′)].

Analytical expressions and/or approximations for Eνφ(wTx′) i.e. the logistic function are generally
not available in closed form. For simplification, we bound Eν [log (1 + exp−z)]. Consider the case
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where ν , N (µ, σ2). Then we have:

Eν [log (1 + exp−z)] = Eν [
ln (1 + exp−z)

ln 2
]

≤ 1

ln 2
Eν [exp−z]

=

√
2πσ2

ln 2

1√
2πσ2

Eν [exp−z]

=

√
2πσ2

ln 2

1√
2πσ2

∫
x

exp−x exp− (x− µ)2

2σ2
dx

=

√
2πσ2

ln 2

1√
2πσ2

∫
x

exp
[−x2 + 2µx− µ2 − 2σ2x]

2σ2
dx

=

√
2πσ2

ln 2

1√
2πσ2

∫
x

exp
1

2σ2
[−x2 + 2µx− 2σ2x− µ2 + (µ− σ2)2 − (µ− σ2)2]dx

=

√
2πσ2

ln 2

1√
2πσ2

∫
x

exp
1

2σ2
[−x2 + 2(µ− σ2)x− (µ− σ2)2] exp [−µ2 + (µ− σ2)2]dx

=

√
2πσ2

ln 2

1√
2πσ2

exp
[(µ− σ2)2 − µ2]

2σ2

∫
x

exp
1

2σ2
− [x2 − 2(µ− σ2)x+ (µ− σ2)2]dx

=

√
2πσ2

ln 2
exp

(µ− σ2 − µ)(µ− σ2 + µ)

2σ2

1√
2πσ2

∫
x

exp
1

2σ2
− [x− (µ− σ2)]2dx

=

√
2πσ2

ln 2
exp (µ− σ2

2
)

(34)

Thus for Gaussian distributed case, w.h.p,

c(x′′, x)− c(x′, x) ≤ 1

λ

1

‖w + δ‖

√
2πσ2

ln 2
exp (µ− σ2

2
) +

√
D2

2
log (

1

η′
)

)
(35)

Interpreting the bound, we see that the bound is significantly loose µ � 0 if and improves when
µ > 0. Note that here, the bound cannot be improved significantly by conditioning on the event that
f(x′) > 0.5 or equivalently that wTx′ > 0, since we are concerned with bounding a quantity that is
a function of the shifted decision boundary w + δ. We have also added these interpretations as you
suggested.

D Experiments
D.1 Experimental setup
All experiments were run on a 2 GHz Quad-Core Intel Core i5.

Real world datasets Below we provide a complete list of all the features we used in each of our
datasets.

The features we use for the German credit dataset are: "duration", "amount", "age", "per-
sonal_status_sex".

The features we use for the SBA Case dataset (temporal shift) are: ’Zip’, ’NAICS’, ’ApprovalDate’,
’ApprovalFY’, ’Term’, ’NoEmp’, ’NewExist’, ’CreateJob’, ’RetainedJob’, ’FranchiseCode’, ’Urban-
Rural’, ’RevLineCr’, ’ChgOffDate’, ’DisbursementDate’, ’DisbursementGross’, ’ChgOffPrinGr’,
’GrAppv’, ’SBA_Appv’, ’New’, ’RealEstate’, ’Portion’, ’Recession’, ’daysterm’, ’xx’.

The features we use for the Student Performance dataset (geospatial shift) are: ’sex’, ’age’, ’address’,
’famsize’, ’Pstatus’, ’Medu’, ’Fedu’, ’Mjob’, ’Fjob’, ’reason’, ’guardian’, ’traveltime’, ’studytime’,

17



’failures’, ’schoolsup’, ’famsup’, ’paid’, ’activities’, ’nursery’, ’higher’, ’internet’, ’romantic’, ’fam-
rel’, ’freetime’, ’goout’, ’Dalc’, ’Walc’, ’health’, ’absences’.

Predictive models We use a 3-layer DNN with 50, 100, and 200 nodes in each consecutive layer.
We use ReLU activation, binary cross entropy loss, adam optimizer, and 100 training epochs.

Cost functions For PFC, we simulate pairwise feature preferences with 200 comparisons per
feature pair with preferences assigned randomly. After passing these preferences to the Bradley-Terry
model, we shift the output by its minimum so that all feature costs are non-negative.

Setting and implementation details

Real world experiments. Recall we partition our data into initial data , D1, and shifted data, D2.
For the German credit dataset (correction shift) we use the original version as D1 and the corrected
version as D2. For the SBA case dataset (temporal shift) we use the data from 1989-2006 as D1 and
all the data from 1986-2012 for D2. For the student performance dataset (geospatial shift) we use the
data from GP for D1 and the data from both schools, GP and MS, for D2.

