
Adversarial Neuron Pruning Purifies
Backdoored Deep Models

Dongxian Wu1∗ Yisen Wang2,3†
1Dept. of Computer Science and Technology, Tsinghua University, China

2Key Lab. of Machine Perception, School of Artificial Intelligence, Peking Univesity, China
3Institute for Artificial Intelligence, Peking Univesity, China

Abstract

As deep neural networks (DNNs) are growing larger, their requirements for compu-
tational resources become huge, which makes outsourcing training more popular.
Training in a third-party platform, however, may introduce potential risks that a
malicious trainer will return backdoored DNNs, which behave normally on clean
samples but output targeted misclassifications whenever a trigger appears at the
test time. Without any knowledge of the trigger, it is difficult to distinguish or
recover benign DNNs from backdoored ones. In this paper, we first identify an
unexpected sensitivity of backdoored DNNs, that is, they are much easier to col-
lapse and tend to predict the target label on clean samples when their neurons are
adversarially perturbed. Based on these observations, we propose a novel model
repairing method, termed Adversarial Neuron Pruning (ANP), which prunes some
sensitive neurons to purify the injected backdoor. Experiments show, even with
only an extremely small amount of clean data (e.g., 1%), ANP effectively removes
the injected backdoor without causing obvious performance degradation. Our code
is available at https://github.com/csdongxian/ANP_backdoor.

1 Introduction

In recent years, deep neural networks (DNNs) achieve satisfactory performance in many tasks,
including computer vision [15], speech recognition [45], and gaming agents [36]. However, their
success heavily relies on a large amount of computation and data, forcing researchers to outsource the
training in “Machine Learning as a Service” (MLaaS) platforms or download pretrained models from
the Internet, which brings potential risks of training-time attacks [17, 35, 2]. Among them, backdoor
attack [14, 6, 42] is remarkably dangerous because it stealthily builds a strong relationship between a
trigger pattern and a target label inside DNNs by poisoning a small proportion of the training data.
As a result, the returned model always behaves normally on the clean data but is controlled to make
target misclassification by presenting the trigger pattern such as a specific single-pixel [41] or a
black-white checkerboard [14] at the test time.

Since DNNs are deployed in many real-world and safety-critical applications, it is urgent to defend
against backdoor attacks. While there are many defense methods during training [38, 41, 8, 29, 20],
this work focuses on a more realistic scenario in outsourcing training that repairs models after
training. In particular, the defenders try to remove the injected backdoor without access to the model
training process. Without knowledge of the trigger pattern, previous methods only achieve limited
robustness [7, 24, 22]. Some works try to reconstruct the trigger [43, 5, 33, 50, 44], however, the

∗Work was done as an internship at Peking University when he was a student at Tsinghua University. Now,
he is a Post-doc at the University of Tokyo.
†Corresponding author: Yisen Wang (yisen.wang@pku.edu.cn).

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/csdongxian/ANP_backdoor

trigger pattern in brand-new attacks becomes natural [26], invisible [49], and dynamic [30], leading
to the reconstruction infeasible. Different from them, in this paper, we turn to explore whether we
can successfully remove the injected backdoor even without knowing the trigger pattern.

Usually, the adversary perturbs inputs to cause misclassification, e.g., attaching triggers for back-
doored models or adding adversarial perturbations. Parallel to this, we are also able to cause
misclassification by perturbing neurons of DNNs [47]. For any neuron inside DNN, we could per-
turb its weight and bias by multiplying a relatively small number, to change its output. Similar to
adversarial perturbations, we can optimize the neuron perturbations to increase its classification loss.
Surprisingly, we find that, within the same perturbation budget, backdoored DNNs are much easier
to collapse and prone to output the target label than normal DNNs even without the presence of the
trigger. That is, the neurons that are sensitive to adversarial neuron perturbation are strongly related
to the injected backdoor. Motivated by this, we propose a novel model repairing method, named
Adversarial Neuron Pruning (ANP), which prunes most sensitive neurons under the adversarial
neuron perturbation. Since the number of neurons is much smaller than weight parameters, e.g., only
4810 neurons for ResNet-18 while 11M parameters for the same model, our method can work well
only based on 1% of clean data. Our main contributions are summarized as follows:

• We find that through adversarially perturbing neurons, backdoored DNNs can present
backdoor behaviors even without the presence of the trigger patterns and are much easier to
output misclassification than normal DNNs.

• To defend backdoor attacks, we propose a simple yet effective model repairing method, Ad-
versarial Neuron Pruning (ANP), which prunes the most sensitive neurons under adversarial
neuron perturbations without fine-tuning.

• Extensive experiments demonstrate that ANP consistently provides state-of-the-art defense
performance against various backdoor attacks, even using an extremely small amount of
clean data.

2 Related Work

2.1 Backdoor Attacks

The backdoor attack is a type of attacks occurring during DNN training. The adversary usually
poisons a fraction of training data via attaching a predefined trigger and relabeling them as target
labels (dirty-label setting) [14, 6]. All poisoned samples can be relabeled as a single target class
(all-to-one), or poisoned samples from different source classes are relabeled as different target classes
(all-to-all) [30]. After training, the model can be controlled to predict the target label in the presence
of the trigger at the test time. Different from evasion attacks (e.g., adversarial attacks) [3, 39, 13],
backdoor attacks aim to embed a input- and model-agnostic trigger into the model, which is a
severe threat to the applications of deep learning [12]. Since incorrectly-labeled samples are easy
to be detected, some attacks attach the trigger to samples from the target class (clean-label setting)
[35, 42, 1]. Apart from simple forms like a single-pixel [41] or a black-and-white checkerboard [14],
the trigger patterns can be more complex such as a sinusoidal strip [1] and a dynamic pattern [30].
These triggers in recent attacks become more natural [26] and human-imperceptible [49, 31], making
them stealthy and hard to be detected by human inspection. Besides, powerful adversaries who have
access to the model can optimize the trigger pattern [25], and even co-optimize the trigger pattern
and the model together to enhance the power of backdoor attacks [32].

