
A Coordinate-free representation of Hamiltonian equations

In terms of geometry, the Hamilton equation is defined as a flow on a symplectic manifold, which is
a pair of a manifold and a symplectic 2-form. Because a flow is defined in a coordinate-free form,
the Hamilton equation can be defined in a coordinate-free manner as well. In this section, this is
explained in more detail. For further information, see, e.g., [3, 18, 20].

LetM be a manifold, TM the tangent bundle and T ∗M the cotangent bundle. For each q ∈ M,
TqM denotes the tangent space at q, which is roughly the space of vectors defined locally at q.
T ∗qM is the dual space of TqM, that is, T ∗qM is a space of continuous linear maps from TqM to
R. Differential k-forms are the skew-symmetric multilinear maps from k vectors in TqM to R. In
particular, a 0-form is a function fromM to R and a 1-form is a vector in the dual space T ∗qM.
Suppose thatM is N -dimensional and has a local coordinate system x1, . . . , xN . Typical 1-forms
are dxk’s, each of which maps a vector v = (v1, . . . , vN)> ∈ TqM to dxk(v) = vk ∈ R. For two
1-forms dxk and dxl, the wedge product dxk ∧ dxl is a 2-form defined by

(dxk ∧ dxl)(v, w) = vkwl − vlwk, for all v = (v1, . . . , vN)>, w = (w1, . . . , wN)> ∈ TqM;

in some literature, the wedge product is defined as a constant multiple of the above definition. It
follows from the definition that dxk ∧ dxl = −dxl ∧ dxk, and particularly dxk ∧ dxk = 0.

The exterior derivative d is a linear operator that computes a certain derivative of differential forms.
d maps a k-form to a (k + 1)-form, and has a characteristic property dd = 0. For a 0-form f(q), df
in the coordinate system x1, . . . , xN is defined by

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xN
dxN .

For a 1-form θ =
∑N

k=1 fkdxk, the exterior derivative is

dθ = d

N∑
k=1

fkdxk =

N∑
l=1

N∑
k=1

∂fk
∂xl

dxl ∧ dxk =
∑
l<k

(
∂fk
∂xl
− ∂fl
∂xk

)
dxl ∧ dxk.

For 2 vectors v = (v1, . . . , vN)>, w = (w1, . . . , wN)> ∈ TqM, the value of dθ is represented by
using a skew matrix W

dθ(v, w) =
∑
l<k

(
∂fk
∂xl
− ∂fl
∂xk

)
dxl ∧ dxk(v, w)

=
∑
l<k

(
∂fk
∂xl
− ∂fl
∂xk

)
(vlwk − vkwl)

= (v1v2 · · · vN)W


w1

w2

...
wN

 , W =


0 ∂f2

∂x1
− ∂f1

∂x2

∂f3
∂x1
− ∂f1

∂x3
· · ·

∂f1
∂x2
− ∂f2

∂x1
0 ∂f3

∂x2
− ∂f2

∂x3
· · ·

∂f1
∂x3
− ∂f3

∂x1

∂f2
∂x3
− ∂f3

∂x2
0 · · ·

...
...

...
. . .

 .

Differential 2-forms are generally represented by using a skew matrix in the same way.
Definition 1. A differential form ω is closed if dω = 0.

Definition 2. A differential 2-form ω is non-degenerate if the skew matrix associated with ω is
non-degenerate.
Definition 3. A symplectic 2-form is a closed and non-degenerate differential 2-form.

A Hamiltonian equation on a symplectic manifoldM with the symplectic 2-form ω is defined in a
coordinate-free way as

du

dt
= XH , ω(XH , ·) = dH(·), (8)

where H is a Hamiltonian and XH is a vector field defined by the second equality of the above
equations. Note that the differential forms are functions of vectors, which are defined regardless of
the coordinate systems. Hence, the model (8) is a coordinate-free representation.

13

For example, suppose thatM is a 2-dimensional manifold with a local coordinate (q, p)>. dq ∧ dp is
a symplectic 2-form on this manifold; in fact, dq ∧ dp is obtained as the exterior derivative of 1-form
θ = qdp:

dθ = d(qdp) = dq ∧ dp

and hence dq ∧ dp is closed:

d(dq ∧ dp) = dd(qdp) = 0

because dd = 0. The matrix representation of this 2-form is

(dq ∧ dp)(

(
q1

p1

)
,

(
q2

p2

)
) = (q1 p1)

(
0 1
−1 0

)(
q2

p2

)
because

(dq ∧ dp)(

(
q1

p1

)
,

(
q2

p2

)
) = dq(

(
q1

p1

)
)dp(

(
q2

p2

)
)− dq(

(
q2

p2

)
)dp(

(
q1

p1

)
) = q1p2 − q2p1.

