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This paper proposes the low-rank subspaces to perform controllable image generation in GANs. In
this supplementary material, we first give the proof of Theorem 1 in the main paper. Then a detailed
introduction about the low-rank factorization and the Alternating Directions Method of Multipliers
(ADMM) [8, 1] algorithm in Sec. 2 are presented. Second, the ablation study on the parameter λ
of Eq. (4) (in the main paper) and rrelax of precision relaxation in Sec. 3.3 (in the main paper) is
given in Sec. 3. Third, more comparison results with other methods are given in Sec. 4 to show the
advantages of our method. Fourth, Sec. 5 gives more results on controlling diverse regions or on other
datasets such as MetFace [5]. Fifth, we show that the attribute vectors we find can be easily applied
to real images in Sec. 6. At last, we designed an experiment to validate the potential application of
our method in Sec. 7.

1 Proof of Theorem 1

Theorem 1. Assume that the real data X lie in some underlying manifold of dimension dim(X )
embedded in the pixel space. Let zk ∈ Rdz denote the latent code of the k-th layer of the generator
of GAN over X and Jzk be the Jacobian of the generator with respect to zk. Then we have
rank(JTzk+1

Jzk+1
) ≤ rank(JTzkJzk) ≤ dz , where rank(JTz Jz) denotes the rank of the Jacobian.

Further, if dim(X ) < dz , then rank(JTzkJzk) < dz .

Proof. Let Jf denote the Jacobian of function f . By the chain rule of differential [9], we have

rank(J(f1 ◦ f2)) = rank(Jf1Jf2). (1)

Recall that for any two matrices A and B,

rank(AB) ≤ min{rank(A), rank(B)}. (2)

Combining them together, we have

rank(J(f1 ◦ f2)) ≤ min{rank(Jf1), rank(Jf2)}. (3)

As rank(ATA) = rank(A) and the generator function is a coupling of each layer, we then have

rank(JTzk+1
Jzk+1

) ≤ min{rank(Jzk)}. (4)

Theoretically, the converged generator will output the whole data manifold, i.e. G(Z) = X . Thus,
we have rank(Jz0) = dim(X ). If dim(X ) < dz , we have JTzkJzk ≤ J

T
z0Jz0 < dz .

∗ denotes the corresponding author.
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2 Low-Rank Factorization

Low-rank factorization of a matrix solves the decomposition of a low-rank matrix corrupted with
random noise, which has been well studied in the past two decades and widely applied to solve real
tasks in various disciplines [11]. Given matrixM , its low-rank factorization can be written as

M = L0 + S0, (5)

where L0 is the recovered low-rank matrix and S0 is a sparse noise matrix. Classical PCA seeks the
best rank-r estimate of L0 [11] via Singular Value Decomposition (SVD). Namely, ifM = UΣV ∗

is SVD of the matrixM , then the optimal rank-r approximation toM is

L̂ = UΣrV
T =

∑r

i=1
σiuiv

T
i , (6)

where Σr just keeps the first r singular values of the diagonal matrix σ and T denotes the transpose.
This solution only works well when the noise S0 is small such as Gaussian random noise with small
standard deviation. However, neither the scale nor the distribution of S0 is known in advance. And
the new problem can be categorized to Robust PCA, which is formulated as follows:
Problem 1. Given M = L + S, both L and S are unknown, but L is known to be of low rank
and S to be sparse. In this scenario, S can have elements with arbitrary magnitude. The task is to
correctly recover L.

In particular, we are now seeking L of the lowest rank to reconstruct M with some sparse noise
perturbed. More formally, the optimization can be written as:

minL,S rank(L) + λ‖S‖0,
subject to L+ S = M ,

(7)

where ‖S‖0 is the number of nonzero elements in S0. If this constrained optimization can be solved,
both L0 and S0 can be simultaneously obtained accordingly. Unfortunately, Eq. (7) is a highly
nonconvex function to be solved. To handle this, the convex relaxation method is exploited to achieve
a tractable solution by using the `1 norm and the nuclear norm as the surrogates of the sparsity and
low-rank [4], respectively. So the problem can be reformulated as follows:

minL,S ‖L‖∗ + λ‖S‖1
subject to L+ S = M ,

(8)

where ‖L‖∗ =
∑
i σi(M) is the nuclear norm defined by the sum of all singular values, ‖S‖1 =∑

ij |Mij | is the `1 norm defined by the sum of all absolute values in S, and λ is a positive weight
parameter to balance the sparsity and the low rank. Now the problem becomes a convex one, which
is also referred to as Principal Component Pursuit (PCP) in [3].

