
Supplementary Materials

A O.O.D Generalization error Bound

Denote Ep[y|x] :=
∫
Y yp(y|x)dy for any x, y ∈ X×Y . We have Epe [y|s] =

∫
Y yp(y|s)dy according

to that p(y|s) is invariant across E , we can omit pe in Epe [y|s] and denote g(S) := E[Y |S]. Then,
the OOD bound

∣∣Epe1 (y|x)− Epe2 (y|x)
∣∣, ∀(x, y) is bounded as follows:

Theorem A.1 (OOD genearlization error). Consider two causal models in LaCIM Pe1 and Pe2 ,
suppose that their densities, i.e., pe1(s|x) and pe2(s|x) are absolutely continuous having support
(−∞,∞). For any (x, y) ∈ X × Y , assume that

• g(S) is a Lipschitz-continuous function;
• πx(s) := pe2 (s|x)

pe1 (s|x) is differentiable and Epe1
[
πx(S)

∣∣g(S)− µ1

∣∣] < ∞ with µ1 :=

Epe1 [g(S)|X = x] =
∫
S g(s)pe1(s|x)ds;

then we have
∣∣Epe1 (y|x)− Epe2 (y|x)

∣∣ ≤ ‖g′‖∞‖π′x‖∞Varpe1 (S|X = x).

When e1 ∈ Etrain and e2 ∈ Etest, the theorem A.1 describes the error during generalization on e2

for the strategy that trained on e1. The bound is mainly affected by: (i) the Lipschitz constant of
g, i.e., ‖g‖∞; (ii) ‖π′x‖∞ which measures the difference between pe1(s, z) and pe2(s, z); and (iii)
the Varpe1 (S|x) that measures the intensity of x→ (s, z). These terms can be roughly categorized
into two classes: (i),(iii) which are related to the invariance property of P (X|S,Z) and P (Y |S) and
gave few space for improvement; and the (ii) that describes the distributional change between two
environments. Specifically for the first class, the (i) measures the smoothness of E(y|s) with respect
to s. The smaller value of ‖g′‖∞ implies that the flatter regions give rise to the same prediction result,
hence easier transfer from e1 to e2 and vice versa. For the term (iii), consider the deterministic setting
that εx = 0 (leads to Varpe1 (S|x) = 0), then s can be determined from x for generalization if the f
is bijective function.

The term (ii) measures the distributional change between posterior distributions pe1(s|x) and pe2(s|x),
which contributes to the difference during prediction:

∣∣Epe1 (y|x) − Epe2 (y|x)
∣∣ =

∫
S(pe1(s|x) −

pe1(s|x))pfy (y|s)ds. Such a change is due to the inconsistency between priors pe1(s, z) and pe2(s, z),
which is caused by different value of the confounder d.

Proof. In the following, we will derive the upper bound∣∣Epe1 [Y |X=x]− Epe2 [Y |X=x]
∣∣ ≤ ‖g′‖∞‖π′x‖∞Varpe1 (S|X = x) ,

where πx(s) =: p
e2 (s|x)
pe1 (s|x) and g(s) is assumed to be Lipschitz-continuous.

To begin with, note that

E[Y |X] = E[E(Y |X,S)|X] = E[g(S)|X] =

∫
g(s)p(s|x)ds.

Let p1(s|x) = pe1(s|x), p2(s|x) = pe2(s|x). For ease of notations, we use P1 and P2 denote the
distributions with densities p1(s|x) and p2(s|x) and suppose S1 ∼ P1 and S2 ∼ P2, where x is
omitted as the following analysis is conditional on a fixed X=x.

Then we may rewrite the difference of conditional expectations as

Epe2 [Y |X = x]− Epe1 [Y |X = x] = E(g(S2))− E(g(S1)),

where E[g(Sj))] =
∫
g(s)pj(s|x)ds denotes the expectation over Pj .

Let µ1 := Epe1 [g(S)|X = x] = E[g(S1)] =
∫
g(s)p1(s|x)ds. Then

Epe2 [Y |X = x]− Epe1 [Y |X = x] = E(g(S2))− E(g(S1)) = E [g(S2)− µ1] .

Further, we have the following transformation

E [g(S2)− µ1] =

∫
(g(s)− µ1)πx(s)p1(s|x)ds = E [(g(S1)− µ1)πx(S1)] . (7)

15

In the following, we will use the results of the Stein kernel function. Please refer to Definition A.2
for a general definition. Particularly, for the distribution P1 ∼ p1(s|x), the Stein kernel τ1(s) is

τ1(s) =
1

p1(s|x)

∫ s

−∞
(E(S1)− t)p1(t|x)dt, (8)

where E(S1) =
∫
s · p1(s|x)ds. Further, we define (τ1 ◦ g)(s) as

(τ1 ◦ g)(s)=
1

p1(s|x)

∫ s

−∞
(E(g(S1))− g(t))p1(t|x)dt=

1

p1(s|x)

∫ s

−∞
(µ1 − g(t))p1(t|x)dt. (9)

Under the second condition listed in Theorem A.1, we may apply the result of Lemma A.3. Specifi-
cally, by the equation (12), we have

E [(g(S1)− µ1)πx(S1)] = E [(τ1 ◦ g)(S1)π′x(S1)] .

Then under the first condition in Theorem A.1, we can obtain the following inequality by Lemma
A.4,

E [(τ1 ◦ g)(S1)π′x(S1)]= E
[(

(τ1 ◦ g)

τ1
π′xτ1

)
(S1)

]
≤ E

[∣∣∣ (τ1 ◦ g)

τ1
(S1)

∣∣∣ · ∣∣∣π′xτ1(S1)
∣∣∣]

≤ ‖g′‖∞E [| (π′xτ1) (S1)|] ≤ ‖g′‖∞‖π′x‖∞E [|τ1(S1)|] .
(10)

In the following, we show that the Stein kernel is non-negative, which enables E [|τ1(S1)|] =
E [τ1(S1)]. According to the definition, τ1(s) = 1

p1(s|x)

∫ s
−∞(E(S1)− t)p1(t|x)dt, where E(S1)=∫∞

−∞ t · p1(t|x)dt. Let F1(s) =
∫ s
−∞ p1(t|x)dt be the distribution function for P1. Note that∫ s

−∞
E(S1)p1(t|x)dt = F1(s)E(S1) = F1(s) E(S1),∫ s

−∞
tp1(t|x)dt = F1(s)

∫ s

−∞
t
p1(t|x)

F1(s)
dt = F1(s) E(S1|S1 ≤ s) ≤ F1(s) E(S1),

The last inequality is based on E(S1|S1 ≤ s)− E(S1) ≤ 0 that can be proved as the following∫ s

−∞
t
p1(t|x)

F1(s)
dt−

∫ ∞
−∞

tp1(t|x)dt =

∫ s

−∞
t

(
1

F1(s)
− 1

)
p1(t|x)dt−

∫ ∞
s

tp1(t|x)dt

≤ s
∫ s

−∞

(
1

F1(s)
− 1

)
p1(t|x)dt− s

∫ ∞
s

p1(t|x) = 0.

Therefore, τ1(s) ≥ 0 and hence E [|τ1(S1)|] = E [τ1(S1)] in (10).

Besides, by equation (13), the special case of Lemma A.3, we have

E [τ1(S1)] = Var(S1) = Varpe1 (S|X = x).

To sum up,

E [(τ1 ◦ g)(S1)π′x(S1)] ≤ ‖g′‖∞‖πx‖∞E [τ1(S1)] = ‖g′‖∞‖π′x‖∞Varpe1 (S|X = x).

Definition A.2 (the Stein Kernel τP of distribution P). Suppose X∼P with density p. The Stein
kernel of P is the function x 7→ τP (x) defined by

τP (x) =
1

p(x)

∫ x

−∞
(E(X)− y)p(y)dy, (11)

where Id is the identity function for Id(x) = x. More generally, for a function h satisfying
E[|h(X)|] <∞, define (τP ◦ h)(x) as

(τP ◦ h)(x) =
1

p(x)

∫ x

−∞
(E(h(X))− h(y))p(y)dy.

16

Lemma A.3. For a differentiable function ϕ such that E[|(τP ◦ h)(x)ϕ′(X)|] <∞, we have

E [(τP ◦ h)(x)ϕ′(X)] = E[(h(X)− E(h(X))ϕ(X)]. (12)

Proof. Let µh =: E(h(X)). As E(h(X)− µh) = 0,

(τP ◦ h)(x) =
1

p(x)

∫ x

−∞
(µh − h(y))p(y)dy =

−1

p(x)

∫ ∞
x

(µh − h(y))p(y)dy.

Then

E [(τP ◦ h)(x)ϕ′(X)]=

∫ 0

−∞
(τP ◦ h)(x)ϕ′(x)p(x)dx+

∫ ∞
0

(τP ◦ h)(x)ϕ′(x)p(x)dx

=

∫ 0

−∞

∫ x

−∞
(µh − h(y))p(y)ϕ′(x)dydx−

∫ ∞
0

∫ ∞
x

(µh − h(y))p(y)ϕ′(x)dydx

=

∫ 0

−∞

∫ 0

y

(µh − h(y))p(y)ϕ′(x)dxdy −
∫ ∞

0

∫ y

0

(µh − h(y))p(y)ϕ′(x)dxdy

=

∫ 0

−∞

∫ y

0

(h(y)− µh)p(y)ϕ′(x)dxdy +

∫ ∞
0

∫ y

0

(h(y)− µh)p(y)ϕ′(x)dxdy

=

∫ ∞
−∞

(h(y)− µh)p(y)

(∫ y

0

ϕ′(x)dx

)
dy=

∫ ∞
−∞

(h(y)− µh)p(y)(ϕ(y)− ϕ(0))dy

=

∫ ∞
−∞

(h(y)− µh)p(y)(ϕ(y))dy=E[(h(X)− E(h(X))ϕ(X)]

Particularly, taking h(X) = X and ϕ(X) = X − E(X), we immediately have

E(τP (X)) = Var(X) (13)

Lemma A.4. Assume that E(|X|) < ∞ and the density p is locally absolutely continuous on
(−∞,∞) and h is a Lipschitz continuous function. Then we have |fh| ≤ ‖h′‖∞ for

fh(x) =
(τP ◦ h)(x)

τP (x)
=

∫ x
−∞(E(h(X))− h(y))p(y)dy∫ x
−∞(E(X)− y)p(y)dy

.

Proof. This is a special case of Corollary 3.15 in [13], taking the constant c = 1.

B Proof of Identifiability

B.1 Proof of the Equivalence of Definition 4.3

Proposition B.1. The binary relation ∼exp defined in Def. 4.3 is an equivalence relation.

Proof. The equivalence relation should satisfy three properties as follows:

• Reflexive property: The θ ∼exp θ with Mz , Ms being identity matrix and as, az being 0.