For our experiments on real world data we use 5-fold cross validation. In each trial, we trainM1 on
4 folds of D1 andM2 on 4 folds of D2. AverageM1 andM2 accuracy and AUC on the remaining
fold (hold out set) of D1 and D2 respectively, is reported in Table 2. We then find recourses on the
remaining D1 fold (hold out set). Results on averageM1 validity,M2 validity, and recourse costs
across the 5 trials are included in Table 1 in Section 5 of the main paper.

Accuracy AUC

Correction

LR M1 0.70 ± 0.01 0.65 ± 0.01
M2 0.71 ± 0.02 0.65 ± 0.02

NN M1 0.71 ± 0.02 0.66 ± 0.02
M2 0.69 ± 0.03 0.67 ± 0.03

SVM M1 0.71 ± 0.01 0.65 ± 0.01
M2 0.71 ± 0.02 0.65 ± 0.02

Temporal

LR M1 1.00 ± 0.00 1.00 ± 0.00
M2 0.99 ± 0.00 1.00 ± 0.00

NN M1 1.00 ± 0.00 1.00 ± 0.00
M2 0.99 ± 0.00 1.00 ± 0.00

SVM M1 1.00 ± 0.00 1.00 ± 0.00
M2 0.99 ± 0.00 1.00 ± 0.00

Geospatial

LR M1 0.92 ± 0.01 0.77 ± 0.06
M2 0.85 ± 0.02 0.73 ± 0.02

NN M1 0.94 ± 0.01 0.72 ± 0.06
M2 0.84 ± 0.03 0.70 ± 0.03

SVM M1 0.92 ± 0.01 0.75 ± 0.07
M2 0.85 ± 0.02 0.73 ± 0.02

Table 2: Average test accuracy and AUC of LR, NN, and SVM models on real world datasets

Synthetic experiments. Our synthetic experiment setting mirrors our real world experiment setting.
We partition D1 (original data) and D2 (mean and/or variance shifted data) into 5 folds, trainingM1

on 4 folds of D1 andM2 on 4 folds of D2. We then find recourse on the remaining D1 fold (hold
out set).

Nonlinear predictive models. For AR and ROAR, we use LIME to find local linear approximations
when the underlying predictive models are non-linear. We use the default implementation of LIME
by Ribeiro et al. [25] with logistic regression as the local linear model class.

D.2 Additional Experimental Results
We include in this Appendix additional empirical results that were omitted from Section 5 of the
main paper due to space constraints:

• We show the Avg. Cost,M1 Validity, andM2 Validity of recourses across different real
world datasets with SVM predictive model (Table 4). Results for other predictive models
are included in Table 1 in Section 5 of the main paper.
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• We compute the Theorem 2 upper bounds on ROAR cost and compare them to our empirical
results in Table 3.

• We show the impact of the degree of mean, variance, combination (both mean and variance)
distrbution shifts on the validity of recourses for LR and SVM models under different cost
functions (Figure 3). Results with DNN model are included in Figure 2 in Section 5 of the
main paper.

• We compute the avg. cost (both `1 distance and PFC) of recourses corresponding to LR,
DNN, SVM models on synthetic datasets. Results are presented in Table 5.

• We fix λ = 0.1 and evaluate the effect of δmax on the validity and avg cost of ROAR
recourses. Results for correction, temporal, and geospatial shift are shown in Figures 4, 5,
and 6 respectively.

• We fix λ = 0.1 and evaluate the effect of δmax on the validity and avg cost of ROAR-MINT
recourses. Results are reported in Figure 7.

(a) LR, `1 cost (b) LR, PFC cost (c) SVM, `1 cost (d) SVM, PFC cost

Figure 3: Impact of the degree of mean (top row), variance (middle row), and combination (bottom
row) distribution shift on validity of recourse with LR and SVM models. Validity of the recourses
generated by all methods drops as degree (magnitude) of the shift increases; In the majority of
settings, ROAR is the most robust, maintaining higher validity as shift increases compared to other
baselines. Results with DNN model are shown in Figure 2 in Section 5 of the main paper.
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(a) LR, L1 cost (b) LR, PFC cost (c) DNN, L1 cost (d) DNN, PFC cost

Figure 4: ROARM1 (original model) andM2 (shifted model) Validity (top) and Avg Cost (bottom)
for different values of δmax on the German credit dataset (correction shift). Notice that as δmax
increases, ROAR remains robust (highM2 validity), but L1 cost increases.

(a) LR, L1 cost (b) LR, PFC cost (c) DNN, L1 cost (d) DNN, PFC cost

Figure 5: ROARM1 (original model) andM2 (shifted model) Validity (top) and Avg Cost (bottom)
for different values of δmax on the SBA case dataset (temporal shift). Notice that as δmax increases,
ROAR remains robust (highM2 validity), but L1 cost increases.
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Recourse Cost
Model Cost Data Empirical Estimate Theoretical Upper Bound

LR

L1
Correction 3.13 ± 0.32 4.61 ± 0.45
Temporal 3.14 ± 0.25 51.45 ± 31.26
Geospatial 10.88 ± 1.67 36.09 ± 1.37

PFC
Correction 0.36 ± 0.08 0.26 ± 0.11
Temporal 0.44 ± 0.12 3.40 ± 2.80
Geospatial 1.20 ± 0.10 1.35 ± 0.18

Table 3: The empirical estimate refers to the cost of ROAR, and is reproduced from Table 1 in the
main paper. The theoretical upper bound is computed analytically with respect to CFE cost with
η = 0.05. Though our real world experiments do not satisfy the Theorem 2 Gaussian and manifold
assumptions, in the majority of cases the empirical estimate falls below the theoretical upper bound,
aligning with our Theorem 2 result.