2.2 Backdoor Defense

Defense during Training. With access to training, the defender is able to detect the poisoned data
or make poisoning invalid during the training process. Regarding poisoned data as outliers, we can
detect and filter them out using robust statistics in the input space [38, 18, 8, 9] or the feature space
[17, 41, 28, 10]. Meanwhile, other studies focus on training strategies to make the poisoned data have
little or no effect on the trained model [23, 40] through randomized smoothing [34, 46], majority
vote [21], differential privacy [29], and input preprocessing [27, 4].

Defense after Training. For a downloaded model, we have lost control of its training. To repair
the risk model, one direct way is to first reconstruct an approximation of the backdoor trigger via

2

adversarial perturbation [43] or generative adversarial network (GAN) [5, 33, 50]. Once the trigger
is reconstructed, it is feasible to prune neurons that are activated in the presence of the trigger, or
fine-tune the model to unlearn the trigger [43]. As the trigger patterns in recently proposed attacks
become more complicated such as the dynamics trigger [30] or natural phenomenon-based trigger
[26], reconstruction becomes increasingly difficult. There are other studies on trigger-agnostic
repairing via model pruning [24] or fine-tuning [7, 22] on the clean data. While they may suffer from
severe accuracy degradation when only small clean data are available [7]. Unlike previous defensive
pruning methods which are based on the rule-of-thumb, our proposed method is data-driven and does
not require additional fine-tuning.

3 The Proposed Method

3.1 Preliminary

Deep Neural Network and Its Neurons. In this paper, we take a fully-connected network as an
example (other convolutional networks are also applicable). Its layers are numbered from 0 (input) to
L (output) and each layer contains n0, · · · , nL neurons. The network has n = n1 + n2 + · · ·+ nL
parameterized neurons in total3. We denote the weight parameters of the k-th neuron in l-th layer as
w

(l)
k , the bias as b(l)k , and its output is

h
(l)
k = σ(w

(l)>
k h(l−1) + b

(l)
k), (1)

where σ(·) is the nonlinear function and h(l−1) is the outputs of all neurons in the previous layer,
i.e.,h(l−1) = [h

(l−1)
1 , · · · , h(l−1)nl]. For simplicity, we denote all weights of the network as w =

[w
(1)
1 , · · · ,w(1)

n1 , · · · ,w
(L)
1 , · · · ,w(L)

nL], and all biases as b = [b
(1)
1 , · · · , b(1)nl , · · · , b

(L)
1 , · · · , b(L)nL].

For a given input x, the network makes the prediction f(x;w,b).

DNN Training. We consider a c-class classification problem. The parameters of weights and biases
in DNN are learned on a training dataset DT = {(x1, y1), · · · , (xs, ys)} containing s inputs, where
each input is xi ∈ Rd, i = 1, · · · , s, and its ground-truth label is yi ∈ {1, · · · , c}. The training
procedure tries to find the optimal (w?,b?) which minimize the training loss on the training data DT ,

LDT
(w,b) = E

x,y∼DT

`(f(x;w,b), y), (2)

where `(·, ·) is usually cross entropy loss.

Defense Setting. We adopt a typical defense setting that an untrustworthy model is downloaded from
a third party (e.g., outsourcing training) without knowledge of the training data DT . For defense, we
are assumed to have a small amount of clean data DV . The goals of model repairing are to remove
the backdoor behavior while keeping the accuracy on clean samples.

3.2 Adversarial Neuron Perturbations

In previous studies, the adversary causes misclassification by perturbing inputs before feeding them
to DNNs. For example, attaching triggers to inputs to make backdoored DNN output the target label
or adversarially perturbing inputs to make normal/backdoored DNN output incorrectly.

Here, we try another direction to perturb DNN neurons to cause misclassification. Given the k-th
neuron in the l-th layers, we can perturb its weight w(l)

k and bias b(l)k by multiplying a small number
respectively. As a result, the perturbed weight is (1 + δ

(l)
k)w

(l)
k , the perturbed bias is (1 + ξ

(l)
k)b

(l)
k ,

and the output of the perturbed neuron becomes

h
(l)
k = σ

(
(1 + δ

(l)
k)w

(l)>
k h(l−1) + (1 + ξ

(l)
k)b

(l)
k

)
, (3)

where δ(l)k and ξ(l)k indicate the relative sizes of the perturbations to the weight and bias respectively.
Similarly, all neurons can be perturbed like Eq. (3). We denote the relative weight perturbation
size of all neurons as δ = [δ

(1)
1 , · · · , δ(1)n1 , · · · , δ

(L)
1 , · · · , δ(L)nL], and the relative bias perturbation

3The input neurons are not considered since they have no parameters.

3

0 0.05 0.10 0.15 0.20 0.25 0.30
Perturbation Budget

0

10

20

30

40

50

Er
ro

r R
at

e
(%

)

Benign
BadNets
IAB

(a) The error rate (± std)
of different models under
neuron perturbations.

0 0.05 0.10 0.15 0.20 0.25 0.30
Perturbation Budget

0

10

20

30

40

50

Pr
ed

ict
io

n
Pr

op
. (

%
)

Class 0
Class 1
Class 2
Class 3
Class 4

Class 5
Class 6
Class 7
Class 8
Class 9

0 0.05 0.10 0.15 0.20 0.25 0.30
Perturbation Budget

0

10

20

30

40

50

Pr
ed

ict
io

n
Pr

op
. (

%
)

0 0.05 0.10 0.15 0.20 0.25 0.30
Perturbation Budget

0

10

20

30

40

50

Pr
ed

ict
io

n
Pr

op
. (

%
)

(b) The proportion (± std over 5 random runs) of different classes in predictions
by a benign model (Left) and two models backdoored by BadNets (Middle) and
IAB attack (Right) under neuron perturbations.