Meanwhile, dH is computed as

dH =
∂H

∂q
dq +

∂H

∂p
dp.

Therefore, by substitution of du/dt = XH with u = (q, p)> into the second equation, the coordinate-
free form (8) becomes

dq ∧ dp

(
d

dt

(
q
p

)
,

(
v1

v2

))
= dH(

(
v1

v2

)
) for all v =

(
v1

v2

)
of which matrix representation is(

dq
dt

dp
dt

)(0 1
−1 0

)(
v1

v2

)
=
∂H

∂q
dq(

(
v1

v2

)
) +

∂H

∂p
dp(

(
v1

v2

)
) for all v =

(
v1

v2

)
.

This is equivalent to

v2
dq

dt
− v1

dp

dt
=
∂H

∂q
v1 +

∂H

∂p
v2 for all v1, v2,

which gives the standard form of the Hamilton equation:

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
.

B De Rham cohomology and the de Rham theorem

From the property dd = 0 of the exterior derivatives, Im d ⊂ Ker d. The difference Ker d/Im d is
called the de Rham cohomology space.

As is well known, there is a natural duality between differential k-forms ω’s and k-dimensional
integral domains Ω’s in the sense that a real number can be associated with each pairing of 〈ω,Ω〉 in
the following way

〈ω,Ω〉 :=

∫
Ω

ω.

In particular, the Stokes theorem for differential forms∫
Ω

dω =

∫
∂Ω

ω

gives the duality between the exterior derivative d and the boundary operator ∂

〈dω,Ω〉 = 〈ω, ∂Ω〉.

14

This duality associates differential forms, the exterior derivative and the cohomology with integral
domains, the boundary operator and the homology, respectively. In fact, the boundary operator ∂
is defined in such a way that ∂ maps k-dimensional domain to its k − 1-dimensional boundary.
Because a boundary of a domain is in general a cycle, the boundary of a boundary is 0: ∂∂ = 0. This
property of the boundary operators is the same as that of the exterior derivative d, and hence the
similar space to the cohomology space can be introduced. In fact, because Im ∂ ⊂ Ker ∂, we can
consider the difference Ker ∂/Im ∂. This space is the homology space. The domain contained in the
homology space is essentially a “hole,” because basically it is a cycle that is not a boundary of any
other domain. The de Rham theorem states that there is an isomorphism between the cohomology
space and the homology space. In particular, the dimension of the cohomology space is the same as
that of the homology space, the number of holes. Thus if the underlying phase space has no hole, the
cohomology space vanishes and Im d = Ker d. When the cohomology space does not vanish, the
members of this space must be computed and added to the model. This is possible because this space
is finite-dimensional, and hence we can enumerate the members.

C Proofs of the theorems

Proof of Theorem 1

Proof. By the chain rule, we have

dHNN(u)

dt
= ∇HNN ·

du

dt
.

Substituting (3) into the above equation, we get

dHNN(u)

dt
= ∇HNN ·W−>u,NN∇HNN = 0

because W−>u,NN is skew-symmetric and for any skew-symmetric matrix M and for any vector v

v ·Mv = 0,

which is confirmed by

v ·Mv = v>Mv = (v>Mv)> = v>M>v = −v>Mv = −v ·Mv

because M is skew-symmetric and v>Mv is a 1× 1 matrix, for which (v>Mv)> = v>Mv holds.
The above equality gives 2v ·Mv = 0.

Proof of Theorem 3 First, we show the precise statement of Theorem 3, in which we denote by
Σ(σ) the space of the neural networks with the activation function σ:

Σ(σ) ={g : Rr → R | g(x) =

q∑
i

βiσ(γ>i x+ αi), αi ∈ R, βi ∈ R, γi ∈ Rr}.

Theorem . Suppose that the Hamilton equation to be learned can be represented in the form (2)
using a Hamiltonian H ∈W 1,p and a symplectic 2-form ω that is derived from a 1-form θ ∈W d,p

in the sense that

dθ = ω.

Suppose also that the phase space is compact. The model (4) with neural networks in Σ(σ), of which
activation function σ is in C∞ and does not vanish everywhere, has the universal approximation
property in the sense that θ and H can be approximated by the neural networks with arbitrary
accuracy.