• Symmtric property: If θ ∼exp θ̃, then there exists block permutation matrices Mz and Ms

such that

Ts([fx]−1
S (x)) = MsT̃

s([f̃x]−1
S (x)) + as, Tz([fx]−1

Z (x)) = MzT̃
z([f̃x]−1

Z (x)) + az,

pfy (y|[fx]−1
S (x)) = pf̃y (y|[f̃x]−1

S (x)).

17

The we have M−1
s and M−1

z are also block permutation matrices and such that:

T̃s([f̃x]−1
S (x)) = M−1

s Ts([fx]−1
S (x)) + (−as), T̃s([f̃x]−1

Z (x)) = M−1
z Ts([fx]−1

Z (x)) + (−az),
pf̃y (y|[f̃x]−1

S (x)) = pfy (y|[fx]−1
S (x)).

Therefore, we have θ̃ ∼exp θ.

• Transitive property: if θ1 ∼exp θ2 and θ2 ∼exp θ3 with θi :=
{f ix, f iy,Ts,1,Tz,1,Γs,i,Γz,i}, then we have

Ts,1((f1
x,s)
−1(x)) = M1

sTs,2((f2
x,s)
−1(x)) + a1

s,

Tz,1((f1
x,z)
−1(x)) = M1

zTz,2((f2
x,z)
−1(x)) + a2

z,

Ts,2((f2
x,s)
−1(x)) = M2

sTs,3((f3
x,s)
−1(x)) + a2

s,

Tz,2((f2
x,z)
−1(x)) = M2

zTz,3((f3
z)−1(x)) + a3

x,z

for block permutation matrices M1
s ,M

1
z ,M

2
s ,M

2
z and vectors a1

s, a
2
s, a

1
z, a

2
z . Then we have

Ts,1((f1
x,s)
−1(x)) = M2

sM
1
sTs,3((f3

x,s)
−1(x)) + (M2

s a
1
s) + a2

s,

Tz,1((f1
x,z)
−1(x)) = M2

zM
1
zTz,3((f3

x,z)
−1(x)) + (M2

z a
1
z) + a2

z.

Besides, it is apparent that pf1
y
(y|(f1

x)−1
s (x)) = pf2

y
(y|(f2

x)−1
s (x)) = pf3

y
(y|(f3

x)−1
s (x)).

Therefore, we have θ1 ∼exp θ3 since M2
sM

1
s and M2

zM
1
z are also permutation matrices.

With above three properties satisfied, we have that ∼exp is a equivalence relation.

B.2 Proof of Theorem 4.4

In the following, we write pe(x, y) as p(x, y|de) and also Γt=s,zc,de := Γt=s,z(c, de), Atc,de,i =

Ati(c, d
e) for t = s, z. To prove the theorem 4.4, we first prove the theorem B.6 for the sim-

plest case when c|de := de, then we generalize to the case when C := ∪r{cr}. The overall roadmap
is as follows: we first prove the ∼A-identifiability in theorem B.5, and the combination of which with
lemma B.9, B.8 give theorem B.6 in the simplest case when c|de = de. Then we generalize the case
considered in theorem B.6 to the more general case when C := ∪r{cr}.
Theorem B.2 (∼exp-identifiability). For θ in the LaCIM peθ(x, y) ∈ Pexp for any e ∈ Etrain, we as-
sume that (1) the fx, f ′x and f ′′x are continuous and that fx, fy are bijective; (2) that the {T ti,j}j∈[kt]

are linearly indepndent and T ti,j are twice differentiable for any t = s, z, i ∈ [qt], j ∈ [kt];
(3) the exogenous variables satisfy that the characteristic functions of εx, εy are almost every-
where nonzero; (4) the number of environments, i.e., m ≥ max(qs ∗ ks, qz ∗ kz) + 1 and[
Γt=s,zde2 − Γt=s,zde1 , ...,Γt=s,zdem − Γt=s,zde1

]
have full column rank for both t = s and t = z, we have

that the parameters θ := {fx, fy,Ts,Tz} are ∼exp identifiable.

To prove theorem B.6, We first prove the ∼A-identifiability that is defined as follows:

Definition B.3 (∼A-identifiability). The definition is the same with the one defined in 4.3, with
Ms,Mz being invertible matrices which are not necessarily to be the permutation matrices in
Def. 4.3.

Proposition B.4. The binary relation ∼A defined in Def. B.3 is an equivalence relation.

Proof. The proof is similar to that of proposition B.1.

The following theorem states that any LaCIM that belongs to Pexp is ∼A-identifiable.

18

Theorem B.5 (∼A-identifiability). For θ in the LaCIM peθ(x, y) ∈ Pexp for any e ∈ Etrain, we
assume (1) the fx, fy are bijective; (2) that the {T ti,j}j∈[kt] are linearly indepndent and T ti,j are
differentiable for any t = s, z, i ∈ [qt], j ∈ [kt]; (3) the exogenous variables satisfy that the
characteristic functions of εx, εy are almost everywhere nonzero; (4) the number of environments,
i.e., m ≥ max(qs ∗ ks, qz ∗ kz) + 1 and

[
[Γtde2 − Γtde1]T, ..., [Γtdem − Γtde1]T

]T
have full column

rank for t = s, z, we have that the parameters {fx, fy,Ts,Tz} are ∼exp identifiable.

Proof. Suppose that θ = {fx, fy,Ts,Tz} and θ̃ = {f̃x, g̃y, T̃s, T̃z} share the same obser-
vational distribution for each environment e ∈ Etrain, i.e., pfx,fy,Ts,Γs,Tz,Γz (x, y|de) =
pf̃x,f̃y,T̃s,Γ̃s,T̃z,Γ̃z (x, y|d

e).

Then we have pfx,fy,Ts,Γs,Tz,Γz (x|de) = pf̃x,f̃y,T̃s,Γ̃s,T̃z,Γ̃z (x|d
e)

=⇒
∫
S×Z pfx(x|s, z)pTs,Γs,Tz,Γz (s, z|de)dsdz =

∫
S×Z pf̃x(x|s, z)pT̃s,Γ̃s,T̃z,Γ̃z (s, z|de)dsdz

=⇒
∫
X pεx(x− x̄)pTs,Γs,Tz,Γz (f

−1
x (x̄)|de)volJf−1

x
(x̄)dx̄

=
∫
X pεx(x− x̄)pT̃s,Γ̃s,T̃z,Γ̃z (f̃

−1
x (x̄)|de)volJf̃−1

x
(x̄)dx̄

=⇒
∫
X p̃Ts,Γs,Tz,Γz,fx(x̄|de)pεx(x− x̄)dx̄ =

∫
X p̃T̃s,Γ̃s,T̃z,Γ̃z,f̃x

(x̄|de)pεx(x− x̄)dx̄

=⇒ (p̃Ts,Γs,Tz,Γz,fx ∗ pεx)(x|de) = (p̃T̃s,Γ̃s,T̃z,Γ̃z,f̃x
) ∗ pεx(x|de)

=⇒ F [p̃Ts,Γs,Tz,Γz,fx](ω)ϕεx(ω) = F [p̃T̃s,Γ̃s,T̃z,Γ̃z,f̃x
](ω)ϕεx(ω)

=⇒ F [p̃Ts,Γs,Tz,Γz,fx](ω) = F [p̃T̃s,Γ̃s,T̃z,Γ̃z,f̃x
](ω)

=⇒ p̃Ts,Γs,Tz,Γz,fx(x|de) = p̃T̃s,Γ̃s,T̃z,Γ̃z,f̃x
(x|de)

where volJf (X) := det(Jf (X)) for any square matrix X and function f with “J” standing for
the Jacobian. The p̃Ts,Γs,Tz,Γz,fx(x) in Eq. (B.2) is denoted as pTs,Γs,Tz,Γz (f

−1
x (x|de)volJf−1(x).

The ’*’ in Eq. (B.2) denotes the convolution operator. The F [·] in Eq. (B.2) denotes the Fourier
transform, where φεx(ω) = F [pεx](ω). Since we assume that the ϕεx(ω) is non-zero almost
everywhere, we can drop it to get Eq. (B.2). Similarly, we have that:

pfy,Ts,Γs(y|de) = pf̃y,T̃s,Γ̃s(y|d
e) (14)

=⇒
∫
S
pfy (y|s)pTs,Γs(s|de)ds =

∫
S
pf̃y (y|s)pT̃s,Γ̃s(s|d

e)ds (15)

=⇒
∫
Y
pεy (y − ȳ)pTs,Γs(f

−1
y (ȳ)|de)volJf−1

y
(ȳ)dȳ (16)

=

∫
Y
pεy (y − ȳ)pT̃s,Γ̃s(f̃

−1
y (ȳ)|de)volJg̃−1(ȳ)dȳ (17)

=⇒
∫
S
p̃Ts,Γs,fy (ȳ|de)pεy (y − ȳ)dȳ =

∫
S
p̃T̃s,Γ̃s,f̃y

(ȳ|de)pεy (y − ȳ)dȳ (18)

=⇒ (p̃Ts,Γs,fy ∗ pεy)(y|de) = (p̃T̃s,Γ̃s,f̃y
∗ pεy)(y|de) (19)

=⇒ F [p̃Ts,Γs,fy](ω)ϕεy (ω) = F [p̃T̃s,Γ̃s,f̃y
](ω)ϕεy (ω) (20)

=⇒ F [p̃Ts,Γs,fy](ω) = F [p̃T̃s,Γ̃s,f̃y
](ω) (21)

=⇒ p̃Ts,Γs,fy (y) = p̃T̃s,Γ̃s,f̃y
(y), (22)

and that

pfx,fyTs,Γs,Tz,Γz (x, y|de) = pf̃x,f̃y,T̃s,Γ̃s,T̃z,Γ̃z (x, y|d
e) (23)

=⇒
∫
S×Z

pfx(x|s, z)pfy (y|s)pTs,Γs,Tz,Γz (s, z|de)dsdz

=

∫
S×Z

pf̃ (x|s, z)pf̃y (y|s)pT̃s,Γ̃s,T̃z,Γ̃z (s, z|d
e)dsdz (24)

19

=⇒
∫
V
pε(v − v̄)pTs,Γs,Tz,Γz (h

−1(v̄)|de)volJh−1(v̄)dv̄ (25)

=

∫
V
pε(v − v̄)pT̃s,Γ̃s,T̃z,Γ̃z (h̃

−1(v̄)|de)volJh̃−1(v̄)dv̄ (26)

=⇒
∫
S×Z

p̃Ts,Γs,Tz,Γz,h,c(v̄|d)pε(v − v̄)dv̄ =

∫
S×Z

p̃T̃s,Γ̃s,T̃z,Γ̃z,h̃,de(v̄|d
e)pε(v − v̄)dv̄ (27)

=⇒ (p̃Ts,Γs,Tz,Γz,h ∗ pε)(v) = (p̃T̃s,Γ̃s,T̃z,Γ̃z,h̃ ∗ pε)(v) (28)