Figure 1: The performance of neuron-perturbed models with different perturbation budgets.

size as ξ = [ξ
(1)
1 , · · · , ξ(1)n1 , · · · , ξ

(L)
1 , · · · , ξ(L)nL] for simplicity. For a clean input x, the output of the

perturbed model is
f(x; (1 + δ)�w, (1 + ξ)� b), (4)

where neuron-wise multiplication � multiplies the parameters by the perturbation sizes belonging to
the same neuron as follows:

(1 + δ)�w =
[
(1 + δ

(1)
1)w

(1)
1 , · · · , (1 + δ(1)n1

)w(1)
n1
, · · · , (1 + δ

(L)
1)w

(L)
1 , · · · , (1 + δ(L)nL

)w(L)
nL

]
,

(5)

(1 + ξ)� b =
[
(1 + ξ

(1)
1)b

(1)
1 , · · · , (1 + ξ(1)n1

)b(1)n1
, · · · , (1 + ξ

(L)
1)b

(L)
1 , · · · , (1 + ξ(L)nL

)b(L)nL

]
. (6)

Given a trained model, similar to adversarial perturbations [39, 13], we optimize the neuron perturba-
tions δ and ξ to increase the classification loss on the clean data:

max
δ,ξ∈[−ε,ε]n

LDV ((1 + δ)�w, (1 + ξ)� b), (7)

where ε is the perturbation budget, which limits the maximum perturbation size.

Specifically, we generate adversarial neuron perturbations for three ResNet-18 models [15] on CIFAR-
10 [19]: a benign model, a backdoored one with a predefined trigger (Badnets [14]), and a backdoored
one with a dynamic trigger (Input-aware Backdoor Attack [30], IAB). We all set the target label in
backdoor as class 0. We solve the maximization in Eq. (7) using project gradient descent (PGD) with
random initialization similar to generating adversarial examples. The number of iterations is 300 and
the step size is 0.001. Figure 1(a) shows adversarial neuron perturbations leads to misclassification,
and the larger the perturbation budget ε is, the larger the error rate is. In addition, backdoored models
always have larger error rates with the same perturbation budget compared to the benign one. To
explore the misclassification in detail, we illustrate the proportion of different classes in predictions
by three models in Figure 1(b). For benign model, adversarial neuron perturbations mislead the
model to output the untargeted class (e.g., class 3). While for backdoored models, the majority of
misclassified samples are predicted as the target label (e.g., class 0) whose proportion rate is much
higher than the benign model. More results to support these findings can be found in Appendix
B. Therefore, even without the trigger, we can still induce the backdoor behaviours via adversarial
neuron perturbations. The reasons can be explained as follows: assuming the k-th neuron in l-th
layers is backdoor-related, it is dormant on clean sample [24] (i.e., output is close to 0: h(l)k ≈ 0). If
w

(l)>
k hl−1 > 0 and b(l)k > 0, we can increase its output by enlarging the norm of the weights (i.e.,

δ
(l)
k > 0), and further continue to increase it by adding a larger bias (i.e., ξ(l)k > 0)4. With suitable

perturbations, the backdoor-related neuron is activated even on clean samples. Thus, the neurons that
are sensitive to adversarial neuron perturbation are strongly related to the injected backdoor.

3.3 The Proposed Adversarial Neuron Pruning (ANP)

As mentioned above, the sensitivity under adversarial neuron perturbations is strongly related to
the injected backdoor. Inspired by this, we try to prune some sensitive neurons to defend backdoor

4If w(l)>
k hl−1 < 0 or b(l)k < 0, we still can increase its output by reducing the norm of the weight or bias.

4

attacks, named Adversarial Neuron Pruning method (ANP). We denote the pruning masks as m =

[m
(1)
1 , · · · ,m(1)

n1 , · · · ,m
(L)
1 , · · · ,m(L)

nL] ∈ {0, 1}n. For the k-th neuron in the l-th layer, we set its
weight w(l)

k = 0 if m(l)
k = 0, and keep it unchanged if m(l)

k = 1. Similar to Ghorbani and Zou [11],
we always keep the bias b(l)k to avoid extra harm to the accuracy on clean data5.

Continuous Relaxation and Optimization. Due to the binary masks, pruning is a discrete opti-
mization problem that is difficult to solve within feasible time. To address this, we apply continuous
relaxation to let m ∈ [0, 1]n and optimizes them using projected gradient descent (PGD). To restore
the continuous masks to discreteness after optimization, we set all mask smaller than a threshold as 0
(prune neurons with small masks), and others as 1 (keep neurons with large masks). We expect the
pruned model to not only behaves well on clean data but also keep stable under adversarial neuron
perturbations. Therefore, we solve the following minimization problem,

min
m∈[0,1]n

[
αLDV (m�w,b) + (1− α) max

δ,ξ∈[−ε,ε]n
LDV ((m+ δ)�w, (1 + ξ)� b)

]
, (8)

where α ∈ [0, 1] is a trade-off coefficient. If α is close to 1, the minimization object focuses more on
accuracy of the pruned model on clean data, while if α is close to 0, it focuses more on robustness
against backdoor attacks.

Implementation of ANP. As shown in Algorithm 1, we start from an unpruned network, that is,
initializing all masks as 1 (Line 2). We randomly initialize perturbations (Line 5), and update them
using one step (Line 6-7), then project them onto the feasible regime (Line 8-9). Following that, we
update mask values based on the adversarial neuron perturbation (Line 10) and project mask value
onto [0, 1] (Line 11). As convergence after iterations, we pruned neurons with small mask value and
keep others unchanged (Line 13). Note that the proposed ANP is data-driven, different from previous
pruning-based defenses which are based on the thumb-of-rule [24, 43]. Besides, ANP can work well
on an extremely small amount of clean data due to the small number of masks.