Proof. In the spaces W 1,p and W d,p, the spaces of C∞ functions C∞ ∩W 1,p and C∞ ∩W d,p

are respectively dense [14]. Therefore, if neural networks used in the model admit the universal
approximation property toC∞ functions, then the universal approximation theorem for the differential
forms holds. Meanwhile, regarding the approximation of C∞ functions, the following theorem is
known.

15

Theorem (Hornik et al., 1990). If the activation function σ 6= 0 belongs to Sm
p (R) for an integer

m ≥ 0, then Σ(σ) is m-uniformly dense in C∞(K), where K is any compact subset of RN .

Sm
p (R) is the Sobolev space, which is roughly functions with up to mth (weak) derivatives with

the bounded Lp norm. W 1,p and W d,p are Sobolev spaces of differential forms; see [2, 14] for
the definitions and the properties. Hence, if the activation function σ of the hidden layer is in
C∞ ⊂ Sm

p (R) and does not vanish everywhere, then for any C∞ function, there exists a neural
network that approximates this function. Since it is assumed that σ is C∞ and does not vanish
everywhere, we need to prove that σ and its derivatives are in Lp. Because the phase space is assumed
to be compact and the activation functions are smooth, the outputs of the neural network and hidden
layers are also compact. Hence, the activation function σ is essentially used on the compact domains.
Therefore, σ can be restricted to such domains so that σ is in Lp. This completes the proof.

D Supplemental note on numerical experiments

In this appendix, we make some comments on the datasets and the results of the experiments with
some additional experiments. In particular, to examine the results in more detail, we plotted the errors
for each experiment as a function of time for the well-performed models, i.e., NODE, the skew matrix
learning and the neural symplectic form.

In the experiments, we implemented all code using Python v3.8.5 with libraries; numpy v1.21.2,
scipy v1.7.1, and PyTorch v1.9.1. We performed all experiments on NVIDIA A100. We employed a
neural network with two hidden layers of 200 units and the tanh activation function for modeling
the energy function, the skew-symmetric matrix, and the 1-form for the neural symplectic form. We
used 80 percent of the collected data for training and the remaining for test. The collected data were
normalized so that most of them were in the range [−1, 1]; however, the errors in the main text are
given in the original physical scale. We trained each model 10 times using the Adam optimizer with
a learning rate of 10−3 for 2000 iterations. Only for LNN, we set the learning rate to 10−4 due to an
instability of learning. We explain this in detail below.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 10: An example of the histories of the train-
ing loss of LNN for the double pendulum data
when the learning rate is set to 10−3.

On the performances of LNNs In our exper-
iments, although LNNs should be capable of
modeling the targets, LNNs sometimes did not
work well. Figure 10 shows an example of the
histories of the training loss of an LNN for the
double pendulum data when the learning rate is
set to 10−3. As shown in the figure, the behavior
of the loss function was not stable.

This may be due to the lack of enough data; in
fact we use a much smaller data than Cranmer
et al. [7]. In addition, the neural network in
Cranmer et al. [7] had three hidden layers with
500 units, whereas our neural network had two
hidden layer with 200 units. The variance of
the randomly initialized weight parameters was
adjusted for each layer using more than 200 preliminary trainings. The dataset was composed of
600,000 orbits, whereas we used only 2,000 orbits. These differences should make the learning of
LNN more stable than our experiments.

Another possibility is the non-uniqueness of the Lagrangian. In LNNs, the Lagrangian of the target
dynamics is learned from the given data. Suppose that a Lagrangian LNN, which is learned from the
data, fits the given data. Then, the dynamics must be described by the Euler–Lagrange equation

∂LNN

∂q
− d

dt

∂LNN

∂q̇
= 0.

