
A Derivation of the parameter update rule

The parameter update rule in equation 1 can be derived from the linear distance loss [19, 29] between
the membrane potential and the spiking threshold

L(V (t), Vthr) = V (t)− Vthr, (17)

by first taking the partial derivative of the loss function

∂L(V (t), Vthr)

∂θ
=

∂

∂θ
V (t)− ∂

∂θ
Vthr =

∂V (t)

∂θ
(18)

and then setting the direction of the gradient depending on the error signal. Error signals are generated
by comparing the output spike trains of the teacher and student neurons. When the student generates
a false positive spike, the distance to the threshold has to be maximised and when the student misses
a target spike, the distance to the threshold has to be minimised, leading to d+ = 1 and d− = −1
respectively and the gradient

∇L(t) = d±
∂V (t)

∂θ
. (19)

Inserting the gradient into the formula for gradient descent optimisation

θt = θt−1 − η∇L, (20)

with learning rate η, leads to

∆θ ∝ −d± ∂V (t)

∂θ
, (21)

which is the parameter update rule.

B Derivation of the spike-response models

B.1 Linear systems

Linear systems of first order differential equations [49, p. 349-365] of the form

ȳ′ = Aȳ + q(t) (22)

are solved by

ȳ(t) = exp(At)ȳ(0) +

∫ t

0

exp(A(t− s))q̄(s)ds. (23)

If A has n independent eigenvectors, we can find exp(At) by using the identity

exp(At) = V exp(Λt)V −1, (24)

where V = [v̄1, v̄2, ..., v̄n] is the eigenvector matrix, V −1 is the inverse of the eigenvector matrix and
Λ = diag(λ1, λ2, ..., λn) is the eigenvalue matrix.

B.2 Dynamics of the leaky integrate-and-fire neuron

The dynamics of the leaky integrate-and-fire neuron with current-based synaptic inputs are determined
by a linear system of two differential equations and a voltage dependent reset rule, which resets
the membrane potential V (t) back to Vr if it hits the threshold potential V (t) = Vthr. By contrast,
the input current I(t) evolves continuously and is never reset. The membrane potential V and the
synaptic current I of the j-th postsynaptic neuron in the network evolve according to

τm
d

dt
Vj = −V + V0 +RmIj(t) (25) and d

dt
Ij = −Ij

τs
+

N∑
i

wijSi(t), (26)

with resting potential V0, synaptic time constant τs, membrane time constant τm = RmCm, mem-
brane resistance Rm, membrane capacitance Cm, synaptic weights wij , and input spike trains

15

Si(t) =
∑
{t̂i} δ(∆t̂i). Rewriting the equations as a first order system of linear differential equations

yields
d

dt

[
Ij
Vj

]
︸ ︷︷ ︸

ȳ′

=

[
− 1/τs 0
Rm/τm − 1/τm

]
︸ ︷︷ ︸

A

[
Ij
Vj

]
︸︷︷︸
ȳ

+

[∑N
i wij

∑
{t̂i} δ(∆t̂i)

V0/τm

]
︸ ︷︷ ︸

q(t)

. (27)

In order to solve the equation, we first have to find the eigenvectors and eigenvalues of A.

B.2.1 Eigenvalues

Finding the characteristic equation

det

(
− 1/τs − λ 0
Rm/τm − 1/τm − λ

)
= (− 1/τs − λ)(− 1/τm − λ)

= λ2 +
1

τs
λ+

1

τm
λ+

1

τsτm

= λ2 +
τs + τm
τsτm

λ+
1

τsτm

(28)

and solving it

−τs + τm
2τsτm

±

√(
τs + τm
2τsτm

)2

− 1

τsτm

!
= 0

⇔ −τs − τm
2τsτm

±

√
τ2
s + 2τsτm + τ2

m

4τsτm
− 4τsτm

4τ2
s τ

2
m

= 0

⇔ −τs − τm
2τsτm

± τs − τm
2τsτm

= 0

(29)

leads to the eigenvalue matrix

Λ =

[
−1/τs 0

0 −1/τm

]
. (30)

B.2.2 Eigenvectors

Next, we find the two corresponding eigenvectors v̄1 and v̄2 by solving (A− λ1|2I)x̄ = 0̄. For v̄1

that is ([
− 1/τs 0
Rm/τm − 1/τm

]
−
[
− 1/τs 0

0 − 1/τs

])[
x1

x2

]
=

[
0
0

]
⇔
[

0 0
Rm/τm −1/τm + 1/τs

] [
x1

x2

]
=

[
0
0

] (31)

with equation 0x1 + 0x2 = 0 revealing that we can choose x2 freely (x2 = c), which then leads to
the second equation