Algorithm 1 Adversarial Neuron Pruning (ANP)
1: Input: Network f(·;w,b), hyper-parameter α, learning rate η, batch size b, maximum perturba-

tion size ε
2: Initialize all elements in m as 1
3: repeat
4: Read mini-batch B = {(x1, y1), ..., (xb, yb)} from training set
5: δ0, ξ0 ∼ U(−ε, ε), where U(−ε, ε) is the uniform distribution
6: δ ← δ0 + εsign(∇δL((m+ δ0)�w, (1+ ξ0)� b))
7: ξ ← ξ0 + εsign(∇ξL((m+ δ0)�w, (1+ ξ0)� b))
8: δ ← max(−ε,min(δ, ε))
9: ξ ← max(−ε,min(ξ, ε))

10: m←m− η∇m[αL(m�w,b) + (1− α)L((m+ δ)�w, (1+ ξ)� b)]
11: m← max(0,min(m, 1))
12: until training converged
13: m(l)

k = I(m(l)
k > threshold), for all k, l

14: Output: A robust network f(·;m�w,b) against backdoor attacks

Adaptation to Batch Normalization. Batch Normalization (BatchNorm) [16] always normalizes
its input and controls the mean and variance of the output by a pair of trainable parameters (scale γ
and shift β). If BatchNorm is inserted between matrix multiplication and the nonlinear activation, the
perturbations to weight and bias may cancel each other out. For example, if we perturb the weight
and bias of a neuron to the maximum by multiplying (1 + ε), the normalization offsets them and
nothing changes after BatchNorm. To address this problem, we perturb the scale and shift parameters
instead. We also make similar changes to the pruning masks.

5We can still compress the model since these biases can be absorbed by their following layers.

5

Table 1: Performance (average over 5 random runs) of 4 defense methods against 6 backdoor attacks
on 1% (500 images) of clean data on CIFAR-10 training set using ResNet-18. The AvgDrop indicates
the average changes in ACC or ASR over 6 backdoor attacks compared to no defense results (Before).

Metric Defense Badnets Blend IAB-one IAB-all CLB SIG AvgDrop

ACC

Before 93.73 94.82 93.89 94.10 93.78 93.64 –
FT(lr = 0.01) 90.48 92.12 88.68 89.06 91.26 91.19 ↓ 3.53
FT(lr = 0.02) 87.23 88.98 84.85 83.77 88.25 88.63 ↓ 7.04
FP 92.18 92.40 91.57 92.28 91.91 91.64 ↓ 2.00
MCR(t = 0.3) 85.95 88.26 86.30 84.53 86.87 85.88 ↓ 7.70
ANP 90.20 93.44 92.62 92.79 92.67 93.40 ↓ 1.47

ASR

Before 99.97 100.0 98.49 92.88 99.94 94.26 –
FT(lr = 0.01) 11.70 47.17 0.99 1.36 12.51 0.40 ↓ 85.24
FT(lr = 0.02) 2.95 10.20 1.70 1.83 1.17 0.39 ↓ 94.55
FP 5.34 65.39 20.73 32.36 3.40 0.32 ↓ 76.33
MCR(t = 0.3) 5.70 13.57 30.23 35.17 12.77 0.52 ↓ 81.26
ANP 0.45 0.46 0.88 0.86 3.98 0.28 ↓ 96.44

4 Experiments

In this section, we conduct comprehensive experiments to evaluate the effectiveness of ANP, including
its benchmarking robustness, ablation studies and performance under limited computation resources.

4.1 Experimental Settings

Backdoor Attacks and Settings. We consider 5 state-of-the-art backdoor attacks: 1) BadNets
[14], 2) Blend backdoor attack (Blend) [6], 3) Input-aware backdoor attack with all-to-one target
label (IAB-one) or all-to-all target label (IAB-all) [30], 4) Clean-label backdoor (CLB) [42], and 5)
Sinusoidal signal backdoor attack (SIG) [1]. For fair comparisons, we follow the default configuration
in their original papers such as the trigger patterns, the trigger sizes and the target labels. We evaluate
the performance of all attacks and defenses on CIFAR-10 [19] using ResNet-18 [15] as the base model.
We use 90% training data to train the backdoored DNNs and use the all or part of the remaining 10%
training data for defense. More details about implementation can be found in Appendix A.

Backdoor Defenses and Settings. We compare our proposed ANP with 3 existing model repairing
methods: 1) standard fine-tuning (FT), 2) fine-pruning (FP) [24], and 3) mode connectivity repair
(MCR) [48]. All defense methods are assumed to have access to the same 1% of clean training data
(500 images). The results based on 10% (5000 images) and 0.1% (50 images) of clean training data
can be found in Appendix. For ANP, we optimize all masks using Stochastic Gradient Descent (SGD)
with the perturbation budget ε = 0.4 and the trade-off coefficient α = 0.2. We set the batch size
128, the constant learning rate 0.2, and the momentum 0.9 for 2000 iterations in total. Typical data
augmentation like random crop and horizontal flipping are applied. After optimization, neurons with
mask value smaller than 0.2 are pruned.

Evaluation Metrics. We evaluate the performance of different defenses using two metrics: 1) the
accuracy on clean data (ACC), and 2) and the attack success rate (ASR) that is the ratio of triggered
samples that are misclassified as the target label. For better comparison between different strategies
for the target label (e.g., all-to-one and all-to-all), we remove the samples whose ground-truth labels
already belong to the target class in the all-to-one setting before calculating ASR. Therefore, an ideal
defense always has close-to-zero ASR and high ACC.

4.2 Benchmarking the State-of-the-art Robustness

To verify the effectiveness of the proposed ANP, we compare its performance with other 3 existing
model repairing methods using ACC and ASR in Table 1. All experiments are repeated over 5
runs with different random seeds, and we only report the average performance without the standard
deviation due to the space constraint. More detailed results including the standard deviation can be
found in Appendix C.