However, there are many Lagrangians that give the same Euler–Lagrange equation. In fact, the
Euler–Lagrange equation is derived by the variational principle, in which the stationary value of the

16

action integral

S =

∫ T

0

L(q, q̇)dt

with both ends fixed; however, even if the learned Lagrangian gives a stationary point, other La-
grangians can also give a stationary point. For example, for any smooth function f(q), another
Lagrangian L̃ := L + df/dt gives the same Euler–Lagrange equation because the action integral
associated with L̃

S̃ =

∫ T

0

(
L(q, q̇) +

df

dt

)
dt =

∫ T

0

L(q, q̇)dt+ f(q(T))− f(q(0)) = S + f(q(T))− f(q(0))

takes the same stationary value as the original action integral S when both ends fixed. For example,
two Lagrangians L and L̃ = L+ qq̇ gives the same Euler–Lagrange equation because qq̇ = 1

2
d(q2)

dt ;
the Euler–Lagrange equation of L̃ is

∂L̃
∂q
− d

dt

(
∂L̃
∂q̇

)
=
∂L
∂q

+ q̇ − d

dt

(
∂L
∂q̇

+ q

)
=
∂L
∂q
− d

dt

∂L
∂q̇
,

which is the Euler–Lagrange equation of L. In LNNs, the Lagrangian is directly modeled by neural
networks; however, because the Lagrangian is not uniquely determined, even after a good Lagrangian
is found, the learning algorithm goes on to find another Lagrangian which is possibly better. This is
considered the reason for the instability of the learning processes of LNNs.

As a matter of fact, the loss function of LNN was unstable, but can be small. Therefore, in the
numerical experiments, the model that achieved the minimum value of the histories was used to
analyze the behavior of the models. In addition, the learning rate was set to a smaller value so that
the training process could be more stable.

Mass-Spring System Firstly, we explain the mass-spring system depicted in Figure 3, which is
used in the first experiment. As the data, we used numerical solutions to

d

dt

q1

q2

v1

v2

 =


v1

v2

− k1

m1
(q1 − l1) + k2

m1
(q2 − q1 − l2)

− k2

m2
(q2 − q1 − l2)

 , (9)

with the parameters k1 = 3.0, k2 = 5.0, l1 = 1.0, l2 = 1.0, m1 = 1.0, m2 = 2.0. The initial
values are randomly sampled from the standard normal distribution. The numerical solutions are
computed on the time interval [0, 5]. For each numerical orbit, 100 solutions are sampled at uniform
time intervals. The numerical solutions are by using SciPy odeint with the default setting.

Note that it should be impossible to write this equation as the standard form of Hamiltonian equation
(1) with a certain energy function; for example, when the system has just one mass point and the
equation of motion is given by

d

dt

(
q1

v1

)
=

(
v1

− k1

m1
(q1 − l2)

)
,

this can be transformed into a Hamiltonian system

d

dt

(
q1

v1

)
=

(
0 1
−1 0

)
∇H̃,

H̃ =
v2

1

2m′1
+ k′1(q1 − l1)2

with k′1 = k1/m1,m
′
1 and the mass m′1 is 1. Hence, for this system, the Hamiltonian neural networks

are applicable without knowledge of m1. However, for the above system (9), such a transformation
cannot be applied.

Figure 11 shows the time evolution of the errors for NODE, the skew matrix learning and the neural
symplectic form. The corresponding orbits are shown in Figure 12. In this case, the prediction of

17

(a) Energy errors (b) Solution errors (c) Solution error of Neural Sym-
plectic Form

Figure 11: Time evolution of the energy and solution errors obtained by NODE, the skew matrix
learning and the neural symplectic form for the mass-spring test. The horizontal axis represents time.
The energy error shows the difference from the true energy, and the solution error shows the MSEs.
Since the solution error by the neural symplectic form was tiny, the enlarged graph is also shown.

(a) Ground truth (b) NODE (c) Skew Matrix Learning (d) Neural Symplectic
Form

Figure 12: Example of the orbits predicted by the trained models for the mass-spring test. The
horizontal axis represents time. Each component of u(t) = (q1(t), v1(t), q2(t), v2(t)) is represented:
blue (q1), green (v1), orange (q2), and red (v2).

the neural symplectic form was very accurate. This may be related to the fact that the proposed
method is able to preserve the conservation laws other than energy. In fact, in the research field of
physical simulation, it is known that for such a small system, the computational accuracy can be often
improved if additional conservation laws are preserved. As for the energy error, there is not much
difference between the methods. The energy error appears to be large compared to the solution error;
this should be due to the numerical integration errors in the computation of the predicted orbits.

Double Pendulum Secondly, we explain the double pendulum in the second experiment:

dθ1

dt
= φ1,

dθ2

dt
= φ2,

dφ1

dt
=
g(sin θ2 sin(θ1 − θ2)− m1+m2

m2
sin(θ1))− (l1θ

2
1 cos(θ1 − θ2) + l2θ

2
2) sin(θ1 − θ2)

l1(m1+m2

m2
− cos2(θ1 − θ2))

,

dφ2

dt
=

g(m1+m2)
m2

(sin θ1 cos(θ1 − θ2)− sin(θ2))− (l1(m1+m2)
m2

θ2
1 + l2θ

2
2 cos(θ1 − θ2)) sin(θ1 − θ2)

l2(m1+m2

m2
− cos2(θ1 − θ2))

.