Rm
τm

x1 +

(
− 1

τm
+

1

τs

)
c = 0

⇔ x1 = c

(
τs − τm
Rmτs

) (32)

and therefore to

v̄1 = c

[
(τs − τm)/Rmτs

1

]
. (33)

Analogically we find v̄2([
− 1/τs 0
Rm/τm − 1/τm

]
−
[
− 1/τm 0

0 − 1/τm

])[
x1

x2

]
=

[
0
0

]
⇔
[
−1/τs − 1/τm 0

Rm/τm 0

] [
x1

x2

]
=

[
0
0

]
,

(34)

16

which leads to a free choice of x2 = c and x1 = 0 and therefore to the second eigenvector

v̄2 = c

[
0
1

]
. (35)

The complete eigenvector matrix is then

V =

[
(τs − τm)/Rmτs 0

1 1

]
. (36)

B.2.3 Inverse of eigenvector matrix

Finally, we have to find the inverse of the eigenvector matrix:

[V I] =

[
(τs − τm)/Rmτs 0 1 0

1 1 0 1

]
·Rmτs/(τs − τm)

=

[
1 0 Rmτs/(τs − τm) 0
1 1 0 1

]
II - I

=

[
1 0 Rmτs/(τs − τm) 0
0 1 − Rmτs/(τs − τm) 1

]
= [IV −1].

(37)

B.2.4 Solution

Using the identity in equation 24, we can then solve the matrix exponential:

exp(At) = V exp(Λt)V −1

=

 τs−τmRmτs
0

1 1

exp
(
−t
τs

)
0

0 exp
(
−t
τm

)V −1

=

 τs−τmRmτs
exp

(
−t
τs

)
0

exp
(
−t
τs

)
exp

(
−t
τm

) Rmτs
τs−τm 0

−Rmτs
τs−τm 1

=

 exp
(
−t
τs

)
0

− Rmτs
τs−τm

(
exp

(
−t
τm

)
− exp

(
−t
τs

))
exp

(
−t
τm

) .

(38)

Note that − Rmτs
τs−τm > 0 since 0 < τs < τm and therefore the sign of the weights in later substitution

steps is preserved. In the following we substitute

K(t) = exp

(
− t

τm

)
− exp

(
− t

τs

)
(39)

and call K(t) the voltage kernel. Using the solution of the matrix exponential, we can then derive the
null solution

Vn(t) = exp(At)ȳ(0)

=

 exp
(
−t
τs

)
0

− Rmτs
τs−τmK(t) exp

(
−t
τm

) ȳ(0)

=

 c1 exp
(
−t
τs

)
−c1 Rmτs

τs−τmK(t) + c2 exp
(
−t
τm

)
(40)

17

and the particular solution

Vp(t) =

∫ t

0

exp(A(t− s))q̄(s)ds

=

∫ t

0

 exp
(
−(t−s)
τs

)
0

− Rmτs
τs−τmK(t− s) exp

(
−(t−s)
τm

)∑N
i wij

∑
{t̂i} δ(s− ti)

V0/τm

ds

=

 ∑N
i wij

∑
{t̂i}

∫ t
0

exp
(
−(t−s)
τs

)
δ(s− ti)ds

− Rmτs
τs−τm

∑N
i wij

∑
{t̂i}

∫ t
0
K(t− s)δ(s− ti)ds

+

 0

V0/τm
∫ t
0

exp
(
−(t−s)
τm

)
ds

=

 ∑N
i wij

∑
{t̂i} exp

(
ti−t
τs

)
− Rmτs
τs−τm

∑N
i wij

∑
{t̂i}K(t− t̂i)

+

 0

V0 − V0 exp
(
−t
τm

) .

(41)

The final solution is then the sum of the null and particular solution, which yields

Ij(t) = −c1 exp

(
−t
τs

)
+

N∑
i

wij
∑
{t̂i}

exp

(
ti − t
τs

)
(42)

for the input current and

Vj(t) = −c1
Rmτs
τs − τm

K(t) + c2 exp

(
−t
τm

)
− Rmτs
τs − τm

N∑
i

wij

∑
{t̂i}

K(t− t̂i) + V0 − V0 exp

(
−t
τm

)
(43)

for the membrane potential.