6

Table 2: The average training time of defense method against 6 backdoor attacks on 1% (500 images)
of clean data on CIFAR-10 training set using ResNet-18.

Defense FT FP MCR ANP

Time (s) 93.80 1427.1 286.1 241.5

The experimental results show that the proposed ANP remarkably provides almost the highest
robustness against several state-of-the-art backdoor attacks. In particular, in 5 of total 6 attacks, our
proposed ANP successfully reduces the ASR to lower than 1% while only has a slight drop (∼ 1.47%
on average) in ACC. Note that we only use 1% of clean data from CIFAR-10 training set, which is
extremely small. We find the standard fine-tuning (FT) with a larger learning rate (lr = 0.02) also
provides strong robustness similar to ANP. However, it has an obvious drop in ACC since a large
learning rate may destroy the features learned before and the new ones learned on limited data are
poor in generalization. The poor accuracy hinders its usage in practical scenarios. In contrast, ANP
has similar robustness against backdoor attacks while maintains ACC at a relatively high level at the
same time. Similar to our method, Fine-pruning (FP) [24] also prunes some neurons and fine-tunes the
pruned model on clean data. Specifically, It only prunes neurons in the last convolutional layer using
a rule-of-thumb6, and provides limited robustness against backdoor attacks. Differently, the proposed
ANP is data-driven (i.e., optimizing pruning masks based on data) and prunes neurons globally
(i.e., pruning neurons in all layers), leading to higher ACC and lower ASR than FP. MCR suggests
mitigating backdoor by using a curve model lying on a path connection between two backdoored
models in the loss landscapes. However, with limited data, it fails in providing high robustness
against complex triggers (e.g. a random trigger sampled from Gaussian in blend backdoor attack
or the dynamic trigger in input-aware attack). By contrast, ANP always reduces ASR significantly
no matter what the trigger looks like. Note that ANP only prunes neurons and never changes any
parameters of backdoored DNNs, while other methods all fine-tune parameters. Under this situation,
ANP still provides the almost best robustness against these state-of-the-art attacks, which indicates
that pure pruning (without fine-tuning) is still a promising defense against backdoor attacks.

We also compare the training time of ANP and other baselines in Table 2, which indicates the efficiency
of the proposed ANP. In particular, we apply 2000 iterations for FT, FP, and ANP, and 200 epochs
(i.e., 800 iterations) for MCR following the open-sourced code7. Note that ANP is not as slow as the
vanilla adversarial training (AT) since ANP only requires one extra backpropagation while PGD inside
AT usually needs 10 extra backpropagations (PGD-10) in each update of model parameters. Besides,
although ANP takes 2.5× time compared to FT, it improves accuracy (e.g., 88.98%→ 93.44% for
Blend) and reduce vulnerability (e.g.,10.20%→ 0.46% for Blend) significantly, making the overhead
caused by ANP acceptable.

4.3 Ablation Studies

Effect of Adversarial Neuron Perturbation. Recalling Section 3.2, we apply adversarial neuron
perturbations to induce the injected backdoor and then defend against backdoor attacks. Here, we
evaluate the effect of the adversarial neuron perturbation in our defense strategy. In the following
experiments, we defend against Badnets attack by default, unless otherwise specified. First, we
optimize masks with perturbations (α = 0.2 and ε = 0.4, i.e., ANP) and without perturbations
(α = 1.0, i.e., the vanilla pruning method). Figure 2(a) shows the ACC and ASR on the test set during
optimization. We find the optimization under adversarial neuron perturbations helps the backdoored
model suppress ASR significantly while the vanilla one always has high ASR throughout the training
process. Next, we illustrate the mask distribution after optimization. Figure 2(b) illustrates a certain
fraction of masks becomes zero, which means that adversarial neuron perturbations indeed find some
sensitive neurons and helps the model to remove them. In contrast, there is no mask close to 0 for the
vanilla pruning method in Figure 2(c). Finally, we prune different fractions of neurons according
to their mask in Figure 2(d). For both methods, ASR becomes low after pruning more than 5% of
neurons8. However, ACC also starts to degrade significantly for the vanilla pruning method with more

6Fine-pruning prunes neurons that are less active on clean samples until there is an obvious drop in accuracy
on a clean validation set.

7https://github.com/IBM/model-sanitization
8This is conceivable. As long as the backdoor-related neurons are assigned slightly smaller masks than other

neurons, we still can prune them first and remove the backdoor.

7

https://github.com/IBM/model-sanitization

0 5 10 15 20

Iterations (×102)

0

20

40

60

80

100

R
at

e
(%

) ACC w/o
ASR w/o
ACC w/
ASR w/

(a) Optimization

0.0 0.2 0.4 0.6 0.8 1.0
Mask Value

0

500

1000

1500

2000

2500

3000

N
um

be
r

0.0 0.1 0.2
0

50

100

150

200

(b) With perturbations

0.0 0.2 0.4 0.6 0.8 1.0
Mask Value

0

500

1000

1500

2000

2500

3000

N
um

be
r

0.0 0.1 0.2
0

50

100

150

200

(c) Without perturbations

0 5 10 15 20
Pruning Fraction (%)

0

20

40

60

80

100

R
at

e
(%

) ACC w/o
ASR w/o
ACC w/
ASR w/

(d) Pruning

Figure 2: Comparison between optimization with and without adversarial neuron perturbations.

Table 3: Results with small budget ε = 0.1
against Blend attack on 500 clean images.
“Neurons↓” indicates the number of neurons
pruned by ANP.

Steps 1 2 5 10

Time (s) 239.9 359.2 551.8 943.9
Neurons↓ 159 188 235 259
ASR (%) 65.19 13.40 1.06 0.90
ACC (%) 93.62 93.07 92.95 92.72

Table 4: Results with large budget ε = 0.4
against Blend attack on 500 clean images.
“Neurons↓” indicates the number of neurons
pruned by ANP.