=⇒ F [p̃Ts,Γs,Tz,Γz,h](ω)ϕε(ω) = F [p̃T̃s,Γ̃s,T̃z,Γ̃z,h̃](ω)ϕε(ω) (29)

=⇒ F [p̃Ts,Γs,Tz,Γz,h](ω) = F [p̃T̃s,Γ̃s,T̃z,Γ̃z,h̃](ω) (30)

=⇒ p̃Ts,Γs,Tz,Γz,h(v) = p̃T̃s,Γ̃s,T̃z,Γ̃z,h(v), (31)

where v := [x>, y>]>, ε := [ε>x , ε
>
y]>, h(v) = [[fx]−1

Z (x)>, f−1
y (y)>]>. According to Eq. (22), we

have

log volJfy (y) +

qs∑
i=1

logBi(f
−1
y,i (y))− logAi(d

e) +

ks∑
j=1

T si,j(f
−1
y,i (y))Γsi,j(d

e)

= log volJf̃y (y) +

qs∑
i=1

log B̃i(f̃
−1
y,i (y))− log Ãi(d

e) +

ks∑
j=1

T̃ si,j(f̃
−1
y,i (y))Γ̃si,j(d

e)

(32)

Suppose that the assumption (4) holds, then we have

〈Ts(f−1
y (y)),Γ

s
(dek)〉+

∑
i

log
Ai(d

e1)

Ai(dek)
= 〈T̃s(f̃−1

y (y)), Γ̃
s

(dek)〉+
∑
i

log
Ãi(d

e1)

Ãi(dek)
(33)

for all k ∈ [m], where Γ̄(d) = Γ(d)−Γ(de1). Denote b̃s(k) =
∑
i
Ãsi (d

e1)Asi (d
ek)

Ãsi (d
ek)Asi (d

e1)
for k ∈ [m], then

we have

Γ
s,>

Ts(f−1
y (y)) = Γ̃

s,>
T̃s(f̃−1

y (y)) + b̃s, (34)

Similarly, from Eq. (B.2) and Eq. (31), there exists b̃z, b̃s such that

Γ
s,>

Ts([fx]−1
S (x)) + Γ

z,>
Tz([fx]−1

Z (x)) = Γ̃
s,>

T̃s([f̃x]−1
S (x)) + Γ̃

z,>
T̃z([f̃x]−1

Z (x)) + b̃z + b̃s,
(35)

where b̃z(k) =
∑
i
Ãzi (de1)Azi (dek)

Ãzi (dek)Azi (de1)
for k ∈ [m]; and that,

Γ
s,>

Ts(f−1
y (y)) + Γ

z,>
Tz([f−1

x]Z(x)) = Γ̃
s,>

T̃s(f̃−1
y (y)) + Γ̃

z,>
T̃z([f̃−1

x]Z(x)) + b̃z + b̃s.
(36)

Substituting Eq. (34) to Eq. (35) and Eq. (36), we have that

Γ
z,>

Tz([f−1
x]Z(y)) = Γ̃

z,>
T̃z([f̃−1

x]Z(y)) + b̃z, Γ
s,>

Ts([f−1
x]S(y)) = Γ̃

s,>
T̃s([f̃−1

x]S(y)) + b̃s.
(37)

According to assumption (4), the Γ
s,>

and Γ
z,>

have full column rank. Therefore, we have that

Tz([f−1
x]Z(x)) =

(
Γ
z
Γ
z,>)−1

Γ̃
z,>

T̃z([f̃−1
x]Z(x)) +

(
Γ
z
Γ
z,>)−1

b̃z (38)

Ts([f−1
x]S(x)) =

(
Γ
s
Γ
s,>)−1

Γ̃
s,>

T̃s([f̃−1
x]S(x)) +

(
Γ
s
Γ
s,>)−1

b̃s. (39)

Ts(f−1
y (y)) =

(
Γ
s
Γ
s,>)−1

Γ̃
s,>

T̃s(f̃−1
y (y)) +

(
Γ
s
Γ
s,>)−1

b̃s. (40)

20

Denote Mz :=
(
Γ
z
Γ
z,>)−1

Γ̃
z,>

, Ms :=
(
Γ
s
Γ
s,>)−1

Γ̃
s,>

and as =
(
Γ
s
Γ
s,>)−1

b̃s, az =(
Γ
z
Γ
z,>)−1

b̃z . The left is to prove that Mz and Ms are invertible matrices. Denote x̄ = f−1(x).

Applying the [35, Lemma 3] we have that there exists ks points x̄1, ..., x̄ks , ˜̄x1, ..., ˜̄xkz such that(
(Ts)′i(x̄

1), ..., (Ts)′i(x̄
ks)
)

for each i ∈ [qs] and
(
(Tz)′i(˜̄x1, ..., (Tz)′i(˜̄xkz)

)
for each i ∈ [qt] are

linearly independent. By differentiating Eq. (38) and Eq. (39) for each x̄i with i ∈ [qs] and ˜̄xi with
i ∈ [qz] respectively, we have that(

JTs(x̄
1), ..., JTs(x̄

ks)
)

= Ms

(
JTs◦f̃−1

x ◦fx(x̄1), ..., JTs◦f̃−1
x ◦f (x̄ks)

)
(41)(

JTz (˜̄x1), ..., JTz (˜̄xkz)
)

= Mz

(
JTz◦f̃−1

x ◦fx(˜̄x1), ..., JTz◦f̃−1
x ◦fx(˜̄xkz)

)
. (42)

The linearly independence of
(
(Ts)′i(x̄

1), ..., (Ts)′i(x̄
ks)
)
,
(
(Tz)′i(˜̄x1, ..., (Tz)′i(˜̄xkz)

)
imply that

the
(
JTs(x̄

1), ..., JTs(x̄
ks)
)

and
(
JTz (˜̄x1), ..., JTz (˜̄xkz)

)
are invertible, which implies the invert-

ibility of matrix Ms and Mz . The rest is to prove pfy (y|[fx]−1
S (x)) = pf̃y (y|[f̃x]−1

S (x)). This can be
shown by applying Eq. (24) again. Specifically, according to Eq. (24), we have that∫

X
pεx(x− x̄)p(y|[fx]−1

S (x̄))pTs,Γs,Tz,Γz (f
−1(x̄)|de)volJf−1(x̄)dx̄

=

∫
X
pεx(x− x̄)p(y|[f̃x]−1

S (x̄))pTs,Γs,Tz,Γz (f̃
−1(x̄)|de)volJf̃−1(x̄)dx̄. (43)

Denote lTs,Γs,Tz,Γz,fy,fx,y(x) := pfy (y|[fx]−1
S (x̄))pTs,Γs,Tz,Γz (f

−1(x̄)|de)volJf−1
x

(x̄), we have∫
X
pεx(x− x̄)lTs,Γs,Tz,Γz,fy,fx,y(x̄)dx̄ =

∫
X
pεx(x− x̄)lT̃s,Γ̃s,T̃z,Γ̃z,f̃y,f̃x,y(x̄)dx̄ (44)

=⇒(lTs,Γs,Tz,Γz,fy,fx,y ∗ pεx)(x|de) = (lT̃s,Γ̃s,T̃z,Γ̃z,f̃y,f̃x,y ∗ pεx)(x|de) (45)

=⇒F [lT̃s,Γ̃s,T̃z,Γ̃z,f̃y,f̃x,y](ω)ϕεx(ω) = F [lTs,Γs,Tz,Γz,fy,fx,y](ω)ϕεx(ω) (46)

=⇒F [lTs,Γs,Tz,Γz,fy,fx,y](ω) = F [lT̃s,Γ̃s,T̃z,Γ̃z,f̃y,f̃x,y](ω) (47)

=⇒lTs,Γs,Tz,Γz,fy,fx,y(x) = lT̃s,Γ̃s,T̃z,Γ̃z,f̃y,f̃x,y(x) (48)

=⇒pfy (y|[fx]−1
S (x))pTs,Γs,Tz,Γz (f

−1(x)|de)volJf−1
x

(x)

= pf̃y (y|[f̃x]−1
S (x))pT̃s,Γ̃s,T̃z,Γ̃z (f̃

−1(x)|de)volJf̃−1
x

(x). (49)

Taking the log transformation on both sides of Eq. (49), we have that

log pfy (y|[fx]−1
S (x)) + log pTs,Γs,Tz,Γz (f

−1(x)|de) + log volJf−1
x

(x)

= log pf̃y (y|[f̃x]−1
S (x)) + log pT̃s,Γ̃s,T̃z,Γ̃z (f̃

−1(x)|de) + log volJf̃−1
x

(x). (50)

Subtracting Eq. (50) with y2 from Eq. (50) with y1, we have

pfy (y2|[fx]−1
S (x))

pfy (y1|[fx]−1
S (x))

=
pf̃y (y2|[f̃x]−1

S (x))

pf̃y (y1|[f̃x]−1
S (x))

(51)

=⇒
∫
Y

pfy (y2|[fx]−1
S (x))

pfy (y1|[fx]−1
S (x))

dy2 =

∫
Y

pf̃y (y2|[f̃x]−1
S (x))

pf̃y (y1|[f̃x]−1
S (x))

dy2 (52)

=⇒pfy (y1|[fx]−1
S (x)) = pf̃y (y1|[f̃x]−1

S (x)), (53)

for any y1 ∈ Y . This completes the proof.

The following theorem describes the identifiability result for non-independence case for S,Z.
Theorem B.6 (∼exp-identifiability). For θ in the LaCIM peθ(x, y) ∈ Pexp for any e ∈ Etrain with the
general exponential form of pTt,Γt

c,de
(t), i.e., pTt,Γt

c,de
(t) = exp(〈Tt(t),Γtc,de〉+B(t)−Atc,de)

(t = s, z), under the same assumptions with those in Thm. 4.4, we have that the parameters
θ := {fx, fy,Ts,Tz} are ∼exp identifiable.

Proof. The proof is the same to above with general form of Tt(t), Γtc,de , B(t) and Atc,de .

21

Understanding the assumption (4) in Theorem B.5 and B.6. Recall that we assume the D
in LaCIM is the source variable for generating data in corresponding domain. Here we also
use the D to denote the space of D, then we have the following theoretical conclusion that
the as long as the image set of D is not included in any sets with Lebesgue measure 0, the
assumption (4) holds. This conclusion means that the assumption (4) holds generically. For
more general conclusion of assumption (4) with

[
[Γtde2 − Γtde1]T, ..., [Γtdem − Γtde1]T

]T
replaced

by
[
[Γtc2,de1 − Γtc1,de1]T, ..., [ΓtcR,dem − Γtc1,de1]T

]T
, we have the similar conclusion with the set D

replaced by C ⊗ D.