By setting the initial conditions for the input current and the membrane potential to c1 = 0 and
c2 = V0 respectively and by including the factor − Rmτs/τs − τm in the synaptic weights we arrive at
the spike response model [34]

Vj(t) = V0 +

N∑
i

wij
∑
{t̂i}

K(t− t̂i). (44)

This equation describes only the dynamics of the membrane potential below the threshold. By adding
a voltage reset at output spike times t̂j , i.e. when the membrane potential reaches the threshold
V (t) = Vthr, we arrive at the final formula for the dynamics of the leaky resonate-and-fire neuron

Vj(t) = V0 +

N∑
i

wij
∑
{t̂i}

K(t− t̂i) + (Vr − Vthr)
∑
{t̂j}

exp

(
−(t− t̂j)

τm

)
. (45)

B.3 Dynamics of the leaky resonate-and-fire neuron

In this section, we derive the dynamics of the leaky resonate-and-fire neuron. They are determined
by a voltage dependent reset rule and by two coupled linear differential equations for the synaptic
currents Ĩ and membrane potential Ṽ :

d

dt
Ṽj = ωĨ + bṼj (46) and d

dt
Ĩj = bĨ − ωṼj +

N∑
i

wijS̃i(t), (47)

with damping factor b, frequency of the subthreshold oscillations ω, synaptic weights wij and input
spike trains S̃i(t) =

∑
{t̂i>t̂j} δ(∆t̂i). Rewriting the equations as a linear system yields

d

dt

[
Ĩj
Ṽj

]
︸ ︷︷ ︸

ȳ′

=

[
b −ω
ω b

]
︸ ︷︷ ︸

A

[
Ĩj
Ṽj

]
︸︷︷︸
ȳ

+

[∑N
i wij

∑
{t̂i} δ(∆t̂i)

0

]
︸ ︷︷ ︸

q(t)

. (48)

18

If if the membrane potential Ṽ (t) hits the threshold Ṽthr = 1, both the membrane potential and the
resonant current are reset to Ṽr and Ĩr respectively. This is in contrast to the leaky integrate-and-fire
neuron where only the membrane potential but not the synaptic currents are reset. Following section
B.1, we next derive the eigenvalues and eigenvectors of the linear system.

B.3.1 Eigenvalues

Finding the Eigenvalues first requires finding the characteristic equation

det

(
b− λ −ω
ω b− λ

)
= (b− λ)(b− λ)− (−ωω)

= λ2 − 2bλ+ b2 + ω2

(49)

and then solving it

b±
√
b2 − (b2 + ω2)

!
= 0

⇔ b± iω,
(50)

leading to the corresponding eigenvalue matrix

Λ =

[
b+ iω 0

0 b− iω

]
. (51)

B.3.2 Eigenvectors

Next, we find the eigenvectors v̄1 and v̄2 by solving (A− λ1|2I)x̄ = 0̄([
b −ω
ω b

]
−
[
b± iω 0

0 b± iω

])[
x1

x2

]
=

[
0
0

]
. (52)

For the first eigenvalue, this is [
−iω −ω
ω −iω

] [
x1

x2

]
=

[
0
0

]
II− i · I

⇔
[
−iω −ω

0 0

] [
x1

x2

]
=

[
0
0

]
,

(53)

which leads to x2 = c and

−iωx1 − cω = 0

⇔ x1 = −cω
iω

⇔ x1 = ci

(54)

and therefore to

barv1 = c

[
i
1

]
. (55)

For the second eigenvalue, this is [
iω −ω
ω iω

] [
x1

x2

]
=

[
0
0

]
II + i · I

⇔
[
iω −ω
0 0

] [
x1

x2

]
=

[
0
0

]
,

(56)

which leads to c2 = c and

iωx1 − cω = 0

⇔ x1 =
cω

iω
⇔ x1 = −ci

(57)

19

and therefore to

v̄2 = c

[
−i
1

]
. (58)

The complete eigenvector matrix is then

V =

[
i −i
1 1

]
. (59)

B.3.3 Inverse of eigenvector matrix

Lastly, we have to find the inverse of the eigenvector matrix

[V I] =

[
i −i 1 0
1 1 0 1

]
· − i
·1/2

=

[
1 −1 −i 0

1/2 1/2 0 1/2

]
II− 1/2I

=

[
1 −1 −i 0
0 1 i/2 1/2

]
I + II

=

[
1 0 −i/2 1/2
0 1 i/2 1/2

]
= [IV −1].