Steps 1 2 5 10

Time (s) 241.5 357.2 557.1 950.1
Neurons↓ 233 239 281 296
ASR (%) 0.46 1.30 5.30 31.34
ACC (%) 93.44 94.07 93.57 94.28

than 5% of neurons pruned. Since backdoored-related neurons are still mixed with other neurons
(e.g., discriminant neurons), the vanilla pruning method prunes some discriminant neurons incorrectly.
Meanwhile, ANP always keeps ACC at a relatively high level. In conclusion, the adversarial neuron
perturbation is the key to distinguish the backdoor-related neurons from the other neurons, which
thereby successfully obtains high ACC as well as low ASR.

In addition, we explore the effects of number of iterations in crafting adversarial neuron perturbations.
We conduct experiments with varying numbers of steps (1/2/5/10) in ANP with a small perturbation
budget (ε = 0.1) and a large perturbation budget (ε = 0.4) respectively. The other settings are the
same as Section 4.1. The experimental results are shown in Tables 3-4. Under a small perturbation
budget, with more steps for ANP, the ASR decreases with a slight drop in ACC. This is because ANP
with a single step and small size is too weak to distinguish benign neurons and backdoor-related
neurons, while more steps can help ANP find more backdoor-related neurons. However, under a
large perturbation budget, ANP with more steps has worse robustness. This is because, with a large
perturbation budget, more neurons become sensitive. As a result, ANP with more steps finds too
many “suspicious” neurons, and it is unable to identify backdoor-related neurons from them. In
conclusion, we can strengthen the power of ANP to find backdoor-related neurons using a larger
perturbation budget or more steps. Among them, single-step ANP with a slightly larger budget is
more practical due to its time efficiency, and we adopt this by default.

Results with Varying Hyperparameters. As mentioned in Section 3.3, the hyper-parameter α in
ANP controls the trade-off between the accuracy on clean data and the robustness against backdoor
attacks. To test the performance with different α, we optimize masks for a Badnets ResNet-18 based
on 1% of clean data using different α ∈ [0, 1] with a fixed budget ε = 0.4. In pruning, we always
prune neurons by the threshold 0.2. As shown in the left plot of Figure 4, ANP is able to achieve a
high robustness (ASR < 4%) when α ≤ 0.6. Meanwhile, ANP maintains a high natural accuracy
(ACC ≥ 90%) as long as α ≥ 0.1. As a result, ANP behaves well with high ACC and low ASR in a
range of α ∈ [0.1, 0.6].

Similarly, we also test the performance with different perturbation budgets ε. The experiment settings
are almost the same except a fixed trade-off coefficient α = 0.2 and varying budgets ε ∈ [0, 1]. For
example, we can provide obvious robustness (ASR becomes 7.45%) with a small perturbation budget
(ε = 0.2) as shown in the right plot of Figure 4. However, we find the accuracy on clean data degrades
with a large perturbation budget. This is because too large perturbation budget brings much difficulty
to converge well and ANP only finds a poor solution, which fails in identifying these discriminant and
robust neurons and prunes part of them. As a result, ACC decreases significantly. In conclusion, the

8

0 2 4 6 8 10
Pruning Fraction (%)

0

20

40

60

80

100

AC
C

(%
)

ResNet-18
ResNet-50
VGG-19
MobileNet-V2

(a) ACC by fraction

0 2 4 6 8 10
Pruning Fraction (%)

0

20

40

60

80

100

AS
R

(%
)

(b) ASR by fraction

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Threshold

0

20

40

60

80

100

AC
C

(%
)

ResNet-18
ResNet-50
VGG-19
MobileNet-V2

(c) ACC by threshold

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Threshold

0

20

40

60

80

100

AS
R

(%
)

(d) ASR by threshold

Figure 3: Performance (±std over 5 random runs) of pruned models using different architectures by
different pruning fractions or different thresholds.

proposed ANP is stable in a large range of the trade-off coefficient α ∈ [0.1, 0.6] and the perturbation
budget ε ∈ [0.2, 0.7], demonstrating that ANP is not sensitive to hyper-parameters.

From the discussion above, we find that the hyperparameters are insensitive as shown in Figure 4 and
ANP performs well across a wide range of hyperparameters, e.g., trade-off coefficient α ∈ [0.1, 0.6]
against Badnets attack. In addition, with varying hyperparameters, the performance trends are very
consistent across different backdoor attacks as shown in Figure X in Appendix C.1. As a result, even
though the attack (e.g., Blend) is unknown, the defender could tune α against a known attack (e.g.,
Badnets) and find the 0.2 is a good choice. ANP with α = 0.2 also achieves satisfactory performance
against Blend attack. In conclusion, the selection of hyperparameters in ANP is not difficult.

Pruning by Fraction or by Threshold. Different from previous pruning methods that use a fixed
pruning fraction, the proposed ANP prunes neurons by a threshold when generalized across different
model architectures. To verify this, we train different Badnets models using ResNet-18 [15], ResNet-
50 [15], and VGG-19 [37] with the same settings as Section 4.1. We also train a model with
Badnets MobileNet-V2 with 300 epochs . We optimize the pruning masks for these models with
ε = 0.4, α = 0.2 for ResNet-18, ResNet-50, and VGG-19. For MobileNet-V2, we found the
perturbation budget ε = 0.4 is too large, leading to a failure in convergence. So we apply a smaller
budget ε = 0.2 and the same trade-off coefficient α = 0.2. We show the ACC and ASR after pruning
by varying pruning fractions in Figure 3(a) and 3(b), which indicates that the suitable fraction varies
across model architectures. For example, ResNet-18 only has low ASR after pruning 5% of neurons,
while MobileNet-V2 has a large accuracy drop on clean samples with more than 5% neurons pruned.
Figure 3(c) and Figure 3(d) show ACC and ASR after pruning by different thresholds respectively.
When pruning by the threshold, we find there is a large overlap in [0.2, 0.5] (the gray zone) in which
all models have high ACC and low ASR simultaneously. That is why we adopt the strategy of pruning
by the threshold in ANP. Note that, even for low-capacity models as MobileNet-V2, it is still possible
to remove the injected backdoor by neuron pruning (without the fine-tuning).