Theorem B.7. Denote ht=s,z(d) :=
(

Γt1,1(d)− Γt1,1(de1), ...,Γtqt,kt(d)− Γt1,1(de1)
)>

, h(D) :=

hs(S) ⊕ hz(Z) ⊂ Rqz∗kz ⊕ Rqs∗ks , then assumption (4) holds if h(D) is not included in any
zero-measure set of Rqz∗kz ⊕ Rqs∗ks . Denote rs := qs ∗ ks and rz := qz ∗ kz .

Proof. With loss of generality, we assume that rs ≤ rz . Denote Q as the set of integers
q such that there exists de2 , ..., dq+1 that the rank([hz(de2), ..., hz(deq+1)]) = min(q, rz) and
rank([hs(de2), ..., hs(deq+1)]) = min(q, rs). Denote u := max(Q). We discuss two possible
cases for u, respectively:

• Case 1. u < rs ≤ rz . Then there exists de2 , ..., deu+1 s.t. hz(de2), ..., hz(deu+1)
and hs(de2), ..., hs(deu+1) are linearly independent. Then ∀c, we have hz(d) ∈
L(hz(de2), ..., hz(deu+1)) or hs(d) ∈ L(hs(de2), ..., hs(deu+1)). Therefore, so we have
hz(d) ⊕ hs(d) ∈ [L(hz(de2), ..., hz(deu+1))⊕ Rrs] ∪ [Rrz ⊕ L(hs(de2), ..., hs(deu+1))],
which has measure 0 in Rrz ⊕ Rrs .

• Case 2. rs ≤ u < rz . Then there exists de2 , ..., deu+1 s.t. hz(de2), ..., hz(deu+1) are
linearly independent and rank([hs(de1), ..., hs(deu)]) = rs. Then ∀c, we have hz(d) ∈
L(hz(de1), ..., hz(deu+1)), which means that hz(d)⊕hs(d) ∈ L(hz(de1), ..., hz(deu+1))⊕
Rrs , which has measure 0 in Rrz ⊕ Rrs .

The above two cases are contradict to the assumption that h(D) is not included in any zero-measure
set of Rrz ⊕ Rrs .

Lemma B.8. Consider the cases when ks ≥ 2. Then suppose the assumptions in theorem B.5 are
satisfied. Further assumed that

• The sufficient statistics Ts
i,j are twice differentiable for each i ∈ [qs] and j ∈ [ks].

• fy is twice differentiable.

Then we have Ms in theorem B.5 is block permutation matrix.

Proof. Directly applying [35, Theorem 2] with fx, A, b,T, x replaced by fy,Ms, as,T
s, y.

Lemma B.9. Consider the cases when ks = 1. Then suppose the assumptions in theorem B.5 are
satisfied. Further assumed that

• The sufficient statistics Ts
i are not monotonic for i ∈ [qs].

• g is smooth.

Then we have Ms in theorem B.5 is block permutation matrix.

Proof. Directly applying [35, Theorem 3] with fx, A, b,T, x replaced by fy,Ms, as,T
s, y.

Proof of Theorem B.6. According to theorem B.5, there exist invertible matrices Ms and Mz such
that

T(f−1
x (x)) = AT̃(f̃−1

x (x)) + b

Ts([f−1
x]S(x)) = MsT̃

s([f̃−1
x]S(x)) + as.

Ts(f−1
y (y)) = MsT̃

s(f̃−1
y (y)) + as,

22

where T = [Ts,>,Tz,>]>, and

A =

(
Ms 0
0 Mz

)
. (54)

By further assuming that the sufficient statistics Ts
i,j are twice differentiable for each i ∈ [qs] and

j ∈ [ks] for ks ≥ 2 and not monotonic for ks = 1. Then we have that Ms is block permutation
matrix. By further assuming that Tz

i,j are twice differentiable for each i ∈ [nz] and j ∈ [kz] for
kz ≥ 2 and not monotonic for kz = 1 and applying the lemma B.8 and B.9 respectively, we have that
A is block permutation matrix. Therefore, Mz is also a block permutation matrix.

Proof of Theorem 4.4. We consider the general case when C := ∪Rr=1{cr}r=[R]. We have that
R∑
r=1

pθ(x, y|cr) P(C=cr|de) =

R∑
r=1

pθ̃(x, y|cr) P(C=cR|de). (55)

The Eq. (B.2) for each e here can be replaced by
R∑
r=1

p(cr|de)p̃Ts,Γs,Tz,Γz,fx(x|cr) =

R∑
r=1

p̃(cr|de)p̃T̃s,Γ̃s,T̃z,Γ̃z,f̃x
(x|de). (56)

According to [2, Corollary 3], if we additionally assume that

{
(
Ts([f−1]S(x)),Tz([f−1]Z(x))

)
;B(x) > 0} contains a non-empty set,

then we have that the p(cr|de) = p̃(cr|de) for each r ∈ [R], e. In other words, the
L := [P (C|de1)T, ..., P (C|dem)T] can be identified. Let ∆ = [p̃Ts,Γs,Tz,Γz,fx(x|c1) −
p̃T̃s,Γ̃s,T̃z,Γ̃z,f̃x

(x|c1), · · · , p̃Ts,Γs,Tz,Γz,fx(x|cm) − p̃T̃s,Γ̃s,T̃z,Γ̃z,f̃x
(x|cm)]T, then the concante-

nation of Eq. (56) in a matrix form can be written as L∆ = 0. Since we have assumed in as-
sumption (5) theorem 4.4 that the L has full column rank, therefore we have that ∆ = 0, i.e.
p̃Ts,Γs,Tz,Γz,fx(x|cr) = p̃T̃s,Γ̃s,T̃z,Γ̃z,f̃x

(x|cr) for each r ∈ [R]. The left proof is the same with the
one in theorem B.6.

B.3 Proof of Theorem 4.5

Proof of Theorem 4.5. Due to Eq. (55), it is suffices to prove the conclusion for every cr ∈ {cr}r∈[R].
Motivated by [3, Theorem 2] that the distribution pe(s, z) defined on bounded set can be approxi-
mated by a sequence of exponential family with sufficient statistics denoted as polynomial terms,
therefore the Tt=s,z are twice differentiable hence satisfies the assumption (2) in theorem 4.4 and
assumption (1) in lemma B.8. Besides, the lemma 4 in [3] informs us that the KL divergence between
pθ0(s, z|cr) (θ0 := (fx, fy,T

z,T s,Γz0,Γ
s
0) and pθ1(s, z|cr) (θ1 := (fx, fy,T

z,T s,Γz1,Γ
s
1) (the

pθ0(s, z|cr), pθ1(s, z|cr) belong to exponential family with polynomial sufficient statistics terms) can
be bounded by the `2 norm of [(Γs(cr)−Γs1(cr))

>, (Γz0(cr)−Γz1(cr))
>]>. Therefore, ∀ε > 0, there

exists a open set of Γ(cr) such that the DKL(p(s, z|cr), pθ(s, z|cr)) < ε. Such an open set is with
non-zero Lebesgue measurement therefore can satisfy the assumption (4) in theorem 4.4, according
to result in theorem B.7. The left is to prove that for any p defined by a LaCIM following Def. 4.1,
there is a sequence of {pm}n ∈ Pexp such that the dPok(p, pn) → 0 that is equivalent to pn

d→ p.
For any A,B, we consider to prove that

In
∆
=

∣∣∣∣p(x ∈ A, y ∈ B|cr)− pn(x ∈ A, yn ∈ B|cr)
∣∣∣∣→ 0, (57)

where pn(x ∈ A, yn ∈ B|cr) =
∫
S
∫
Z p(x ∈ A|s, z)p(yn ∈ B|s)pn(s, z|cr)dsdz with

yn(i) =
exp((fy,i(s) + εy,i)/Tn)∑
i exp((fy,i(s) + εy,i)/Tn)

, i = 1, ..., k, (58)

for y ∈ Rk denoting the k-dimensional one-hot vector for categorical variable and εy,1,...,k are

Gumbel i.i.d. According to [44, Proposition 1] that the yn(i)
d→ y(i) with

p(y(i) = 1) =
exp(fy,i(s))∑
i exp((fy,i(s))

, as Tn → 0. (59)

23

As long as fy is smooth, we have that the p(yn|s) is continuous. We have that

In =
∣∣∣p(x ∈ A, y ∈ B|cr)− ∫

S×Z
p(x ∈ A|s, z)p(yn ∈ B|s)pn(s, z|cr)dsdz

∣∣∣
≤
∣∣∣p(x ∈ A, y ∈ B|cr)− p(x ∈ A, yn ∈ B|cr)∣∣∣

+
∣∣∣p(x ∈ A, yn ∈ B|cr)− ∫

S×Z
p(x ∈ A|s, z)p(yn ∈ B|s)pn(s, z|cr)dsdz

∣∣∣
=
∣∣∣ ∫
S×Z

p(x ∈ A|s, z) (p(y ∈ B|s)− p(yn ∈ B|s)) p(s, z|cr)dsdz
∣∣∣

+
∣∣∣ ∫
S×Z

p(x ∈ A|s, z)p(yn ∈ B|s) (p(s, z|cr)− pn(s, z|cr))
∣∣∣

≤
∣∣∣ ∫
Ms×Mz

p(x ∈ A|s, z) (p(y ∈ B|s)− p(yn ∈ B|s)) p(s, z|cr)dsdz
∣∣∣︸ ︷︷ ︸

In,1

+
∣∣∣ ∫

(Ms×Mz)cr
p(x ∈ A|s, z) (p(y ∈ B|s)− p(yn ∈ B|s)) p(s, z|cr)dsdz

∣∣∣︸ ︷︷ ︸
In,2

+
∣∣∣ ∫
Ms×Mz

p(x ∈ A|s, z)p(yn ∈ B|s) (p(s, z|cr)− pn(s, z|cr))
∣∣∣︸ ︷︷ ︸

In,3

+
∣∣∣ ∫

(Ms×Mz)cr
p(x ∈ A|s, z)p(yn ∈ B|s) (p(s, z|cr)− pn(s, z|cr))

∣∣∣︸ ︷︷ ︸
In,4

. (60)

For In,1, if y is itself additive model with y = fy(s) + εy, then we just set yn
d
= y, then we have

that In,1 = 0. Therefore, we only consider the case when y denotes the categorical variable with
softmax distribution, i.e., Eq. (59). ∀cr ∈ C := {c1, ..., cR} and ∀ε > 0, there exists M cr

s and M cr
z

such that p(s, z ∈ M cr
s ×M cr

z |cr) ≤ ε; Denote Ms
∆
= ∪mk=1M

cr
s and Mz

∆
= ∪mk=1M

cr
z , we have

that p(s, z ∈Ms ×Mz|c) ≤ 2ε for all cr ∈ C. Since ∀s1 ∈Ms, ∃Ns1 such that ∀n ≥ Ns1 , we have
that

∣∣∣p(y ∈ B|s1) − p(y ∈ B|s1)| ≤ ε from that yn
d→ y. Besides, there exists open set Os1 such

that ∀s ∈ Os1 and

∣∣∣p(y ∈ B|s1)− p(y ∈ B|s1)| ≤ ε,
∣∣∣p(yn ∈ B|s1)− p(yn ∈ B|s1)| ≤ ε.