(60)

B.3.4 Solution

Now we can use the identity in equation 24 to solve the matrix exponential

exp(At) = V exp(Λt)V −1

=

[
i −i
1 1

] [
exp(tλ1) 0

0 exp(tλ2)

] [
−i/2 1/2
i/2 1/2

]
=

[
i exp(tλ1) −i exp(tλ2)
exp(tλ1) exp(tλ2)

] [
−i/2 1/2
i/2 1/2

]
=

1

2

[
exp(tλ1) + exp(tλ2) i exp(tλ1)− i exp(tλ2)
−i exp(tλ1) + i exp(tλ2) exp(tλ1) + exp(tλ2)

]
=

[
exp(tb) cos(tω) − exp(tb) sin(tω)
exp(tb) sin(tω) exp(tb) cos(tω)

]
(61)

to then derive the null solution
Vn(t) = exp(At)ȳ(0)

=

[
exp(tb) cos(tω) − exp(tb) sin(tω)
exp(tb) sin(tω) exp(tb) cos(tω)

]
ȳ(0)

=

[
exp(tb)(c1 cos(tω)− c2 sin(tω))
exp(tb)(c1 sin(tω) + c2 cos(tω))

] (62)

and the particular solution

Vp(t) =

∫ t

0

exp(A(t− s))q̄(s)ds

=

∫ t

0

[
exp((t− s)b) cos((t− s)ω) − exp(t− s) sin((t− s)ω)
exp((t− s)b) cos((t− s)ω) − exp(∆tsb) sin(∆tsω)

]
[∑N

i wij
∑
{t̂i>t̂j} δ(s− ti)

0

]
ds

=

∫ t

0

[∑N
i wij

∑
{t̂i>t̂j} δ(s− ti) exp(∆tsb) cos(∆tsω)∑N

i wij
∑
{t̂i>t̂j} δ(s− ti) exp(∆tsb) sin(∆tsω)

]
ds

=

[∑N
i wij

∑
{t̂i>t̂j} exp(∆t̂ib) cos(∆t̂iω)∑N

i wij
∑
{t̂i>t̂j} exp(∆t̂ib) sin(∆t̂iω)

]
.

(63)

20

The final solution is then the sum of the null and particular solutions:

Ĩj(t) = exp(tb)(c1 cos(tω)− c2 sin(tω)) +

N∑
i

wij
∑
{t̂i>t̂j}

exp(∆t̂ib) cos(∆t̂iω) (64)

Ṽj(t) = exp(tb)(c1 sin(tω) + c2 cos(tω)) +

N∑
i

wij
∑
{t̂i>t̂j}

exp(∆t̂ib) sin(∆t̂iω). (65)

By setting the initial conditions c1 and c2 to 0, we arrive at the spike response model

Ṽj(t) =

N∑
i

wij
∑
{t̂i>t̂j}

exp(∆t̂ib) sin(∆t̂iω). (66)

This describes only the dynamics of the subthreshold membrane potential. In contrast to the leaky
integrate-and-fire neuron, all input currents are reset if an output spike is elicited and the dynamics are
set to a specific point at the phase plane. Thus, in order to receive the final solution for the membrane
potential, we have to add a voltage and current reset:

Ṽj(t) =

N∑
i

wij
∑
{t̂i>t̂j}

exp(∆t̂ib) sin(∆t̂iω)

+ exp(∆t̂jb)(Ṽr cos(∆t̂jω) + Ĩr sin(∆t̂jω)).

(67)

C Log-normal probability density

Given the mean µw and variance σ2
w of a log-normal distribution [50], the cumulative distribution

function is given by

FX(x) = Φ

(
ln(x)− µ

σ

)
, (68)

where Φ is the cumulative distribution function of the standard normal distribution and µ and σ are
the mean and standard deviation of the normal distribution underlying the log-normal distribution.
The parameters µ and σ can be derived from µw and σ2

w by solving

µ = log

(
µ2
w√

µ2
w + σ2

w

)
(69) and σ2 = log

(
1 +

σ2
w

µ2
w

)
. (70)

In order to calculate the value of the 99% boundary of the cumulative distribution function, we have
to solve equation 68 for x

0.99 = Φ

(
ln(x)− µ

σ

)
⇔ x = exp

(
Φ−1(0.99)σ + µ

)
,

(71)

where Φ−1 is the percent point function of the standard normal distribution. We choose the mean
postsynaptic potential as a twentieth of the distance between resting potential and threshold

µw =
Vthr − V0

20
(72) and the variance as σ2

w =

(
Vthr − V0

25

)2

. (73)

Inserting those values into equations 69 and 70 then yields x ≈ 0.2, i.e. approximately 99% of
the cumulative distribution function is below one fifth of the distance between resting potential and
threshold.

