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Supplementary Information

1 The dynamics of the bump heights and positions

In this section, using the projection method, we derive the dynamics of the bump heights Au(t) and
Av(t), and the dynamics of the bump positions z(t) and s(t).

1.1 The dynamics of Au and Av

The dynamics of the CANN with SFA is expressed as,

τ
∂U (x, t)

∂t
= −U (x, t) + ρ

∫
x′
J (x,x′) r (x′, t) dx′ − V (x, t) + σUξU (x, t) , (1)

τv
∂V (x, t)

∂t
= −V (x, t) + [m+ σmξm(x, t)]U (x, t) , (2)

r (x, t) =
U2(x, t)

1 + kρ
∫
x′ U2 (x′, t) dx′

. (3)

As stated in the main text, the presumed network state have the following form,

U (x, t) = Au(t) exp

{
− [x− z(t)]

2

4a2

}
, (4)

r (x, t) = Ar(t) exp

{
− [x− z(t)]

2

2a2

}
, (5)

V (x, t) = Av(t) exp

{
− [x− (z(t)− s(t))]

2

4a2

}
. (6)

The dynamics of the CANN is dominated by a few motion modes [1]. This motivates us to simplify
the analysis by projecting the network dynamics onto these motion modes. In the current study, we
adopt the first two dominating motion modes, with one the bump height mode and the other the bump
position mode, which are,

u0(x|z) =
1

a
√

2π
exp

{
− [x− z(t)]2

4a2

}
, (7)

u1(x|z) =
1

a2
√

2π
[x− z(t)] exp

{
− [x− z(t)]2

4a2

}
. (8)

In the following, we will mainly focus on the derivation of the dynamics of Au, as the derivation of
Av is similar. Before carrying out the projection method, we first substitute the presumed network
state (Eq. (4-6)) into the CANN dynamics (Eq. (1)), which gives the expression of Au (to prevent the
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wrapping of expressions, we show the results of left side and right side respectively),

l − side = τ exp

[
− (x− z)2

4a2

]
dAu
dt

+ τ
Au(x− z)

2a2
exp

[
− (x− z)2

4a2

]
dz

dt
, (9)

r − side =

(
−Au +

ρJ0Ar
2

)
exp

[
− (x− z)2

4a2

]
−Av exp

[
− (x− z + s)2

4a2

]
+σUξU (x, t) . (10)

As mentioned in the main text, projecting a function f(x) onto a mode u(x) equals to computing∫
x
f(x)u(x)dx/

∫
x
u2(x)dx. Therefore, by projecting both sides onto the motion mode u0(x|z), we

obtain,

l − side = τ2πa2
dAu
dt

+
τAu
2a2

dz

dt

∫ ∞
−∞

dx(x− z) exp

[
− (x− z)2

2a2

]
, (11)

r − side =

(
−Au +

ρJ0
2
Ar

)
2πa2 −Av exp

[
− s2

8a2

]
2πa2 +

√
2πaσUξU,0. (12)

Note that the part inside the integral in Eq. (11) is an odd function which integrates to zero. Intuitively,
this odd function can be regard as the variation of the bump position along the dimension of the bump
height, which are orthogonal to each other. In other words, this term has no effect on the dynamics of
Au. Thus, by equating both sides, we obtain,

τ
dAu
dt

=

(
−Au +

ρJ0
2
Ar

)
−Av exp

[
− s2

8a2

]
+

1√
2πa

σUξU,0, (13)

where ξU,0 is obtained by projecting the noise term ξU onto the motion mode u0(x|z). More
concretely, the newly defined noise term is given by,

ξU,0(t) =

∫
x

ξU (x, t)u0(x|z)dx. (14)

It is straightforward to check that

〈ξU,0(t)〉 =

∫
x

〈ξU (x, t)〉u0(x|z)dx = 0, (15)

〈ξU,0(t)ξU,0(t′)〉 =

∫
x

dx

∫
x′

dx′〈ξU (x, t)ξU (x′, t′)〉u0(x|z)u0(x|z)

= δ(t− t′), (16)
with δ is a Dirac delta function. Eqs. (15&16) imply that the newly defined noise term ξU,0 is still a
Gaussian white noise with zero mean and unit variance, as stated in the main text.