Again, according to Heine–Borel theorem, there exists finite s, namely s1, ..., sl such that Ms ⊂
∪li=1O(si). Then there exists N ∆

= max{Ns1 , ..., Nsl} such that ∀n ≥ N , we have that

∣∣p(y ∈ B|s)− p(yn ∈ B|s)∣∣ ≤ 3ε, ∀s ∈Ms. (61)

Therefore, In,1 ≤
∫
Ms×Mz

3εp(x ∈ A|s, z)p(s, z|c)dsdz ≤ 3ε. Hence, In,1 → 0 as n → ∞.
Besides, we have that In,2 ≤

∫
Ms×Mz

2εp(s, z|cr)dsdz ≤ 2ε. Therefore, we have that
∣∣ ∫
S×Z p(x ∈

24

A|s, z) (p(y ∈ B|s)− p(yn ∈ B|s)) p(s, z|cr)dsdz
∣∣→ 0 as n→∞. For In,3, we have that

In,3 =

∣∣∣∣ ∫
Ms×Mz

p(x ∈ A|s, z)p(yn ∈ B|s)1(s, z ∈Ms ×Mz) (p(s, z|cr)− pn(s, z|cr)) dsdz
∣∣∣∣

≤
∣∣∣∣ ∫
Ms×Mz

p(x ∈ A|s, z)p(yn ∈ B|s)p(s, z|cr)
(

1

p(s, z ∈Ms ×Mz|cr)
− 1

)
dsdz

∣∣∣∣︸ ︷︷ ︸
In,3,1

+

∣∣∣∣ ∫
Ms×Mz

p(x ∈ A|s, z)p(yn ∈ B|s)p(s, z|cr)
(

1

p(s, z ∈Ms ×Mz|cr)
− 1

)
dsdz

∣∣∣∣︸ ︷︷ ︸
In,3,2

.

(62)

The In,3,1 ≤ ε
1−ε . Denote p̃(s, z|cr) := p(s,z|cr)1(s,z∈Ms×Mz)

p(s,z∈Ms×Mz|cr) , according to [3, Theorem 2], there
exists a sequence of pn(s, z|c) defined on a compact support Ms ×Mz such that ∀cr ∈ C, we have
that

pn(s, z|cr)
d→ p(s, z|cr).

Applying again the Heine–Borel theorem, we have that ∀ε, ∃N such that ∀n ≥ N , we have∣∣∣p̃(s, z|cr)− pn(s, z|cr)
∣∣∣ ≤ ε, (63)

which implies that In,3,2 → 0 as n→∞ combining with the fact that p(x, y|s, z) is continuous with
respect to s, z. For In,4, we have that

In,4 =

∣∣∣∣ ∫
Ms×Mz

p(x ∈ A|s, z)p(yn ∈ B|s)p(s, z|cr)
∣∣∣∣ ≤ ∣∣∣∣ ∫

Ms×Mz

p(s, z|cr)
∣∣∣∣ ≤ ε, (64)

where the first equality is from that the pn(s, z|cr) is defined on Ms ×Mz . Then we have that∣∣∣∣ ∫
S×Z

p(x ∈ A|s, z)p(yn ∈ B|s) (p(s, z|cr)− pn(s, z|cr))
∣∣∣∣→ 0, as n→∞. (65)

The proof is completed.

C Reparameterization for LaCIM

We provide an alternative training method to avoid parameterization of prior p(s, z|d̃e) to increase
the diversity of generative models in different environments. Specifically, motivated by [26] that any
distribution can be transformed to isotropic Gaussian with the density denoted by pGau, we have that
for any e ∈ Etrain, we have

pe(x, y) =

∫
S×Z

pfx(x|s, z)pfy (y|s)p(s, z|d̃e)dsdz

=

∫
S×Z

p(x|(ϕes)−1(s′), (ϕez)
−1(z′))p(y|ϕs(s′))p(s′, z′)ds′dz′,

with s′, z′ := ϕes(s), ϕ
e
z(z) ∼ N (0, I). We can then rewrite ELBO for LaCIM for environment e as:

Leθ,ψ,ϕe = Epe(x,y)

[
− log qeψ(y|x)

]
+ Epe(x,y)

[
−Eqeψ(s,z|x)

qψ(y|(ϕes)−1(s))

qeψ(y|x)
log

pθ((ϕ
e
s)
−1(s), (ϕez)

−1(z))p(s, z)

qeψ(s, z|x)

]
,

(66)

where p(s, z) denotes the density function of isotropic gaussian.

25

D More Related Works

D.1 Identifiability

Earlier works that identify the latent confounders rely on strong assumptions regarding the causal
structure, such as the linear model from latent to observed variable or ICA in which the latent compo-
nent are independent [66], or noise-free model [64, 12]. The [22, 31] extend to the Additive Noise
Model (ANM) and other causal discovery assumptions. Although the [41] relaxed the constraints
put on the causal structure, it required the latent noise is with small strength, which does not match
with many realistic scenarios, such as the structural MRI of Alzheimer’s Disease considered in our
experiment. The works which also based on the independent component analysis (ICA), i.e., the
latent variables are (conditionally) independent, include [12, 14]; recently, a series of works extend
the above results to deep nonlinear ICA [25, 27, 35, 36, 75]. However, these works require that the
value of confounder of these latent variables is fixed, which cannot explain the spurious correlation in
a single dataset. In contrast, our result incorporates these scenarios by assuming that each sample has
a specific value of the confounder.

D.2 Comparisons with data augmentation & architecture design

The goal of data augmentation [65] is increase the variety of the data distribution, such as geometrical
transformation [34, 73], flipping, style transfer [16], adversarial robustness [45]. On the other way
round, an alternative kind of approaches is to integrate into the model corresponding modules that
improve the robustness to some types of variations, such as [77, 47].

However, these techniques can only make effect because they are included in the training data for
neural network to memorize [79]; besides, the improvement is only limited to some specific types
of variation considered. As analyzed in [78, 39], the data augmentation trained with empirical
risk minimization or robust optimization [6] such as adversarial training [45, 58] can only achieve
robustness on interpolation (convex hull) rather than extrapolation of training environments.

D.3 Comparisons with existing works in domain adaptation

Apparently, the main difference lies in the problem setting that (i) the domain adaptation (DA) can
access the input data of the target domain while ours cannot; and (ii) our methods need multiple
training data while the DA only needs one source domain. For methodology, our LaCIM shares
insights but different from DA. Specifically, both methods assume some types of invariance that relate
the training domains to the target domain. For DA, one stream is to assume the same conditional
distribution shared between the source and the target domain, such as covariate shifts [23, 5, 33, 70]
in which P (Y |X) are assumed to be the same across domains, concept shifts [81] in which the
P (X|Y) is assumed to be invariant. Such an invariance is related to representation, such as Φ(X) in
[82] and P (Y |Φ(X)) in [50, 15, 46].

However, these assumptions are only distribution-level rather than the underlying causation which
takes the data-generating process into account. Taking the image classification again as an example,
our method first proposes a causal graph in which the latent factors are introduced as the explana-
tory/causal factor of the observed variables. These are supported by the framework of generative
model [35, 36, 37, 71] which has a natural connection with the causal graph [59] that the edge in the
causal graph reflects both the causal effect and also the generating process. Until now, perhaps the
most similar work to us is [56] and [75] which also need multiple training domains and get access to
a few samples in the target domain. Both works assume a similar causal graph with us but unlike our
LaCIM, they do not separate the latent factors which can not explain the spurious correlation learned
by supervised learning [28]. Besides, the multiple training datasets in [56] refer to intervened data
which may hard to obtain in some applications. We have verified in our experiments that explicitly
disentangle the latent variables into two parts can result in better generalization to new distribution
than mixing them together.

D.4 Comparisons with domain generalization

For domain generalization (DG), similar to the invariance assumption in DA, a series of works
proposed to align the representation Φ(X) that is assumed to be invariant across domains [42, 43, 49].

26

As discussed above, these methods lack the deep delving of the underlying causal structure and
preclude the variations of unseen domains.

Recently, a series of works leverage causal invariance to enable OOD generalization on unseen
domains, such as [29] which learns the representation that is domain-invariant. Notably, the Invariant
Causal Prediction [52] formulates the assumption in the definition of Structural Causal Model and
assumes that Y = XSβ

?
S + εY where εY satisfies Gaussian distribution and S denotes the subset of

covariates of X . The [55, 10] relaxes such an assumption by assuming the invariance of fy and noise
distribution εy in Y ← fy(XS , εy) which induces P (Y |XS). A similar assumption is also adopted
in [40]. However, these works causally related the output to the observed input, which may not hold
in many real applications in which the observed data is sensory-level, such as audio waves and pixels.
It has been discussed in [8, 7] that the causal factor should be high-level abstractions/concepts. The
[21] considers the style transfer setting in which each image is a linear combination of shape-related
variable and contextual-related variable, which respectively correspond to S and Z in our LaCIM in
which the nonlinear mechanism (rather than linear combination in [21]) is allowed. Besides, during
testing, our method can generalize to the OOD sample with interventions such as adversarial noise
and contextual intervention.

Recently, the most notable work is Invariant Risk Minimization [1], which will be discussed in detail
in the subsequent section.

D.5 Comparisons with Invariant Risk Minimization [1] and references therein

The Invariant Risk Minimization (IRM) [1] assumes the existence of invariant representation Φ(X)
that induces the optimal classifier for all domains, i.e., the E[Y |Pa(Y)] is domain-independent in
the formulation of SCM. Similar to our LaCIM, the Pa(Y) can refer to latent variables. Besides, to
identify the invariance and the optimal classifier, the training environments also need to be diverse
enough. As aforementioned, this assumption is almost necessary to differentiate the invariance
mechanism from the variant ones.

The difference of our LaCIM with IRM lies in two aspects: the definition of Y and the methodology.
For the label, the IRM defines it as the one obtained after the image (e.g., one label the “dog” based
on the image he/she observes); while the label Y is generated concurrently with X , that is, the
Y is dependent on the semantic features he/she observed. Consider the following scenario as an
illustration: the photographer takes an image X and records the label Y at the same time. Besides, in
terms of methodology, the theoretical claim of IRM only holds in linear case; in contrast, the fx, fy
are allowed to be nonlinear.