D Normalisation factors

D.1 Leaky integrate-and-fire neuron

The shape of the voltage kernel K(t) depends on the two parameters τs and τm. In the following we
derive the factor κ, such that the maximum amplitude of the voltage kernel is normalised to one and
therefore is exactly scaled by the size of the corresponding synaptic weights wij [38, p. 143].

21

To this end, we first find the position of the maximum amplitude x̂ of the voltage kernel
d

dx
K(t)

!
= 0

⇔ d

dx
exp

(
− x

τm

)
− d

dx
exp

(
− x
τs

)
= 0

⇔ 1

τs
exp

(
− x

τs

)
− 1

τm
exp

(
− x

τm

)
= 0

⇔ x

τm
− x

τs
= ln

(
1

τm

)
− ln

(
1

τs

)
⇔ τsx− τmx

τsτm
= ln

(
τs
τm

)
⇔ x(τs − τm) = ln

(
τs
τm

)
τsτm

⇒ x̂ = ln

(
τs
τm

)
τsτm
τs − τm

(74)

and then choose κ such that it normalises the maximum

κ

(
exp

(
− x̂

τm

)
− exp

(
− x̂

τs

))
!
= 1

⇒κ =
1

exp
(
− x̂

τm

)
− exp

(
− x̂

τs

) .
(75)

D.2 Leaky resonate-and-fire neuron

The shape and amplitude of a single synaptic input

exp(∆t̂ib) sin(∆t̂iω) (76)
depends on the parameters b and ω. In order for input spikes to cause a maximum postsynaptic
potential that is equivalent to the size of the corresponding sampled weight, we normalise the
maximum amplitude of synaptic inputs to one. Accordingly, we find all times at which extrema occur

d

dx
exp(xb) sin(xω)

!
= 0

⇔ exp(xb)(b sin(xω) + ω cos(xω)) = 0

⇔ b sin(xω) = ω cos(xω)

⇔ ω

b
=

cos(xω)

sin(xω)

⇒ x̂(n) =
πn− arctan

(
ω
b

)
ω

, n ∈ Z.

(77)

Since b ≤ 0, exp(x̂b) stays stable or decays exponentially, therefore, the biggest extremum occurs
for n = 0. Finally, we set κ̃ such that it normalises the amplitude

κ̃ exp(x̂(0)b) sin(x̂(0)ω)
!
= 1

⇒ κ̃ =
1

exp(x̂(0)b) sin(x̂(0)ω)
.

(78)

E Event-based dynamics

The formulas for the temporal dynamics and their partial derivatives are based on sums over spike
times. To avoid storing and summing over all past spike times, the formulas can be written as a
recurrence relation by factorising the exponentials.

22

E.1 Integrate-and-fire neuron

The equations of the membrane potential (eq. 3) and corresponding partial derivatives (eq. 8-11) of
the leaky integrate and fire neuron contain sums over spike trains of the form∑

{t̂k}

a exp(b(t− t̂k)), (79)

where t̂k is either input t̂i or output spikes t̂j , a is 1 or ∆t̂k and b is either −1/τs or −1/τm. In the
following, we first derive the recurrence relation for a = 1 and then analogously for for a = ∆t̂k.
Writing the first and second term of equation 79 with a = 1 and factorising the exponentials yields

exp(b(t− t̂1))

⇔ exp(b(t− t̂1))(1)
(80)

and

exp(b(t− t̂1)) + exp(b(t− t̂2))

⇔ exp(b(t− t̂2))(exp(b(t̂2 − t̂1)) + 1︸ ︷︷ ︸
c

) (81)

Factorisation of the third term

exp(b(t− t̂1)) + exp(b(t− t̂2)) + exp(b(t− t̂3))

⇔ exp(b(t− t̂3))(exp(b(t̂3 − t̂2 − t̂1)) + exp(b(t̂3 − t̂2)) + 1)

⇔ exp(b(t− t̂3))(c exp(b(t̂3 − t̂2)) + 1)

(82)

reveals the inherent recurrent structure of the factorisation, which allows to rewrite the sum over
exponentials as event-based recurrence relation

c0 = 1

c1 = c0 exp(b(t̂2 − t̂1)) + 1

c2 = c1 exp(b(t̂3 − t̂2)) + 1

c3 = ...