Correction Shift Temporal Shift Geospatial Shift
Model Cost Recourse Avg Cost M1 Validity M2 Validity Avg Cost M1 Validity M2 Validity Avg Cost M1 Validity M2 Validity

SVM

L1

CFE 0.83 ± 0.12 1.00 ± 0.00 0.54 ± 0.30 3.53 ± 0.45 1.00 ± 0.00 0.38 ± 0.12 5.96 ± 0.46 1.00 ± 0.00 0.11 ± 0.05
AR 0.85 ± 0.12 1.00 ± 0.00 0.54 ± 0.30 1.85 ± 0.30 1.00 ± 0.00 0.57 ± 0.13 4.03 ± 0.17 0.06 ± 0.04 0.23 ± 0.09

ROAR 3.57 ± 0.33 0.84 ± 0.08 0.87 ± 0.07 4.66 ± 0.71 0.99 ± 0.01 0.98 ± 0.01 15.12 ± 1.56 1.00 ± 0.00 0.92 ± 0.14
MINT 4.90 ± 0.69 1.00 ± 0.00 0.90 ± 0.12 NA NA NA NA NA NA

ROAR-MINT 3.76 ± 0.14 1.00 ± 0.00 1.00 ± 0.00 NA NA NA NA NA NA

PFC

CFE 0.07 ± 0.04 1.00 ± 0.00 0.48 ± 0.28 0.23 ± 0.09 1.00 ± 0.00 0.36 ± 0.15 0.25 ± 0.06 1.00 ± 0.00 0.10 ± 0.06
AR 0.09 ± 0.02 1.00 ± 0.00 0.65 ± 0.27 0.13 ± 0.05 1.00 ± 0.00 0.56 ± 0.26 0.20 ± 0.03 0.14 ± 0.09 0.11 ± 0.05

ROAR 0.86 ± 0.29 1.00 ± 0.00 1.00 ± 0.00 0.81 ± 0.27 0.99 ± 0.01 0.98 ± 0.01 1.31 ± 0.13 1.00 ± 0.00 0.98 ± 0.04
MINT 0.43 ± 0.03 1.00 ± 0.00 0.90 ± 0.12 NA NA NA NA NA NA

ROAR-MINT 0.70 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 NA NA NA NA NA NA

Table 4: Avg. Cost,M1 Validity, andM2 Validity of recourses across different real world datasets
with SVM predictive model. Recourses using our framework (ROAR and ROAR-MINT) are more
robust (higherM2 validity) compared to those generated by existing baselines. Results with other
predictive models are shown in Table 1 in Section 5 of the main paper.

(a) LR, L1 cost (b) LR, PFC cost (c) DNN, L1 cost (d) DNN, PFC cost

Figure 6: ROARM1 (original model) andM2 (shifted model) Validity (top) and Avg Cost (bottom)
for different values of δmax on the student performance dataset (geospatial shift). Notice that validity
decreases for δmax > 0.4. This suggests that δmax > 0.4 models a greater shift than the trueM1 to
M2 shift on this dataset.
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Avg. Cost of Recourse
Model Cost CFE AR ROAR

LR L1 3.93 ± 0.04 3.87 ± 0.04 4.03 ± 0.06
PFC 0.11 ± 0.00 0.00 ± 0.00 0.89 ± 0.01

DNN L1 3.85 ± 0.06 3.81 ± 0.05 3.69 ± 0.12
PFC 0.09 ± 0.01 0.00 ± 0.00 0.91 ± 0.01

SVM L1 3.92 ± 0.04 3.49 ± 0.10 4.01 ± 0.08
PFC 0.14 ± 0.01 0.01 ± 0.00 0.89 ± 0.01

Table 5: Avg. Cost of recourses on synthetic dataset. Notice that ROAR costs are slightly higher than
the baselines, confirming the Theorem 2 result. But on the flip side, ROAR achieves much higher
robustness than the baselines, as shown in Figure 2 in Section 5 of the main paper and in Figure 3 in
the Appendix for the synthetic dataset.

(a) LR, L1 cost (b) LR, PFC cost

Figure 7: ROAR-MINTM1 (original model) andM2 (shifted model) Validity (top) and Avg Cost
(bottom) for different values of δmax on the German credit dataset (correction shift). Notice that as
δmax increases, ROAR-MINT remains robust (highM2 validity), but cost increases.
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