The energy function of this system is

H =
1

2
(m1 +m2)l21φ

2
1 +

1

2
m2l

2
2φ

2
2 +m2l1l2φ1φ2 cos(θ1 − θ2) + gm2l2 cos(θ2)

+ g(m1 +m2)l1 cos θ1

and the Lagrangian is

L =
1

2
(m1 +m2)l21φ

2
1 +

1

2
m2l

2
2φ

2
2 +m2l1l2φ1φ2 cos(θ1 − θ2)− gm2l2 cos(θ2)

− g(m1 +m2)l1 cos θ1,

which derives the generalized momentum

p1 =
∂L
∂φ1

= (m1 +m2)l21φ1 +m2l1l2φ2 cos(θ1 − θ2),

18

(a) Energy errors (b) Solution errors

Figure 13: Time evolution of the energy and solution errors obtained by NODE, the skew matrix
learning and the neural symplectic form for the double-pendulum test. The errors are represented:
blue (skew matrix learning), green (NODE), red (neural symplectic form). The horizontal axis
represents time. The energy error shows the difference from the true energy, and the solution error
shows the MSEs.

(a) Ground truth (b) NODE (c) Skew Matrix Learning (d) Neural Symplectic
Form

Figure 14: Example of the orbits predicted by the trained models for the double-pendulum test. The
horizontal axis represents time. Each component of u(t) = (θ1(t), φ1(t), θ2(t), φ2(t)) is represented:
blue (θ1), orange (φ1), green (θ2), and red (φ2).

p2 =
∂L
∂φ2

= m2l
2
2φ2 +m2l1l2φ1 cos(θ1 − θ2).

Because the generalized momenta are written in the very complicated forms, it is difficult to prepare
data in these forms.

We collected data by solving (6) with the parameters l1 = l2 = 1.0, m1 = 1, m2 = 2, and
g = 9.8 using 2000 initial conditions randomly generated from the standard normal distribution. The
batch-size was set to 1000.

Firstly, we show the time evolution of the errors for NODE, the skew matrix learning and the neural
symplectic form in Figure 13 along with the corresponding orbits in Figure 14. The errors are not
significantly different; however, the errors for NODE and the skew matrix learning are relatively
small. Although these methods are not suitable for long-term predictions, they are effective for
short-term predictions.

Secondly, we also performed a similar test to the main paper for a more chaotic orbit using NODE
and the neural symplectic form. Examples of the predicted orbits are shown in Figure 15. Note that
in this experiment, we used models trained with the same data as the experiment in the main paper,
and this data may not contain many chaotic trajectories.

Because the results of the NODE often diverged as shown in this figure we omit the quantitative
results for this test. Although the predicted orbits are not so similar to the true one, the proposed
method typically kept oscillating. The worse performance may be due to the lack of enough data
on the behaviors when the angle became large. In fact, a chaotic double pendulum can rotate many
times, and its angle can be very large; however, our data are generated by simulating the orbits from
relatively small initial conditions. For better performance, the periodic structure of the phase space as
a Lie group should be integrated into the model for efficient training.

Lotka–Volterra equation Thirdly, we investigated the models for the Lotka–Volterra equation,

dx1

dt
= a12x1x2 + λ1x1,

dx2

dt
= a21x1x2 + λ2x2.

19

(a) Ground truth (b) NODE (c) Neural Symplectic Form

Figure 15: Example of the orbits predicted by the trained models for the double pendulum
with a chaotic behavior. The horizontal axis represents time. Each component of u(t) =
(q1(t), v1(t), q2(t), v2(t)) is represented: blue (q1), green (v1), orange (q2), and red (v2).