Some other works share a similar spirit with or based on IRM. The Risk-Extrapolation (REx)
[39] proposed to enforce the similar behavior of m classifiers with a variance of which proposed
as the regularization function. The work in [78] proposed a Quasi-distribution framework that
can incorporate empirical risk minimization, robust optimization, and REx. It can be concluded
that the robust optimization only generalizes the convex hull of training environments (defined
as interpolation) and the REx can generalize extrapolated combinations of training environments.
This work lacks a model of underlying causal structure, although it performs similarly to IRM
experimentally. Besides, the [74] proposed to unpool the training data into several domains with
different environments and leverages [1] to learn invariant information for the classifier. Recently, the
[4] also assumes the invariance to be generating mechanisms and can generalize the capability of
IRM when unobserved confounders exist. However, this work also lacks the analysis of identifiability
results.

E Implementation Details and More Experimental Results

All experiments are performed on a workstation with 8 RTX 2080 Ti GPUs. The workstation has
Intel(R) Xeon(R) E5-2699A v4 CPU and 256 GB RAM.

The code and data please refer to https://anonymous.4open.science/r/
dfe66206-90f9-4d3f-91b4-2dd8146a2aa2/. The datasets we used are all public and
widely applied for different tasks. Therefore, The data do not contain personally identifiable
information nor offensive content.

27

https://anonymous.4open.science/r/dfe66206-90f9-4d3f-91b4-2dd8146a2aa2/
https://anonymous.4open.science/r/dfe66206-90f9-4d3f-91b4-2dd8146a2aa2/

E.1 Simulation

Data Generation We set m = 5. We set qd = qs = qz = qy = 2 and qx = 4. For

each environment e ∈ [m] with m = 5, we generate 1000 samples De = {xi, yi}
i.i.d∼∫

pfx(x|s, z)pfy (y|s)p(s, z|c)p(c|de)dsdzdc. The de = (N (0, Iqd×qd) + 5 ∗ e) ∗ 2; the c|de ∼
N (de, I); the s, z|c ∼ N

(
µθ?s,z (s, z|c), σ

2
θ?s,z

(s, z|c)
)

with µθ?s,z = Aµs,z ∗c and log σθ?s,z = Aσs,z ∗c

(Aµs,z , Aσs,z are random matrices); the x|s, z ∼ N
(
µθ?x(x|s, z), σ2

θ?x
(x|s, z)

)
with µθ?s,z =

h(Aµ,3x ∗h(Aµ,2x ∗h(Aµ,2x ∗[s>, z>]>]))) and log σθ?s,z = h(Aσ,3x ∗h(Aσ,2x ∗h(Aσ,2x ∗[s>, z>]>]))) (h
is LeakyReLU activation function with slope = 0.5 and Aµ,i=1,2,3

x ,Aσ,i=1,2,3
x are random matrices);

the y|s is similarly to x|s, z with Aµ,i=1,2,3
x ,Aσ,i=1,2,3

x respectively replaced by Aµ,i=1,2,3
y ,Aσ,i=1,2,3

y .

Implementation Details We parameterize pθ(s, z|d̃e), qψ(s, z|x, y, d̃e), pθ(x|s, z) and pθ(y|s) as
3-layer MLP with the LeakyReLU activation function. The Adam with learning rate 5 × 10−4 is
implemented for optimization. We set the batch size as 512 and run for 2,000 iterations in each trial.

Visualization. As shown from the visualization of S is shown in Fig. 4, our LaCIM can identify the
causal factor S.

(a) pool-LaCIM (b) LaCIM (c) pθ?(s|D)

Figure 4: Estimated posterior by (a) pool-LaCIM; (b) LaCIM and (c) the ground-truth. As shown, the
LaCIM can identify the S (up to permutation and point-wise transformation), which validates the
Eq. (2) in theorem 4.4.

E.2 Implementation Details for Optimization over S,Z

Recall that we first optimize s∗, z∗ according to

s∗, z∗ = arg max
s,z

log pθ(x|s, z).

We first sample some initial points from each posterior distribution qeψ(s|x) and then optimize for
50 iterations. We using Adam as optimizer, with learning rate as 0.002 and weight decay 0.0002.
The Fig. 5 shows the optimization effect of one run in CMNIST. As shown, the test accuracy keeps
growing as iterates. For time saving, we chose to optimize for 50 iterations.

E.3 Implementations For Baseline

The networks of ERM contain two parts: (i) feature extractor, followed by (ii) classifier. The network
structure of the feature extractor and classifier for ERM is the same as that of our encoder and our
pθ(y|s). We adopt the same structure for IRM as ERM. DANN adopts the same structure of ERM and
an additional domain classifier which is the same as that of pθ(y|s). sVAE adopt the same structure
as LaCIM-d with the exception that the pθ(y|s) is replaced by pθ(y|z, s). MMD-AAE adopts the
same structure of encoder, decoder, and classifier as LaCIM, and an additional 2-layer MLP with
channel 256-256-dimz is used to extract latent z. The detailed number of parameters and channel
size on each dataset for each method are summarized in Tab. 7, 8.

E.4 Colored MNIST

Implementation details The network structure for inference model is composed of two parts, with
the first part shared among all environments and multiple branches corresponding to each environment
for the second part. The network structure of the first-part encoder is composed of four blocks, each

28

Figure 5: The optimization effect in CMNIST, starting from the point with initial sampling from
inference model q of each branch. As shown, the test accuracy increases as iterates.

block is the sequential of Convolutional Layer (Conv), Batch Normalization (BN), ReLU and max-
pooling with stride 2. The output number of feature map is accordingly 32, 64, 128, 256. The second
part network structure that output the mean and log-variance of S,Z is Conv-bn-ReLU(256) →
Adaptive (1)→ FC(256, 256)→ ReLU→ FC(256, qt=s,z) with FC stands for fully-connected layer.
The structure of ϕt=s,z in Eq. (66) is FC(qt, 256)→ ReLU→ FC(256, qt). The network structure for
generative model pθ(x|s, z) is the sequential of three modules: (i) Upsampling with stride 2; (ii) four
blocks of Transpose-Convolution (TConv), BN and ReLU with respective output dimension being
128, 64, 32, 16; (iii) Conv-BN-ReLU-Sigmoid with number of channels in the output as 3, followed
by cropping step in order to make the image with the same size as input dimension, i.e., 3× 28× 28.
The network structure for generative model pθ(y|s) is commposed of FC (512)→ BN→ ReLU→
FC (256)→ BN→ ReLU→ FC (|Y|). The qt=s,z is set to 32. We implement SGD as optimizer with
learning rate 0.5, weight decay 1e− 5 and we set batch size as 256. The total training epoch is 80.

We first explain why we do not flip y with 25% in the manuscript, and then provide further exploration
of our method for the setting with flipping y.

Invariant Causation v.s. Invariant Correlation by Flipping y in [1] The y is further flipped with
25% to obtain the final label in IRM setting and this step is omitted in ours. The difference lies in the
definition for the label Y and the invariance. Our LaCIM defines invariance as the causal relation
between S and the label Y , while the one in IRM can refer to correlation since randomly flipping Y
can break the relations between S and Y . As illustrated in Handwriting Sample Form in Fig. 6 in
[18], the generating direction should be Y → X . If we denote Ỹ as the flipped Y (a.k.a, the final
label in IRM), then there X ← Y ? → Ỹ . In this case, the Ỹ is correlated rather than causally related
to the digit X . For our LaCIM, the Y is generated by the causal semantic factor of X , hence will
capture the information from the digit.

Experiment with IRM setting We further conduct the experiment on IRM setting, with the final
label y defined by flipping the original label with 25%, and further color pe proportions of digits with
corresponding color-label mapping. If we assume the original ground-truth label to be the effect of
the digit number of S, then the anti-causal relation with Z and Y can make the identifiability of S
difficult in this flipping scenario. Note that the causal effect between S and Y is invariant across
domains, therefore we adopt to regularize the branch of inferring S to be shared among inference
models for multiple environments. Besides, we regularize the causal effect between S and Z to be
shared among different environments via pairwise regularization. The combined loss is formulated
as:

L̃ψ,θ = Lψ,θ +
γ

2m2

m∑
i=1

m∑
j=1

‖E(x,y)∼pei (x,y)[y|x]− E(x,y)∼pej (x,y)[y|x]‖22,

where γ > 0 denotes the regularization hyperparameter. The qeψ(s, z|x) in Eq. (66) factorized as
qψez (z)qψs(s) and ϕs shared among m environments. The appended loss is coincide with recent

29

Figure 6: Hand-writting Sample Form. The writer print the digit/character (i.e., X) with the label
(i.e., Y) provided first.

study Risk-Extropolation (REx) in [39], with the difference of separating causal factor S from others.
We name such a training method as LaCIM-REx. For implementation details, in addition to shared
encoder regarding S, we set learning rate as 0.1, weight decay as 0.0002, batch size as 256. we have
that p(y|x) =

∫
S qψs(s|x)pθ(y|ϕs(s)) for any x. We consider two settings: setting#1 with m2 and

pe1 = 0.9, pe2 = 0.8; and setting#2 with m = 4 with pe1 = 0.9, pe2 = 0.8, pe3 = 0.7, pe4 = 0.6.
We only report the number of IRM since the cross entropy performs poorly in both settings. As
shown in Tab. 2, our model performs comparably than IRM [1] due to separation of S znd Z.

E.5 NICO

Implementation Details Due to the size difference among images, we resize each image into
256×256. The network structure of pθ(z, s|d̃e), qψ(z, s|x, d̃e), pθ(x|z, s), pθ(y|s) for cat/dog clas-

30

Table 2: Accuracy (%) of Colored MNIST on IRM setting in [1]. Average over three runs.
IRM LaCIM-REx (Ours)

m = 2 67.15± 3.79 67.57± 1.37
m = 4 69.37± 1.14 69.50± 0.57

sification is the same with the one implemented in early prediction of Alzheimer’s Disease with
exception of 3D convolution/Deconvolution replaced by 2D ones. For each model, we train for 200
epochs using sgd, with the learning rate (lr) set to 0.01, and after every 60 epochs, the learning rate is
multiplied by lr decay parameter that is set to 0.2. The weight decay coefficients parameter is set to
5× 10−4. The batch size is set to 30. The training environments which are characterized by c can be
referenced in Tab. 3. For visualization, we implemented the gradient-based method [67] to visualize
the neuron (in a fully connected layer of CE x→ y and the s layer of LaCIM that is most correlated
to label y.

The D for m environments We summarize the D of m = 8 and m = 14 environments in Table 3.
Since the distribution of S,Z depends on D, we simply define D as the parameterization of S,Z.
In this context, such a parameterization refers to the proportions of (dog in grass, dog in snow;
cat in grass, cat in snow); therefore D ∈ R4. As shown, the value of D in the test domain is the
extrapolation of the training environments, i.e., the dtest is not included in the convex hull of {dei}14

i=1.