There are many approaches to solving this convex optimization problem. The most common one is
the Lagrange multiplier method by solving an unconstrained minimization problem rather than the
original constrained one. For Eq. (8), we can get the augmented Lagrangian as follows:

Lµ(L,S,Λ) = ‖L‖∗ + λ‖S‖1 + 〈Λ,L+ S −M〉

+
µ

2
‖L+ S −M‖2F ,

(9)

where Λ is the multiplier of the linear constraint, µ > 0 is the penalty for the violation of the
linear constraint, and ‖ · ‖F is the Frobenius norm. Obviously, the alternating directions method of
multipliers (ADMM) [8, 1] is applicable to solve Eq. (9), which is given in Algorithm 1.

In Algorithm 1, Sτ (x) = sgn(x)max(|x| − τ, 0) is the soft shrinkage operator, and Dτ (M) denotes
the singular value thresholding operator given by Dτ (M) = USτ (M)V T .
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Algorithm 1 Alternating Directions Method of Multipliers (ADMM)
Initialize: S0 = 0,Λ0 = 0, µ = 0.
while not converge do

Compute Lk+1 = D1/µ(M − Sk − µ−1Λk);
Compute Sk+1 = Sλ/µ(M −Lk+1 − µ−1Λk);
Compute Λk+1 = Λk + µ(Lk+1 − Sk + 1−M);

end while
Output: L∗ ←− Lk; S∗ ←− Sk.
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Target n = 40PCA n = 50 n = 60 n = 70 n = 80

Figure 1: Ablation study on parameter n. The first two columns represent the target images and the
results when projecting the attribute vectors into the “null space” (i.e., eigen vectors regarding small
eigen values) of PCA. The rest are the smile editing results with different n. Zoom in for details.

3 Ablation Study

We perform the ablation study on the parameter λ of Eq. (4) and rrelax of precision relaxation in
this section. First, we give the results on the parameter λ. Recall that λ is a positive weight to
balance the sparsity and rank of the resulting matrices. Hence, a proper value for λ is needed since it
will influence the null space which we use to project the principal vectors of an edited region. For
convenience, we set λ = 1/n and study the parameter n. Fig. 1 shows the results using different n
when adding smile, in which we could find that the larger n we use, the larger degree of editing we
could obtain. This is consistent with Sec 4.1 in the main paper since a larger n will result in a larger
null space. And a larger null space may contain more components that could affect the region of the
mouth in this case. However, a larger n could lead to a change on the other attributes. For instance,
the eyes of the man in the first row change a little when n = 80. This is because each image has its
limit when editing its components. When reaching the limit of the associated attribute, over-editing
this attribute will propagate to other regions or attributes. Thus, we choose n = 60 since it could
achieve the satisfying editing results on the target region and meanwhile could keep the rest region
unchanged.

Rigorously, simply conducting PCA onM in Eq.4 in the main paper does not possess a null space
since all the eigenvalues are not equal to zeros. To compare with the null space obtained by low-rank
decomposition, we choose the eigenvectors corresponding to smallest eigenvalues whose magnitudes
are no more than 10−7) to form an analogous “null space”. And then, we project the principal vectors
into the null space of PCA. The results are shown in the second column of Fig. 1, in which we could
find that after projection, we cannot edit any regions of the target images. This implies that the null
space of PCA does not contain any components that could affect the region of the eyes. To be specific,
the attribute vectors that could edit the regions of eyes vanishes after projecting them to the null space
of PCA. We observe the same phenomenon when editing the other regions. In contrast, the null space
by low-rank decomposition contains the components that could mainly affect the regions of eyes yet
barely affect the rest region.