⇒ cnew = cold exp(b(t̂k − t̂k−1)) + 1

(83)

and therefore the sum over exponentials as defined in eq. 79 with a = 1 as

exp(b(t− t̂k))ck−1. (84)

Similarly, equations of the form ∑
{t̂k}

(t− t̂k) exp(b(t− t̂k)) (85)

can be separated into
t
∑
{t̂k}

exp(b(t− t̂k)) (86)

and ∑
{t̂k}

t̂k exp(b(t− t̂k)). (87)

While the first part is identical to equation 79 with a = 1, except an additional multiplicative factor t,
the second part can be solved by keeping track of the t̂k during factorisation. Writing the first three
terms yields

t̂1 exp(b(t− t̂1)), (88)

exp(b(t− t̂2))(t̂1 exp(b(t̂2 − t̂1)) + t̂2︸ ︷︷ ︸
ĉ

), (89)

23

exp(b(t− t̂3))(ĉ exp(b(t̂3 − t̂2)) + t̂3), (90)

leading to
ĉnew = ĉold exp(b(t̂k − t̂k−1)) + t̂k. (91)

In summary, this allows us to rewrite the sum over input spikes in the equation of the membrane
potential (eq. 3) as

ΣK(t) =
∑
{t̂i}

K(∆t̂i)

= c exp(b∆tk)− c exp(b∆tk),
(92)

where the first summand uses t̂k = t̂i and b = −1/τm, and the second summand uses t̂k = t̂i and
b = −1/τs. The sum over output spikes is

Σreset(t) =
∑
{t̂j}

exp

(
−∆t̂j
τm

)
= c exp(b∆tk),

(93)

with t̂k = t̂j and b = −1/τm. The sums in the derivatives with respect to the synaptic weights (eq.
8) and with respect to the reset potential (eq. 11) are also solved by ΣK(t) and Σreset(t). However,
the three sums in the derivatives with respect to the time constants are of different form. For the
derivative with respect to the synaptic time constant it follows that

Στs(t) =
∑
{t̂i}

∆t̂i exp

(
−∆t̂i
τs

)
= tc exp(b∆tk)− ĉ exp(b∆tk)

(94)

with t̂k = t̂i and b = −1/τs in both summands. Similarly, for the two sums in the membrane time
constant

Στm1(t) =
∑
{t̂i}

∆t̂i exp

(
−∆t̂i
τm

)
= tc exp(b∆tk)− ĉ exp(b∆tk)

(95)

with t̂k = t̂i and b = −1/τm in both summands and

Στm2(t) =
∑
{t̂j}

∆t̂j exp

(
−∆t̂j
τm

)
= tc exp(b∆tk)− ĉ exp(b∆tk)

(96)

with t̂k = t̂j and b = −1/τm respectively. Please note, that the initial value for all recurrence variables
is c = 1. This concludes the derivation of the event-dependent recurrence relations for the membrane
potential of the leaky integrate-and-fire neuron and its partial derivatives.

E.2 Resonate-and-fire neuron

The equation of the membrane potential (eq. 5) and corresponding partial derivatives (eq. 12-16) of
the leaky resonate-and-fire neuron contain sums over input spike trains of the form∑

{t̂i>t̂j}

a exp(∆t̂ib)g(∆t̂iω), (97)

where a is either 1 or ∆t̂i and g is either the sine or cosine function. In the following, we are going
to derive the recurrence relation for a = ∆t̂i and the sine function, the solution for a = 1 and the

24

cosine function follow analogously. First, we note that, since synaptic currents are reset after each
output spike {t̂i > t̂j}, input spike times can be written relative to the last output spike time

∆t̂i = t− t̂i = t− t̂j − (t̂i − t̂j) = ∆t̂j −∆t̂ij . (98)

This can be used to separate equation 97 into

∆t̂j
∑
{t̂i>t̂j}

exp(∆t̂ib) sin(∆t̂iω) (99)

and ∑
{t̂i>t̂j}

∆t̂ij exp(∆t̂ib) sin(∆t̂iω). (100)

The sum in equation 99 is then again identical to equation 97 with a = 1. Writing the first two terms
of equation 100

∆t̂1j exp(∆t̂1b) sin(∆t̂1ω) + ∆t̂2j exp(∆t̂2b) sin(∆t̂2ω) (101)

and factorising the exponentials yields

exp(∆t̂2b)
[
∆t̂1j exp((t̂2 − t̂1)b) sin(∆t̂1ω) + ∆t̂2j sin(∆t̂2ω)

]
. (102)

Using the identity in 98 and

sin(α− β) = sin(α) cos(β)− cos(α) sin(β) (103)

this can be rewritten to

exp(∆t̂2b)

[
sin(∆t̂jω)

[
∆t̂1j exp((t̂2 − t̂1)b) cos(∆t̂1jω) + ∆t̂2j cos(∆t̂2jω)