Furthermore, the previous work [2] has shown that, without noises, the separation s(t) between
U(x, t) and V (x, t) has a stationary solution, which is expressed as s2 = a2(1 −

√
m/(τ/τv)).

This implies that, as long as the SFA strength is set around the travelling wave boundary τ/τv , then
s2 � a2 always holds (Fig. 1A), which means that s2/a2 ≈ 0. Therefore, Eq. (13) can be further
simplified as,

τ
dAu
dt

= −Au −Av +
J0ρAr

2
+

σU

a
√

2π
ξU,0(t), (17)

which corresponds to Eq. (10) in the main text.

To obtain the dynamics of Av, we substitute the presumed network state (Eq. (4-6)) into the SFA
dynamics (Eq. (2)), which gives,

l − side = τv exp

[
(x− z + s)2

4a2

]
dAv
dt

+ τv
Av(z− x− s)

2a2
exp

[
(x− z + s)2

4a2

]
dz− ds

dt
,

(18)

r − side = −τvAv exp

[
(x− z + s)2

4a2

]
+ [m+ σmξm(x, t)]Au exp

[
(x− z)2

4a2

]
. (19)

Similarly, we project both sides onto the motion mode u0(x|z), and obtain the dynamics of Av ,

τv
dAv
dt

= −Av +mAu +
σmAu
2a
√
π
ξm,0(t), (20)

which corresponds to Eq. (11) in the main text. Here, ξm,0 is also a Gaussian white noise with zero
mean and unit variance.
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Figure 1: (A) Simulation results confirm that the amplitude of s is much smaller than a. (B) The KL
divergences between the conditional distribution p(s(t0 + δt)|s(t0)) and the stationary distribution
pst(s) with different values of µ. They decay exponentially to the stationary values with a rate of
O
(

exp (−µδt/τv)
)
.

1.2 The dynamics of z(t) and s(t)

We only present the derivation of the dynamics of z(t), as the case for s(t) is similar.

Projecting both sides the network dynamics (Eq. (9&10)) onto the motion mode u1(x|z), we obtain,

l − side = τπa2Au
dz

dt
+ τ

dAu
dt

∫ ∞
−∞

dx(x− z) exp

[
− (x− z)2

2a2

]
, (21)

r − side = πa2Avs exp

[
− s2

8a2

]
+ a2
√

2πσUξU,1(t). (22)

Note that the part inside the integral in Eq. (21) is also an odd function which integrates to zero. Thus,
by equating both sides and utilizing the fact that s2/a2 ≈ 0, we obtain,

τ
dz

dt
=
Av
Au

s +

√
2

π

σU
Au

ξU,1(t), (23)

which corresponds to Eq. (12) in the main text. Here, ξU,1 is obtained by projecting the noise term
ξU to the motion mode u1(x|z), i.e.,

ξU,1(t) =

∫
x

ξU (x, t)u1(x|z)dx. (24)

It is straightforward to check that

〈ξU,1(t)〉 =

∫
x

〈ξU (x, t)〉u0(x|z)dx = 0, (25)

〈ξU,1(t)ξU,1(t′)〉 =

∫
x

dx

∫
x′

dx′〈ξU (x, t)ξU (x′, t′)〉u1(x|z)u1(x|z)

= δ(t− t′). (26)

This indicates that the newly defined noise term ξU,1 is still a Gaussian white noise with zero mean
and unit variance, as stated in the main text.

Similarly, we can obtain the dynamics of s(t) by projecting Eq.(18-19) onto u1(x|z), which gives,

τv
ds

dt
=

(
τvAv
τAu

− mAu
Av

− σmAuξm,0
2Av
√
πa

)
s +

τvσU
τAu

√
2

π
ξU,1 −

σmAu
Av

√
1

2π
ξm,1. (27)

This corresponds to Eq. (13) in the main text. Here, ξm,1 is also a Gaussian white noise with zero
mean and unit variance.
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2 The stationary distribution of s(t)

In this section, we present the detailed derivation of the stationary distribution of s(t).

First of all, we re-write the dynamics of s(t) (see Eq. 15 in the main text) as follows,

τv
dsi
dt

= −(µ+ γξm)si + σsξsi , i = {1, 2}. (28)

Here, µ = 1−mτv/τ is the distance-to-boundary, and σm/ (2
√
πam) ξm,0(t) is the noise-to-strength

ratio, as defined in the main text. The two variables s1 and s2 are the components of s in the two-
dimensional space, respectively. Without loss of generality, we only study one component, and for
clearance, we denote si(t) and ξsi(t) as s(t) and ξs(t), respectively.