Second, we show the influence of the parameter rrelax when editing an image. As shown in Fig. 1
in the main paper, our algorithm aims at manipulating region A with little change in region B. But
in some cases, this kind of precise control may not exist, or the degree of editing will be limited
due to this constraint. Thus, we involve some attribute vectors with smallest non-zero singular
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Target relax 0r = relax 4r = relax 8r = relax 12r = relax 16r = relax 20r =

Figure 2: Ablation study on parameter rrelax. The first column shows the target images and the
remaining are the smile editing results. Zoom in for details.

values to allow slight change in region B when editing region A. We conduct the experiment on
mouth editing to illustrate the influence of rrelax. It is obvious that it is impossible to open the mouth
naturally without any change on the chin. We can see that in Fig. 2, the mouth opens with a relatively
small degree when rrelax = 0. And with the increase of rrelax, the degree of mouth opening is larger.
However, when rrelax becomes larger, the other attributes will change. For example, we could observe
a slight change in the identity in the first two rows when rrelax = 20, and an unrealistic edited image
in the last row. Thus, a number between 4 and 12 could be a good choice since the other attributes
could maintain well in this case, and we could also achieve expected editing results.

4 Comparison with Existing Methods

Besides the methods we compare in the main text, here we compare our method with the baseline such
as feature blending [10] and recently proposed StyleSpace [12]. First, we compare our method with
feature blending on closing eyes. We first find a reference image with closed eyes and then replace
the corresponding features in the target images using the feature from the reference image. As shown
in Fig. 3, simply replacing the features in the related feature maps fails to result in photo-realistic
results. The results on 32 × 32 are the best ones in all feature blending. However, the reference
image and the target images encounter severe misalignment problems in most cases. Instead, the
editing results are significantly improved when using the attribute vector obtained from the reference
image by our method. For instance, our algorithm successfully closes the eyes of the target images
regardless of the pose, gender, etc.

Furthermore, we compare our method with feature blending [10] on closing mouth. We first find a
reference image with a closed mouth and then replace the corresponding features in the target images
using the feature from the reference image. As shown in Fig. 4, simply replacing the features in
the related feature maps also results in unrealistic results. For example, besides the misalignment
problem between the reference image and the target images, the results for 32× 32 also suffer from
color distortion in the mouth region. On the contrary, the editing results are substantially improved
when using the direction obtained from the reference image by our method. For instance, our method
successfully closes the mouths of the target images regardless of the pose, gender, age, etc.

We also provide the comparison results with StyleSpace [12] on several attributes such as closing and
opening eyes, closing and opening mouth, etc. Fig. 5 shows the comparison results on closing and
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Figure 3: Comparison with feature blending method [10] on closing eyes. The top-left image is the
reference image under a particular bonding box. The top row are the target images for editing and the
bottom row are the results with our LowRankGAN. The other rows show the results from [10] by
blending features at different resolutions. Zoom in for details.

opening eyes, in which we could find that our methods could achieve more photo-realistic results
compared with StyleSpace [12]. For instance, the artifacts appear when closing eyes using StyleSpace.
The color of the eyeball turns to be white when opening eyes. Fig. 6 shows the comparison results on
closing and opening the mouth, in which we could find that both StyleSpace and our method could
successfully close or open the mouth of the image. However, there are subtle differences between
them. For example, the jaw becomes narrow when closing the mouth and wide when opening the
mouth using the method proposed in StyleSpace. This is against common sense since the jaw will not
be widened simultaneously when opening the mouth of a person. Actually, such cases are common
when manipulating on the feature maps since it may be easily overfitted. Rather, our method could
achieve satisfying results consistent with photo-realism and visual perception.
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Figure 4: Comparison with feature blending method [10] on closing mouth. The top-left image is the
reference image under a particular bonding box. The top row are the target images for editing and the
bottom row are the results with our LowRankGAN. The other rows show the results from [10] by
blending features at different resolutions. Zoom in for details.
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Close Eyes Open EyesTarget

OursStyleSpace OursStyleSpace

Figure 5: Comparison with StyleSpace [12] on eye attributes. Zoom in for details.
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Close Mouth Open MouthTarget