]
− cos(∆t̂jω)

[
∆t̂1j exp((t̂2 − t̂1)b) sin(∆t̂1jω) + ∆t̂2j sin(∆t̂2jω)

]] (104)

which, since ∆t̂ij is a constant, reveals the recurrence relation

exp(∆t̂ib)
[
ci sin(∆t̂jω)− di cos(∆t̂jω)

]
(105)

with

c1 = ∆t̂1j cos(∆t̂1jω)

c2 = c1 exp((t̂2 − t̂1)b) + ∆t̂2j cos(∆t̂2jω)

c3 = c2 exp((t̂3 − t̂2)b) + ∆t̂3j cos(∆t̂3jω)

...

(106)

and

d1 = ∆t̂1j sin(∆t̂1jω)

d2 = d1 exp((t̂2 − t̂1)b) + ∆t̂2j sin(∆t̂2jω)

d3 = d2 exp((t̂3 − t̂2)b) + ∆t̂3j sin(∆t̂3jω)

...

(107)

Analogously, if g is the cosine function, we can use

cos(α− β) = cos(α) cos(β) + sin(α) sin(β) (108)

to derive the recurrence relation

exp(∆t̂ib)
[
ci cos(∆t̂jω) + di sin(∆t̂jω)

]
, (109)

and finally, if a = 1, ci and di are calculated without the multiplicative ∆t̂ij terms. More generally,
we can write the recurrence relation variables as

cnew
i = cold

i exp((t̂i − t̂i−1)b) + â cos(t̂iω) (110)

25

and
dnew
i = dold

i exp((t̂i − t̂i−1)b) + â sin(t̂iω) (111)

with the multiplicative factor â ∈ [1,∆t̂ij], the arrival time of the last incoming spike t̂(i−1) and
arrival time of the current incoming spike t̂i.

Specifically, this allows us to rewrite the sum over input spikes in the equation of the membrane
potential (eq. 5) and the partial derivative with respect to the synaptic weights (eq. 12) as

ΣṼ (t) = Σw(t) =
∑
{t̂i>t̂j}

exp(∆t̂ib) sin(∆t̂iω)

= exp(∆t̂ib)
[
ci sin(∆t̂jω)− di cos(∆t̂jω)

]
,

(112)

with â = 1. Further, the sum in the partial derivative with respect to the damping factor b (eq. 13)
with â = ∆t̂j is

Σb(t) =
∑
{t̂i>t̂j}

∆t̂i exp(∆t̂ib) sin(∆t̂iω)

= ∆t̂jΣṼ (t)− exp(∆t̂ib)
[
ci sin(∆t̂jω)− di cos(∆t̂jω)

]
.

(113)

And finally, we can rewrite the sum in the partial derivative with respect to the frequency of the
subthreshold oscillations ω (eq. 14) as

Σω(t) =
∑
{t̂i>t̂j}

∆t̂i exp(∆t̂ib) cos(∆t̂iω)

= ∆t̂j exp(∆t̂ib)
[
ci cos(∆t̂jω) + di sin(∆t̂jω)

]
− exp(∆t̂ib)

[
ci cos(∆t̂jω) + di sin(∆t̂jω)

]
,

(114)

where the first pair of recurrence variables c1 and d1 use â = 1 and the second pair â = ∆t̂ij . This
concludes the derivation of the event-based update rules.

26

F Learning dynamics contract and do not converged

0 200 400 600
Time [min]

0.25

0.00

0.25

0.50

w
= 1 1e 4

0 200 400 600
Time [min]

= 5 1e 4

0 200 400 600
Time [min]

= 10 1e 4

0 200 400 600
Time [min]

= 20 1e 4

Figure 5: Training the synaptic weights of a LRF neuron with stochastic gradient descent reveals that
the learning dynamics (eq. 1) contract and do not converge to the solution. Parameters get close to
but then keep fluctuating around their target value. The size of the fluctuations is dependent on the
size of the learning rate η.

G Varying target computations

B

A

Figure 6: The online learning algorithm can adapt to varying target computations. A, B: If the target
computation is changed (dotted vertical lines), the student smoothly adapts and converges towards
the new target computation (dots) in LIF (A) and LRF (B) neurons.