(a) Energy errors (b) Solution errors

Figure 16: Time evolution of the energy and solution errors obtained by NODE, the skew matrix
learning and the neural symplectic form for the Lotka–Volterra test. The errors are represented: blue
(skew matrix learning), green (NODE), red (neural symplectic form). The horizontal axis represents
time. The energy error shows the difference from the true energy, and the solution error shows the
MSEs.

which is a Hamiltonian equation but does not admit the standard Hamiltonian form (1) in general.
For example, if the first equation can be written as

dx1

dt
=
∂H

∂x2

with a certain function H(x1, x2), H(x1, x2) should be of the form

H(x1, x2) =
a12

2
x1x

2
2 + λ1x1x2 + f(x1)

with a function f . However, in that case it must hold that

∂H(x1, x2)

∂x1
=
a12

2
x2

2 + λ1x2 +
df(x1)

dx1
,

which cannot be in general the right-hand side of the second equation of the Lotka–Volterra equation
for any f . In the experiment, we checked if this unknown symplectic structure can be extracted from
the data or not.

In the experiment, because the state variables are not the pair of q and q̇, LNN is not applicable to this
equation. Hence, we tested NODE, HNN, the skew matrix learning and the neural symplectic form.
We set the parameters as a12 = −1, a21 = −1, λ1 = 1 and λ2 = 1. As the data, 1000 orbits on the
time interval [0, 5] are numerical computed by using SciPy odeint. Initial conditions are sampled
from the uniform distribution on [0, 1]. Each orbit contains 100 numerical solutions at a uniform
sampling rate. The data are normalized so that they are in [0, 1].

We show the time evolution of the errors for NODE, the skew matrix learning and the neural
symplectic form in Figure 16. The corresponding orbits are shown in Figure 17. Since the peaks of
the orbit of the NODE is gradually decaying, the energy error of the NODE is increasing. Regarding
the solution errors, although the predicted orbit of the skew matrix learning is not so different from
the ground truth, the error becomes very large. This is due to the error in the velocity of the oscillation.
This error causes the position of the peaks to deviate from its true position, resulting in a large error.

20

(a) Ground truth (b) NODE (c) Skew Matrix Learning (d) Neural Symplectic
Form

Figure 17: Example of the orbits predicted by the trained models for the Lotka–Volterra test. The
horizontal axis represents time. x1(t), x2(t) are represented: blue (x1) and orange (x2).

(a) Ground truth (b) NODE1 (c) NODE2 (d) Skew Matrix
Learning

(e) Neural Symplec-
tic Form

Figure 18: Example of the orbits during a long period (t = 100) predicted by the trained models
for the Lotka–Volterra test. NODE1 and NODE2 are results of two NODE models trained with a
different random seed. The horizontal axis represents time. x1(t), x2(t) are represented: blue (x1),
orange (x2).

Table 4: Energy errors.

NODE Skew Matrix
Learning

Neural
Symplectic Form

(proposed)

Lotka–Volterra (t = 100) 42.951 ± 56.005 0.0735 ± 0.0764 0.0704 ± 0.0597

The best and second best results of the true energies are emphasized by bold and underlined fonts, respectively.
The differences of the true energy functions at t = 100 and t = 0 are shown. 10 orbits were simulated using
randomly generated initial values.

In addition to the experiments shown in the main paper, we also performed another test in which long
term behaviors are predicted. In this case, we compared the well-performed models: NODE, skew
matrix learning and the neural symplectic form. The predicted orbits are shown in Figure 18. The two
NODE results are obtained by the two NODE models trained with a different random seed. Because
NODE does not satisfy the energy conservation law, the predicted orbits by these models gradually
decay or diverge as expected. Meanwhile, the orbits by the other two models keep oscillating. The
energy errors are shown in Table 4. While the error of the NODE is very large, the results by the other
two are almost the same. The error of the skew matrix learning is slightly larger; this is probably due
to the lower height of the peaks.

Learning from images In this experiment, we used the HNN code and data (https://github.
com/greydanus/hamiltonian-nn, Apache 2.0 License) almost as-is; we used a pre-trained au-
toencoder with two hidden layers of 200 units and the ReLU activation function. We trained the
autoencoder using the Adam optimizer with a learning rate of 10−4 for 150000 iterations. The test
error of the autoencoder was 3.81e-03. The neural networks in the HNN and the neural symplectic
forms have two hidden layers of 200 units and the tanh activation function. These networks are
trained for 100000 steps; in our experiment it took a long time for the neural symplectic form to
find an appropriate symplectic form. The original HNN code includes a loss function that measures
how close the latent space is to the canonical coordinates in order to make it closer to the canonical
coordinates. However, in our experiment, we trained without this loss function. The other settings are
the same as in the similar experiment of HNN. See [11] for details.

21

https://github.com/greydanus/hamiltonian-nn
https://github.com/greydanus/hamiltonian-nn