OursStyleSpace OursStyleSpace

Figure 6: Comparison with StyleSpace [12] on mouth attributes. Zoom in for details.
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5 More results

This section provides more results about the experiments in the paper such as the comparison on
null space projection in Fig. 7 and generalization from one image to others in Fig. 8. As shown in
Fig. 7, the remaining region changes violently without projection. For example, the woman’s face
becomes smaller when closing the mouth, and there appear some artifacts when closing her eyes. For
MetFace [5] in the second row, the pose is changed when closing the eyes. And for the butterflies in
the third row, the purple flowers disappear when the size gets smaller, the red twig turns purple, and
the shape of the leaf also changes. Instead, those details are well preserved when using null space
projection. As shown in Fig. 8, we show the results on the other datasets such as on MetFace [5] and
LSUN church [13] or the other attribute such as zoom-in via BigGAN, where we could also verify
the advantages summarized in Sec. 4.2 of the main text.

Target Close Eyes Close Mouth

Target TargetZoom Out Zoom In

Target

Close Eyes Open MouthTarget Target

w/o Projection w/ Projection w/o Projection w/ Projection

Figure 7: Precise generation control via the null space projection on StyleGAN2 [6] and
BigGAN [2]. For each image attribute, the original attribute vector identified from the region
of interest (under green masks or red boxes) acts as changing the image globally (e.g., the face shape
change in the top row and the background change in the bottom row). By contrast, our approach with
null space projection yields more satisfying local editing results.
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Figure 8: Generalization of the latent semantics identified from the local region of one synthesis to
other samples on MetFaces (StyleGAN2), LSUN church (StyleGAN2), and ImageNet (BigGAN).
Our approach does not require the target image to have the same masked region as the reference
image. For example, the sky and the ground of the church can have different shapes. The results on
BigGAN even suggest that the zoom-in semantic identified from one category can be applied to other
categories.
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6 Results on Real Images

Given the attribute subspaces obtained by low-rank decomposition, we can easily apply them to real
images. First, we need to project the real images into the latent spaces of the GANs, i.e. the GAN
inversion. Several works [6, 14] have been developed to deal with this problem. Here we employ the
method in [6] to project the real images into thew space in StyleGAN2. From Fig. 9, we can see that
our method successfully edits the attributes on real images such as opening the eyes or closing the
eyes, opening the mouth or closing the mouth, which demonstrates the feasibility of our method to
real image editing.

Open Eyes Close Eyes Open Mouth Close MouthInversionReal Images

Figure 9: Real image editing. From left to right: real images, inversion results, and the editing
results with LowRankGAN regarding different attributes.
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7 LowRankGAN for Data Augmentation

As stated in Sec. 4.2 of the main paper, a potential application of our algorithm could be data
augmentation. Hence,in this section, we conduct an experiment to further support this claim.

Our experiment aims at training a classifier to determine whether the person in an image is closing
eyes or not, and the original dataset we use is FFHQ. There are 70, 000 face images in FFHQ, among
which we find 564 images with closed eyes. Note that we use a face parsing model [7] to assign the
"ground-truth" label to the entire set. Then, we single out 100 images with open eyes and 100 with
closed eyes, forming a validation set, and treat the remaining 69, 800 samples as the training set. We
train a bi-classification model (with ResNet-18 backbone) on such an imbalanced training dataset.
The converged model gives 52% accuracy on the validation set.

To balance the training set, we use LowRankGAN to synthesize 29, 800 closed-eyes samples (e.g.,
randomly sampling latent codes and moving the latent codes towards the closing-eye boundary) and
replace 29, 800 samples from the original training set. Note that the GAN model is also trained on
FFHQ, meaning that we do not use additional closed-eyes data in the entire training process (even
when training the GAN model). Hence, the comparison is fair. After the replacement, we train the
bi-classification model with the same structure and training hyper-parameters (e.g., batch size and
learning rate). The new model improves the accuracy from 52% to 95%.

From the above experiments, we can see that LowRankGAN indeed has the potential to augment the
real data, especially for rare samples. This will be of great importance to alleviate some long-tail
issues in the industry.
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