When the noise-to-strength ratio γ = 0, the dynamics of s(t) the Ornstein–Uhlenbeck (OU) pro-
cess [3]. The stationary distribution of s is solved to be,

pst(s) =

√
µ

πσ2
s

exp

[
−µs

2

σ2
s

]
. (29)

When γ > 0, the drift term in the dynamics of s(t) is affected by the multiplicative noise ξm. Utilizing
Itô calculus, we can rewrite Eq.(28) as a first order difference equation,

s(t+ dt) = s(t) +

∫ t+dt

t

(
−µs(t

′)

τv
+
γs(t′)
√
τv

ξm(t′) +
σs√
τv
ξs(t

′)

)
dt′, (30)

= s(t)− µs(t)

τv
dt+

1
√
τv

(
−s(t)γdtξm + σsdtξs

)
, (31)

where dtµ and dtξs are the Ito prescriptions in the limit of dt→ 0.

To derive the Fokker-Planck equation, we adopt a smooth trial function R(s) proposed by Rivers [4],
and compute its average value at time t, which is expressed as,

〈〈R(t)〉〉 =

∫
R(s)p(s, t)ds, (32)

where p(s, t) is the distribution of s(t) at time t. Consider the evolution of the average value of R(t)
in a short interval dt at time t, which is given by,

〈〈R(t+ dt)〉〉 =

〈∫
R

(
s− µs

τv
dt+

1
√
τv

(
−sγdtξm + σsdtξs

))
p(s, t)ds

〉
. (33)

With the first-order Taylor-series expansion of the trial function R(·) at s, the right side of Eq.(33) is
expressed as, 〈∫

ds p(s, t)R

(
s− µs

τv
dt+

1
√
τv

(−sγdtξm + σsdtξs)

)〉
=〈∫

ds p(s, t)

[
R(s) + dtR′(s)

(
− µ
τv
s

)
+ dtR′′(s)

(
σ2
s + γ2s2

2τv

)]〉
. (34)

Note that the left side of Eq.(33) corresponds to the partial derivative of p(s, t) with respect to t, and
the right side of Eq.(34) corresponds to the partial derivative of p(s, t) with respect to s. Thus, we
can achieve the following Fokker-Planck expression of the distribution of s(t),

∂p(s, t)

∂t
= − ∂

∂s

(
− µ
τv
sp(s, t)

)
+

∂2

∂s2

(
σ2
s + γ2s2

2τv
p(s, t)

)
. (35)

It describes the time evolution of the distribution of s(t). The stationary distribution of pst(s) is
achieved when

− µ
τv
spst(s) =

d

ds

(
σ2
s + γ2s2

2τv
pst(s)

)
. (36)

Thus, we obtain the stationary solution pst(s) as,

pst(s) = c0
(
σ2
s + γ2s2

)−(1+µ/γ2)
, (37)

where c0 is a normalization constant. This corresponds to Eq. (16) in the main text.
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3 The distribution of ‖∆z‖

In this section, we derive the distribution of ‖∆z‖ based on the stationary distribution of s(t).

Recall that the simplified dynamics of z(t) and s(t) are expressed as,

τ
dz

dt
= ms+

σU
〈Au〉

√
2

π
ξU,1(t), (38)

τv
ds

dt
= −(µ+ γξm)s+ σsξs, (39)

where µ = 1 − mτv/τ is the distance-to-boundary, and σm/ (2
√
πam) ξm,0(t) is the noise-to-

strength ratio, as defined in the main text. For simplicity and clearance, we consider z and s as the
1D components of the original two-dimensional variables z(t) and s(t). We also only consider the
case of noisy SFA, i.e., γ 6= 0, which is necessary to generate Lévy flights in the attractor space, as
stated in the main text.