Table 3: Training and test environments (characterized by D)
cat% on grass dog% on grass cat% on snow cat% on snow

Training Environment

Env#1 (de1) 0.6 0.4 0.1 0.9
Env#2 (de2) 0.8 0.2 0.1 0.9
Env#3 (de3) 0.5 0.5 0.2 0.8
Env#4 (de4) 0.8 0.2 0.2 0.8
Env#5 (de5) 0.7 0.3 0.2 0.8
Env#6 (de6) 0.8 0.2 0.3 0.7
Env#7 (de7) 0.7 0.3 0.3 0.7
Env#8 (de8) 0.9 0.1 0.3 0.7
Env#9 (de9) 0.4 0.6 0.3 0.7
Env#10 (de10) 0.6 0.4 0.3 0.7
Env#11 (de11) 0.5 0.5 0.4 0.6
Env#12 (de12) 0.4 0.6 0.4 0.6
Env#13 (de13) 0.7 0.3 0.4 0.6
Env#14 (de14) 0.8 0.2 0.4 0.6

Testing Environment

Env Test dtest 0.2 0.8 0.8 0.2

More Visualization Results Fig. 7 shows more visualization results.

Results on Intervened Data. We test the robustness of our model on intervened data generated from
NICO. Each image is generated from a paired image (image A, image B): combining the scene of
image A with the animal from image B. This is equivalent to intervention on the latent space. We
generate 120 images. As shown in Tab 4, our LaCIM can outperform others.

Table 4: ACC on intervened dataset from NICO.
Method IRM DANN NCBB

ACC 50.00 49.17 49.17
Method MMD-AAE DIVA LaCIM (Ours)

ACC 49.17 50.00 55.00

Generation of Intervened Data. For generating an intervened sample, we replace the scene of an
image with the scene from another image, as shown in Fig. 8. This process can be viewed as breaking

31

(a) Cat on grass (b) Cat on snow

(c) Dog on grass (d) Dog on snow

Figure 7: Visualization on the NICO via gradient-based method [67] for ERM and LaCIM. The
selected images are (a) cat on grass, (b) cat on snow, (c) dog on grass and (d) dog on snow.

the dependency between Z and Z. We generate 120 images, including 30 images of types: cat on
grass, dog on grass, cat on snow, and dog on grass.

E.6 ADNI

Dataset Description. The dataset contains in total 317 samples with 48 AD, 75 NC, and 194 MCI.

32

Figure 8: The constructed interventional dataset which includes of dog on snow, dog on grass, cat on
snow, and dog on grass.

Denotation of Attributes D. The D ∈ R9 includes personal attributes (e.g., age [19], gender [76]
and education years [48] that play as potential risks of AD), gene (ε4 allele), and biomarkers (e.g.,
changes of CSF, TAU, PTAU, amyloidβ , cortical amyloid deposition (AV45) [24]).

Implementation Details The S,Z ∈ R64. For the shared part of qψ(s, z|x, d̃e), we concatenate
outputs of feature extractors of X and d̃e: the feature extractor for x is composed of four Convolution-
Batch Normalization-ReLU (CBNR) blocks and four Convolution-Batch Normalization-ReLU-
MaxPooling (CBNR-MP) blocks with structure 64 BNR→ 128 CBNR-MP→ 128 CBNR→ 256
CBNR-MP→ 256 CBNR→ 512 CBNR-MP→ 512 CBNR→ 1024 CBNR-MP; the feature extractor
of d̃e is composed of three Fully Connection-Batch Normalization-ReLU (FC-BNR) blocks with
structure 128 → 256 → 512. for the part specific to each domain, µs,z(x, d) and log σs,z(x, d)
are generated by the sub-network which is composed of 1024 FC-BNR→ 1024 FC-BNR→ qz,s
FC-BNR. The z, s can be reparameterized by µs,z(x, d) and log σs,z(x, d) are fed into a sub-network
which is composed of qz,s FC-BNR→ 1024 FC-BNR→ qz,s FC-BNR to get rid of the constraint of
Gaussian distribution. For the prior model pθ(s, z|d̃e), it shares the same structure without feature
extractor of x. For pθ(x|s, z), the network is composed of three DeConvolution-Batch Normalization-
ReLU (DCBNR) blocks and three Convolution-Batch Normalization-ReLU (CBNR) blocks, followed
by a convolutional layer, with structure 256 DCBNR→ 256 CBNR→ 128 DCBNR→ 128 CBNR
→ 64 DCBNR→ 64 CBNR→ 48 Conv. For pθ(y|s), the network is composed of 256 FC-BNR→
512 FC-BNR→ 3 FC-BNR. For prior model pθ(s, z|d̃e)N (µs,z(d̃

e),diag(σ2
s,z(d̃

e))) the µs,z(x, d̃e)
and log σs,z(x, d̃

e) are parameterized by Multi Perceptron Neural Network (MLP). The decoders
pθ(x|s, z) are pθ(y|s) parameterized by Deconvolutional neural network. For all methods, we train
for 200 epochs using SGD with weight decay 2× 10−4 and learning rate 0.01 and is multiplied by
0.2 after every 60 epochs. The batch size is set to 4.

The D variable in training and test. The selected attributes include Education Years, Age, Gender
(0 denotes male and 1 denotes female), AV45, amyloidβ , and TAU. We split the data into m = 2
training environments and test according to different values of D. The Tab. 5 describes the data
distribution in terms of the number of samples, the value of D (Age and TAU).

33

Table 5: Training and test environments (characterized by c) in early prediction of AD
Training Env#1 Training Env#1 Test

Age

Number of AD 17 17 14
Number of MCI 76 83 35
Number of NC 34 27 14

Average value of d (years): 68.75 72.78 81.74

TAU
Number of AD 11 22 15
Number of MCI 75 78 41
Number of NC 40 27 18

Average value of d: 215.34 286.69 471.72

E.7 Robustness on Security

We consider the DeepFake-related security problem, which targets on detecting small perturbed fake
images that can spread fake news. The [57] provides FaceForensics++ dataset from 1000 Youtube
videos for training and 1,000 benchmark images from other sources for testing. We split the train data
into m = 2 environments according to video ID. The considerable result in Tab. 6 verifies potential
value on security.

Implementation Details. We implement data augmentations, specifically images with 30 angle
rotation, with flipping horizontally with 50% probability. We additionally apply random compressing
techniques, such as JpegCompression. For inference model, we adopt Efficient-B5 [72], with the
detailed network structure as: FC(2048, 2048)→ BN→ ReLU→ FC(2048, 2048)→ BN→ ReLU
→ FC(2048, qt=s,z). The structure of reparameterization, i.e., ϕt=s,z is FC(qt=s,z , 2048)→ BN
→ ReLU → FC(2048, 2048) → BN → ReLU → FC(2048, qt=s,z). The network structure for
generative model, i.e., pψ(x|s, z) is TConv-BN-ReLU(qt=s,z , 256)→ TConv-BN-ReLU(256, 128)
→ TConv-BN-ReLU(128, 64)→ TConv-BN-ReLU(64, 32)→ TConv-BN-ReLU(32, 32)→ TConv-
BN-ReLU(32, 16)→ TConv-BN-ReLU(16, 16)→ Conv-BN-ReLU(16, 3)→ Sigmoid, followed by
cropping the image to the same size 3× 224× 224. We set qt=s,z as 1024. We implement SGD as
optimizer, with learning rate 0.02, weight decay 0.00005, and run for 9 epochs.

Table 6: Accuracy (%) of robustness on FaceForensics++. Average over three runs.
ERM IRM LaCIM (Ours)

82.8± 0.99 83.4± 0.59 84.47± 0.90

E.8 Network Structure

34

Ta
bl

e
7:

G
en

er
al

fr
am

ew
or

k
ta

bl
e

fo
ro

ur
m

et
ho

d
an

d
ba

se
lin

es
on

D
a
ta
∈
{C

M
N

IS
T
,N

IC
O
,A

D
N

I,
D

ee
pF

ak
e}

D
at

as
et

.W
e

de
no

te
th

e
di

m
en

si
on

of
z

or
s

as
di

m
z
,s

.W
e

lis
tt

he
ou

tp
ut

di
m

en
si

on
(e

.g
.t

he
ch

an
ne

ln
um

be
r)

of
ea

ch
m

od
ul

e,
if

it
is

di
ff

er
en

tf
ro

m
th

e
on

e
in

Ta
b.

8.

D
at

as
et

M
et

ho
d

E
R

M
M

M
D

-A
A

E
D

A
N

N
D

IV
A

L
aC

IM

D
a
ta

:C
M

N
IS

T
E

nc
D

a
t
a

x
FC

(2
56

,d
im
z

)
D

ec
-C

E
D

a
t
a

y

E
nc

D
a
t
a

x
FC

-B
N

-R
eL

U
(2

56
,2

56
)

FC
(2

56
,2

56
)→

z

D
ec

D
a
t
a

y
;D

ec
D

a
t
a

x

E
nc

D
a
t
a

x
D

A
N

N
-C

L
SD

a
t
a

y
;D

A
N

N
-C

L
SD

a
t
a

y

p
D

a
t
a

θ
(x
|z
d
,
z
x
,
z
y

)

p
D

a
t
a

θ
d

(z
d
|d

)

p
D

a
t
a

θ
y

(z
y
|y

)

q
D

a
t
a

φ
d

(z
d
|x

)

q
D

a
t
a

φ
x

(z
x
|x

)

q
D

a
t
a

φ
y

(z
y
|x

)

E
nc

D
a
t
a

x
E

nc
D

a
t
a

z
,s
×

m

Φ
D

a
t
a

z
,s
×

m

D
ec

D
a
t
a

y
;D

ec
D

a
t
a

x

#
of

Pa
ra

m
s

1.
12

M
1.

23
M

1.
1M

1.
69

M
0.

92
M

hy
pe

r-
Pa

ra
m

s
lr

:0
.1

w
d:

0.
00

00
5

lr
:0

.0
1

w
d:

0.
00

01
lr

:0
.1

w
d:

0.
00

02
lr

:0
.0

01
w

d:
0.

00
00

1
lr

:0
.0

1
w

d:
0.

00
02

D
a
ta

:
N

I
C
O

E
nc

D
a
t
a

x
FC

(1
02

4,
di

m
z

)
D

ec
-C

E
D

a
t
a

y

E
nc

D
a
t
a

x
FC

-B
N

-R
eL

U
(1

02
4,

10
24

)
FC

(1
02

4,
10

24
)→

z

D
ec

D
a
t
a

y
;D

ec
D

a
t
a

x

E
nc

D
a
t
a

x
D

A
N

N
-C

L
SD

a
t
a

y
;D

A
N

N
-C

L
SD

a
t
a

y

p
D

a
t
a

θ
(x
|z
d
,
z
x
,
z
y

)

p
D

a
t
a

θ
d

(z
d
|d

)

p
D

a
t
a

θ
y

(z
y
|y

)

q
D

a
t
a

φ
d

(z
d
|x

)

q
D

a
t
a

φ
x

(z
x
|x

)

q
D

a
t
a

φ
y

(z
y
|x

)

E
nc

D
a
t
a

x
E

nc
D

a
t
a

z
,s
×

m

Φ
D

a
t
a

z
,s
×

m

D
ec

D
a
t
a

y
;D

ec
D

a
t
a

x

#
of

Pa
ra

m
s

(m
=

8
)

18
.0

8M
19

.7
0M

19
.1

3M
14

.8
6M

18
.2

5M
#

of
Pa

ra
m

s
(m

=
1
4

)
18

.0
8M

19
.7

0M
26

.4
9M

14
.8

7M
19

.7
0M

hy
pe

r-
Pa

ra
m

s
lr

:0
.0

1
w

d:
0.