Pruning on Different Components. We also compare the performance when applying ANP to
different components inside DNNs. We prune a backdoored 4-layer CNN (2 conv layers + 1 fully-
connected layer + output layer) on MNIST, and find it more efficient to prune neurons in some layers.
In particular, we achieve 0.43% of ASR (99.04% of ACC) when two neurons in the 2nd layer are
pruned, while we only achieve 4.42% of ASR (92.48% of ACC) even after pruning 150 neurons in
the fully-connected layer. The experimental settings and more results can be found in Appendix C.2.
This indicates that the structure of components matter in pruning-based defense. We leave this in our
future work.

4.4 Performance under Limited Computation Resource

In practical scenarios, the defender usually has limited clean data and computation resources, bringing
more difficulty to repair backdoored models. While Section 4.2 has discussed the effectiveness of
the proposed ANP on the extremely small amount of data, this part focuses on the performance with
limited computation resources in defense.

In particular, we optimize all masks for a Badnets ResNet-18 with varying number of iterations (20,
100, 400, and 2000) on 1% of clean data (500 images) and prune the model from neurons with the
small mask to neurons with the large mask. Figure 5 shows the ACC and ASR with varying pruning

9

0.0 0.2 0.4 0.6 0.8 1.0
Trade-off Coefficient

0

20

40

60

80

100

R
at

e
(%

)

ACC
ASR

0.0 0.2 0.4
88

90

92

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation Budget

0

20

40

60

80

100

R
at

e
(%

)

ACC
ASR

Figure 4: Performance (± std over 5 random
runs) of the pruned model by a threshold 0.2
with different hyper-parameters (Left: trade-off
coefficient α; Right: perturbation budget ε).

0 5 10 15 20
Pruning Fraction (%)

0

20

40

60

80

100

AC
C

 (%
)

20
100
400
2000

0 5 10 15 20
Pruning Fraction (%)

0

20

40

60

80

100

AS
R

 (%
)

20
100
400
2000

Figure 5: Performance (±std over 5 random
runs) of the proposed ANP with varying prun-
ing fractions based on different numbers of iter-
ations.

fractions based on different numbers of iterations. We find that some backdoor-related neurons
have already been distinguished just after 20 iterations. For example, after removing 4% of neurons
with the smallest masks, the pruned model has 6.28% of ASR and 86.65% of ACC. As the pruning
fraction increases, ASR falls significantly first and raises again after 10% of neurons are pruned. This
is because ANP has not yet separated them completely due to extremely limited computation (only
20 iterations). With more than 100 iterations, this phenomenon disappears. And ANP based on 100
iterations already has comparable performance to ANP on 2000 iterations, especially when we have
not pruned too many neurons (< 8%).

We also find that ANP with 2000 iterations should prune more (+1%) neurons to degrade ASR than
ones with fewer iterations. We conjecture this is because there also exist some sensitive neurons that
are unrelated to the injected backdoor9, which are assigned with small masks at the late optimization
stage. Besides, for ACC, we can see that more iterations maintain a higher ACC than fewer iterations,
especially when more neurons are pruned, as the left neurons are almost the discriminant and robust
ones. In conclusion, even with extremely small number of iterations (e.g., 20 iterations), ANP is able
to distinguish the backdoor-related neurons from other neurons and obtains satisfactory robustness
against backdoor attacks.

5 Conclusion

In this paper, we identified a sensitivity of backdoored DNNs to adversarial neuron perturbations,
which induces them to present backdoor behaviours even without the presence of the trigger patterns.
Based on these findings, we proposed Adversarial Neuron Pruning (ANP) to prune the sensitive neu-
rons under adversarial neuron perturbations. Comprehensive experiments show that ANP consistently
removes the injected backdoor and provides the highest robustness against several state-of-the-art
backdoor attacks even with a limited amount of clean data and computation resources. Finally, our
work also reminds researchers that pruning (without fine-tuning) is still a promising defense against
backdoor attacks.

Broader Impact

The backdoor attack has become a threat to outsourcing training and open-sourcing models. We
propose ANP to improve the robustness against these backdoor attacks, which may help to build a
more secure model even trained in an untrustworthy third-party platform. Further, we do not want
this paper to bring overoptimism about AI safety to the society. Since the backdoor attack is only a
part of potential risks (e.g., adversarial attacks, privacy leakage, and model extraction), there is still a
long way towards secure AI and trustworthy AI.

9Recalling Figure 1(b), we can see that the benign model also suffers from the adversarial neuron perturba-
tions, although its sensitivity is much weaker than that of backdoored models.

10

Acknowledgments

Yisen Wang is partially supported by the National Natural Science Foundation of China under Grant
62006153, and Project 2020BD006 supported by PKU-Baidu Fund.

References
[1] Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new backdoor attack in cnns by training

set corruption without label poisoning. In ICIP, 2019.

[2] Battista Biggio, Blaine Nelson, and Pavel Laskov. Support vector machines under adversarial
label noise. In ACML, 2011.

[3] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In
ECML/PKDD, 2013.

[4] Eitan Borgnia, Valeriia Cherepanova, Liam Fowl, Amin Ghiasi, Jonas Geiping, Micah Goldblum,
Tom Goldstein, and Arjun Gupta. Strong data augmentation sanitizes poisoning and backdoor
attacks without an accuracy tradeoff. In ICASSP, 2021.