According to the general Fokker-Planck expression of the distribution of s(t) (Eq. (35)), we have,

〈s(t+ δt)〉 = 〈s(t)〉 exp

[
−µδt
τv

]
, (40)

〈s(t+ δt)s(t)〉 − 〈s(t+ δt)〉〈s(t)〉 =
(
〈s2(t)〉 − 〈s(t)〉2

)
exp

[
−µδt
τv

]
. (41)

The exponential terms on the right side in the above equations indicate that s(t) relaxes exponentially
fast to the stationary distribution Eq. (37) on the time scale of δt � τv, which is reflected by the
KL divergence between the conditional distribution p (s(t+ δt)|s(t)) and the stationary distribution
pst(s) (Fig. 1B). Lubashevsky et al. [5] demonstrated that the displacement of z(t) in δt (denote as
∆z hereafter) is dominated by the maximal value of s in this time interval (denote as smax hereafter),
that is, ∆z(τv) ∼ smaxτv. Due to the temporal independence of smax(t) when δt� τv, the value
of ∆z can be acquired by sampling from the stationary distribution of smax(t), i.e. the stationary
distribution of s(t). Thus, substituting Eq.(37) into Eq.(38), we can obtain the distribution of ∆z,

p(∆z) ∼ ∆z−1+(1+2µ/γ2). (42)

Up to now, we have obtained the distribution of ∆z as a single component of z. To get the distribution
of ‖∆z‖, it is necessary to investigate the correlation between two components of z and s. The
correlation between s1 and s2 when both of them reach the stationary distribution is calculated to be,

〈s1(t0 + dt)s2(t0 + dt)〉 =

[
(1− µ

τv
)2 +

γ2dt

τv

]
〈s1(t0)s2(t0)〉. (43)

In the case of µ > 0 and γ an infinitesimal, we have
[
(1− µ/τv)2 + γ2dt/τv

]
< 1, which indicates

that the correlation between s1 and s2 will converge to 0 exponentially, i.e., the correlation between
these two components can be ignored under the condition of stationary distribution. Since ∆z(τv) ∼
smaxτv , it is straightforward that the correlation between ∆z1 and ∆z2 can be ignored as well. Hence,
‖∆z‖ (with ‖∆z‖ =

√
∆z21 + ∆z22) will follow the same power-law distribution as ∆z (Eq. (42)),

i.e.,
p(‖∆z‖) ∼ ‖∆z‖−1+(1+2µ/γ2). (44)

This corresponds to Eq.(17) in the main text.

4 Hyper-parameter settings in simulations

Table 1 shows the hyper-parameters used in Fig. 3 in the main text.

Table 2 shows the hyper-parameters used in Fig. 4 in the main text.
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Table 1: The hyper-parameters used in Fig. 3 in the main text.

Hyper-parameters Value
Time constants of U : τ 1
Time constants of V : τv 100
Neuron density: ρ 4096/π2

Global inhibition strength: k 0.05
Recurrent connection strength: J0 1
Recurrent connection radius: a π/10

Table 2: The hyper-parameters used in Fig. 4 in the main text.

Hyper-parameters Value
Neuron number: N 14400
Number of encoded patterns: n 1600
Time constants of U: τ 10
Time constants of V: τv 25
Recurrent connection range: a π/10
Neuron density: ρ 364.75
Global inhibition strength: k 0.05
Recurrent connection strength: J0 10
Mean value of SFA strength: m̄ 0.56
Variance of SFA strength: σm 6.4
Input noise: σU 0.01
Detection range: rc 0.0785

References

[1] Fung, C. C. A., Wong, K. Y. M. & Wu, S. A moving bump in a continuous manifold: A
comprehensive study of the tracking dynamics of continuous attractor neural networks. Neural
Comput. 22, 752–792 (2010).

[2] Mi, Y., Fung, C. C. A., Wong, K. Y. M. & Wu, S. Spike frequency adaptation implements
anticipative tracking in continuous attractor neural networks. Adv. Neural Inf. Process. Syst. 1,
505–513 (2014).

[3] Ornstein, L. S. (1930). On the theory of the Brownian motion. Physical review, 36, 823-841.
[4] R. J. Rivers, Path Integral Methods in Quantum Field Theory, (Cambridge University Press,

Cambridge, England, 1987)
[5] Lubashevsky, I., Friedrich, R. & Heuer, A. Realization of Lévy walks as Markovian stochastic

processes. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 79, 1–5 (2009).

6


	The dynamics of the bump heights and positions
	The dynamics of Au and Av
	The dynamics of z(t) and s(t)

	The stationary distribution of s(t)
	The distribution of z
	Hyper-parameter settings in simulations