00
02

lr
:0

.2
w

d:
0.

00
01

lr
:0

.0
5

w
d:

0.
00

05
lr

:0
.0

01
w

d:
0.

00
01

lr
:0

.0
1

w
d:

0.
00

01

D
a
ta

:A
D

N
I

E
nc

D
a
t
a

x
FC

(1
02

4,
di

m
z

)
D

ec
-C

E
D

a
t
a

y

E
nc

D
a
t
a

x
FC

-B
N

-R
eL

U
(1

02
4,

10
24

)
FC

(1
02

4,
10

24
)→

z

D
ec

D
a
t
a

y
;D

ec
D

a
t
a

x

E
nc

D
a
t
a

x
D

A
N

N
-C

L
SD

a
t
a

y
;D

A
N

N
-C

L
SD

a
t
a

y

p
D

a
t
a

θ
(x
|z
d
,
z
x
,
z
y

)

p
D

a
t
a

θ
d

(z
d
|d

)

p
D

a
t
a

θ
y

(z
y
|y

)

q
D

a
t
a

φ
d

(z
d
|x

)

q
D

a
t
a

φ
x

(z
x
|x

)

q
D

a
t
a

φ
y

(z
y
|x

)

E
nc

D
a
t
a

x
E

nc
D

a
t
a

z
,s
×

m

Φ
D

a
t
a

z
,s
×

m

D
ec

D
a
t
a

y
;D

ec
D

a
t
a

x

#
of

Pa
ra

m
s

28
.2

7M
36

.6
8M

30
.2

1M
33

.2
2M

37
.7

8M

hy
pe

r-
Pa

ra
m

s
lr

:0
.0

1
w

d:
0.

00
02

lr
:0

.0
05

w
d:

0.
00

02
lr

:0
.0

1
w

d:
0.

00
02

lr
:0

.0
05

w
d:

0.
00

01
lr

:0
.0

1
w

d:
0.

00
02

35

Table 8: Network Structure of Modules used in our method and baselines.
Method CMNIST NICO ADNI

EncData
x

Conv-BN-ReLU(diminput,64,3,1,1)
MaxPool(2)

Conv-BN-ReLU(64,128,3,1,1)
MaxPool(2)

Conv-BN-ReLU(128,256,3,1,1)
MaxPool(2)

Conv-BN-ReLU(256,256,3,1,1)
AdaptivePool(1)

Flatten()

Conv-BN-ReLU(diminput,128,3,1,1)
Conv-BN-ReLU(128,256,3,2,0)

MaxPool(2)
Conv-BN-ReLU(256,256,3,1,1)
Conv-BN-ReLU(256,512,3,1,1)

MaxPool(2)
Conv-BN-ReLU(512,512,3,1,1)
Conv-BN-ReLU(512,512,3,1,1)

MaxPool(2)
Conv-BN-ReLU(512,512,3,1,1)

Conv-BN-ReLU(512,1024,3,1,1)
AdaptivePool(1)

Flatten()

Conv3d-BN-ReLU(diminput,128,3,1,1)
Conv3d-BN-ReLU(128,256,3,2,0)

MaxPool(2)
Conv3d-BN-ReLU(256,256,3,1,1)
Conv3d-BN-ReLU(256,512,3,1,1)

MaxPool(2)
Conv3d-BN-ReLU(512,512,3,1,1)
Conv3d-BN-ReLU(512,512,3,1,1)

MaxPool(2)
Conv3d-BN-ReLU(512,512,3,1,1)
Conv3d-BN-ReLU(512,1024,3,1,1)

AdaptivePool(1)
Flatten()

DecData
x

UnFlatten()
Upsample(2)

Tconv-BN-ReLU(diminput,128,2,2,0)
Tconv-BN-ReLU(128,64,2,2,0)
Tconv-BN-ReLU(64,32,2,2,0)
Tconv-BN-ReLU(32,16,2,2,0)

Conv(16,3,3,1,1)
Sigmoid()

Cropping(28)

UnFlatten()
Upsample(16)

Tconv-BN-ReLU(diminput,256,2,2,0)
Conv-BN-ReLU(256,256,3,1,1)
Tconv-BN-ReLU(256,128,2,2,0)
Conv-BN-ReLU(128,128,3,1,1)
Tconv-BN-ReLU(128,64,2,2,0)
Conv-BN-ReLU(64,64,3,1,1)
Tconv-BN-ReLU(64,32,2,2,0)
Conv-BN-ReLU(32,32,3,1,1)

Conv(32,3,3,1,1)
Sigmoid()

UnFlatten()
Upsample(6)

Tconv3d-BN-ReLU(diminput,256,2,2,0)
Conv3d-BN-ReLU(256,256,3,1,1)
Tconv3d-BN-ReLU(256,128,2,2,0)
Conv3d-BN-ReLU(128,128,3,1,1)
Tconv3d-BN-ReLU(128,64,2,2,0)
Conv3d-BN-ReLU(64,64,3,1,1)
Tconv3d-BN-ReLU(64,64,2,2,0)
Conv3d-BN-ReLU(64,64,3,1,1)

Conv3d(64,1,3,1,1)
Sigmoid()

EncData
d

FC-BN-ReLU(d, 128)
FC-BN-ReLU(128, 256)

FC-BN-ReLU(d, 256)
FC-BN-ReLU(256, 512)
FC-BN-ReLU(512, 512)

FC-BN-ReLU(d, 256)
FC-BN-ReLU(256, 512)
FC-BN-ReLU(512, 512)

DecData
y

FC-BN-ReLU(dimz,s, 512)
FC-BN-ReLU(512, 256)

FC(256,2)

FC-BN-ReLU(dimz,s, 512)
FC-BN-ReLU(512, 256)

FC(256,2)

FC-BN-ReLU(dimz,s, 512)
FC-BN-ReLU(512, 256)

FC(256,2)

Dec-CEData
y

FC-BN-ReLU(dimz,s, 512)
FC-BN-ReLU(512, 256)

FC(256,2)

FC-BN-ReLU(dimz,s, 1024)
FC-BN-ReLU(1024, 2048)

FC(2048,2)

FC-BN-ReLU(dimz,s, 512)
FC-BN-ReLU(512, 256)

FC(256,2)

DANN-CLSData
y

FC-BN-ReLU(256, 32)
FC-BN-ReLU(32, 2)

FC-BN-ReLU(1024, 2048)
FC-BN-ReLU(2048, 2)

FC-BN-ReLU(1024, 1024)
FC-BN-ReLU(1024, 2)

ΦData
z,s

FC-ReLU(dimz,s, 256)
FC-ReLU(256, dimz,s)

FC-ReLU(dimz,s, 1024)
FC-ReLU(1024, dimz,s)

FC-ReLU(dimz,s, 1024)
FC-ReLU(1024, dimz,s)

EncData
z,s

FC-ReLU(256, 256)
FC-ReLU(256, dimz,s)

FC-ReLU(1024, 1024)
FC-ReLU(1024, dimz,s)

FC-ReLU(1024, 1024)
FC-ReLU(1024, dimz,s)

pData
θ (x|zd, zx, zy)

FC-BN-ReLU(1024)
UnFlatten()

Upsample(8)
TConv-BN-ReLU(64,128,5,1,0)

Upsample(24)
TConv-BN-ReLU(128,256,5,1,0)

Conv(256, 256*3,1,1,0)

FC-BN-ReLU(1024)
UnFlatten()

Upsample(16)
TConv-BN-ReLU(64,128,5,1,0)

Upsample(64)
TConv-BN-ReLU(128,256,5,1,0)

Upsample(256)
Conv(256, 3,1,1,0)

FC-BN-ReLU(1024)
UnFlatten()

Upsample(8)
TConv3d-BN-ReLU(16,64,5,1,0)
Conv3d-BN-ReLU(64,128,3,1,1)

Upsample(24)
TConv3d-BN-ReLU(128,128,5,1,0)
Conv3d-BN-ReLU(128,128,3,1,1)

Upsample(48)
Conv3d-BN-ReLU(128,32,3,1,1)

Conv3d(32, 1,1,1,0)
pData
θd

(zd|d)

pData
θy

(zy|y)
FC-BN-ReLU(dimd,y , 64)

FC(64,64); FC(64,64)
FC-BN-ReLU(dimd,y , 64)

FC(64,64); FC(64,64)
FC-BN-ReLU(dimd,y , 64)

FC(64,64); FC(64,64)

qData
φd

(zd|x)

qData
φx

(zx|x)

qData
φy

(zy|x)

Conv-BN-ReLU(3,32,5,1,0)
MaxPool(2)

Conv-BN-ReLU(32,64,5,1,0)
MaxPool(2)

Flatten()
FC(1024, 64); FC(1024, 64) Data

Conv-BN-ReLU(3,32,3,2,1)
MaxPool(2)

Conv-BN-ReLU(32,64,3,2,1)
MaxPool(2)

Conv-BN-ReLU(64,64,3,2,1)
MaxPool(2)

Flatten()
FC(1024, 64); FC(1024, 64) Data

Conv3d-BN-ReLU(1,64,3,2,1)
Conv3d-BN-ReLU(64,128,3,1,1)

MaxPool(3)
Conv3d-BN-ReLU(128,256,3,1,1)
Conv3d-BN-ReLU(256,256,3,1,1)

MaxPool(2)
Conv3d-BN-ReLU(256,256,3,1,1)
Conv3d-BN-ReLU(256,128,3,1,1)

MaxPool(2)
Flatten()

FC(1024, 64); FC(1024, 64) Data

36

	O.O.D Generalization error Bound
	Proof of Identifiability
	Proof of the Equivalence of Definition 4.3
	Proof of Theorem 4.4
	Proof of Theorem 4.5

	Reparameterization for LaCIM
	More Related Works
	Identifiability
	Comparisons with data augmentation & architecture design
	Comparisons with existing works in domain adaptation
	Comparisons with domain generalization
	Comparisons with Invariant Risk Minimization arjovsky2019invariant and references therein

	Implementation Details and More Experimental Results
	Simulation
	Implementation Details for Optimization over S,Z
	Implementations For Baseline
	Colored MNIST
	NICO
	ADNI
	Robustness on Security
	Network Structure