[5] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepinspect: A black-box trojan
detection and mitigation framework for deep neural networks. In IJCAI, 2019.

[6] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on
deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

[7] Xinyun Chen, Wenxiao Wang, Chris Bender, Yiming Ding, Ruoxi Jia, Bo Li, and Dawn Song.
Refit: a unified watermark removal framework for deep learning systems with limited data.
arXiv preprint arXiv:1911.07205, 2019.

[8] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, and Alistair
Stewart. Sever: A robust meta-algorithm for stochastic optimization. In ICML, 2019.

[9] Chao Gao, Yuan Yao, and Weizhi Zhu. Generative adversarial nets for robust scatter estimation:
A proper scoring rule perspective. Journal of Machine Learning Research, 21(160):1–48, 2020.

[10] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
Strip: A defence against trojan attacks on deep neural networks. In ACSAC, 2019.

[11] Amirata Ghorbani and James Zou. Neuron shapley: Discovering the responsible neurons. In
NeurIPS, 2021.

[12] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,
Aleksander Madry, Bo Li, and Tom Goldstein. Data security for machine learning: Data
poisoning, backdoor attacks, and defenses. arXiv preprint arXiv:2012.10544, 2020.

[13] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. In ICLR, 2015.

[14] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating
backdooring attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[16] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In ICML, 2015.

[17] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In ICML, 2017.

[18] Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break data
sanitization defenses. arXiv preprint arXiv:1811.00741, 2018.

11

[19] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report, University of Toronto, 2009.

[20] Alexander Levine and Soheil Feizi. Deep partition aggregation: Provable defense against
general poisoning attacks. arXiv preprint arXiv:2006.14768, 2020.

[21] Alexander Levine and Soheil Feizi. Deep partition aggregation: Provable defense against
general poisoning attacks. In ICLR, 2021.

[22] Yige Li, Nodens Koren, Lingjuan Lyu, Xixiang Lyu, Bo Li, and Xingjun Ma. Neural attention
distillation: Erasing backdoor triggers from deep neural networks. In ICLR, 2021.

[23] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor
learning: Training clean models on poisoned data. In NeurIPS, 2021.

[24] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against
backdooring attacks on deep neural networks. In RAID, 2018.

[25] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and
Xiangyu Zhang. Trojaning attack on neural networks. In NDSS, 2018.

[26] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor
attack on deep neural networks. In ECCV, 2020.

[27] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In ICCD, 2017.

[28] Shiqing Ma and Yingqi Liu. Nic: Detecting adversarial samples with neural network invariant
checking. In NDSS, 2019.

[29] Yuzhe Ma, Xiaojin Zhu Zhu, and Justin Hsu. Data poisoning against differentially-private
learners: Attacks and defenses. In IJCAI, 2019.

[30] Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. In NeurIPS, 2020.

[31] Anh Nguyen and Anh Tran. Wanet–imperceptible warping-based backdoor attack. In ICLR,
2021.

[32] Ren Pang, Hua Shen, Xinyang Zhang, Shouling Ji, Yevgeniy Vorobeychik, Xiapu Luo, Alex
Liu, and Ting Wang. A tale of evil twins: Adversarial inputs versus poisoned models. In CCS,
2020.

[33] Ximing Qiao, Yukun Yang, and Hai Li. Defending neural backdoors via generative distribution
modeling. In NeurIPS, 2019.

[34] Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter. Certified robustness to
label-flipping attacks via randomized smoothing. In ICML, 2020.

[35] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Du-
mitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural
networks. In NeurIPS, 2018.

[36] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[37] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR, 2015.

[38] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certified defenses for data poisoning attacks.
In NeurIPS, 2017.

[39] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.

12

[40] Lue Tao, Lei Feng, Jinfeng Yi, Sheng-Jun Huang, and Songcan Chen. Better safe than sorry:
Preventing delusive adversaries with adversarial training. In NeurIPS, 2021.

[41] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. In
NeurIPS, 2018.

[42] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks.
arXiv preprint arXiv:1912.02771, 2019.

[43] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and
Ben Y Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks.
In S&P, 2019.

[44] Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and Meng Wang. Practical
detection of trojan neural networks: Data-limited and data-free cases. In ECCV, 2020.

[45] Yisen Wang, Xuejiao Deng, Songbai Pu, and Zhiheng Huang. Residual convolutional ctc
networks for automatic speech recognition. arXiv preprint arXiv:1702.07793, 2017.

[46] Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and Bo Li. Rab: Provable robustness
against backdoor attacks. arXiv preprint arXiv:2003.08904, 2020.

[47] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust
generalization. In NeurIPS, 2020.

[48] Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ramamurthy, and Xue Lin. Bridging
mode connectivity in loss landscapes and adversarial robustness. In ICLR, 2019.

[49] Haoti Zhong, Cong Liao, Anna Cinzia Squicciarini, Sencun Zhu, and David Miller. Backdoor
embedding in convolutional neural network models via invisible perturbation. In CODASPY,
2020.

[50] Liuwan Zhu, Rui Ning, Cong Wang, Chunsheng Xin, and Hongyi Wu. Gangsweep: Sweep out
neural backdoors by gan. In MM, 2020.

13

	Introduction
	Related Work
	Backdoor Attacks
	Backdoor Defense

	The Proposed Method
	Preliminary
	Adversarial Neuron Perturbations
	The Proposed Adversarial Neuron Pruning (ANP)

	Experiments
	Experimental Settings
	Benchmarking the State-of-the-art Robustness
	Ablation Studies
	Performance under Limited Computation Resource

	Conclusion
	More Implementation Details on Backdoor Attacks
	More Results on Adversarial Neuron Perturbations
	More Results on Adversarial Neuron Pruning (ANP)
	Performance Trends across Different Backdoor Attacks
	Pruning on Different Components
	Benchmarking Results Based on Varying Fraction of Clean Data