H Training synaptic weights only

A B

C D

Figure 7: Solely training synaptic weights is insufficient to learn target computations. A, C: When
sampling initial parameters as defined in section 2.5 and subsequently optimising synaptic weights
while keeping other parameters fixed, synaptic weights and output-firing rates do not converge to
their target values in LIF (A) and LRF (C) neurons. B, D: As training progresses from 0.1%, 1%
to 100% of training time, the probability distribution of students’ output spike times around target
spikes for LIF (C) and LRF (D) neurons maintains high variance i.e. fails to accurately map input
spike trains to target spike trains (cf. Fig 4G,H).

27

I Vanilla training

B

A

Figure 8: Online learning without the event-dependent scaling factor fails. A, B: When training a LIF
(A) or LRF (B) neuron according to the gradient-based learning rule (eq. 1) wihtout the scaling-factor
λ(∆d±), the synaptic weights collapse and the intrinsic parameters diverge. Interestingly, the LIF
neuron’s target firing rate rout is getting close to the target value (dot) despite the diverging parameters.

J LRF parameter combinations

w b V R I R w, b w,
w, V R

w, I R b, b, V R b, I R , V R , I R
V R,

I R
w, b,

w, b, V R

w, b, I R

w,
, V R

w,
, I R

w, V R,
I R

b,
, V R

b,
, I R

b, V R,
I R

, V R,
I R

w, b,
, V R

w, b,
, I R

w, b, V R,
I R

w,
, V R,

I R

b,
, V R,

I R

w, b,
, V R,

I R
0

20
40
60
80

100

%
 C

on
ve

rg
ed

Vanilla
SuperSpike (= 0.25)
Ours

Figure 9: Percentage of n = 30 students that converged to the target values for all possible parameter
combinations with vanilla, surrogate gradient and the EDS algorithm in LRF neurons. Surrogate
gradients performs similar to the vanilla algorithm. EDS reliably contracts for all parameter combina-
tions and in particular outperforms the other two algorithms for parameter combinations that include
the voltage reset Vr.

28

K Surrogate gradient learning trajectories

2.5

0.0

2.5
(w

)

1
0
1

(
s)

1
0
1

(
m

)

5

0

5

(V
re

se
t)

1

0

1

(r
ou

t)

2.5

0.0

2.5

(w
)

1
0
1

(
s)

1
0
1

(
m

)

5

0

5

(V
re

se
t)

1

0

1

(r
ou

t)

2.5

0.0

2.5

(w
)

1
0
1

(
s)

1
0
1

(
m

)

5

0

5

(V
re

se
t)

1

0

1

(r
ou

t)

2.5

0.0

2.5

(w
)

1
0
1

(
s)

1
0
1

(
m

)

5

0

5

(V
re

se
t)

1

0

1

(r
ou

t)

2.5

0.0

2.5

(w
)

1
0
1

(
s)

1
0
1

(
m

)

5

0

5

(V
re

se
t)

1

0

1

(r
ou

t)

2.5

0.0

2.5

(w
)

1
0
1

(
s)

1
0
1

(
m

)

5

0

5

(V
re

se
t)

1

0

1

(r
ou

t)

2.5

0.0

2.5

(w
)

1
0
1

(
s)

1
0
1

(
m

)

5

0

5

(V
re

se
t)

1

0

1

(r
ou

t)

2.5

0.0

2.5

(w
)

1
0
1

(
s)

1
0
1

(
m

)

5

0

5

(V
re

se
t)

1

0

1

(r
ou

t)

2.5

0.0

2.5

(w
)

1
0
1

(
s)

1
0
1

(
m

)

5

0

5

(V
re

se
t)

1

0

1

(r
ou

t)
2.5

0.0

2.5

(w
)

1
0
1

(
s)

1
0
1

(
m

)

5

0

5

(V
re

se
t)

1

0

1

(r
ou

t)

2.5

0.0

2.5

(w
)

1
0
1

(
s)

1
0
1

(
m

)

5

0

5

(V
re

se
t)

1

0

1
(r

ou
t)

2.5

0.0

2.5

(w
)

1
0
1

(
s)

1
0
1

(
m

)

5

0

5

(V
re

se
t)

1

0

1

(r
ou

t)

2.5

0.0

2.5

(w
)

1
0
1

(
s)

1
0
1

(
m

)

5

0

5

(V
re

se
t)

1

0

1

(r
ou

t)

2.5

0.0

2.5

(w
)

1
0
1

(
s)

1
0
1

(
m

)

5

0

5

(V
re

se
t)

1

0

1

(r
ou

t)

101 102 103 104

Time [min]

2.5

0.0

2.5

(w
)

101 102 103 104

Time [min]

1
0
1

(
s)

101 102 103 104

Time [min]

1
0
1

(
m

)

101 102 103 104

Time [min]

5

0

5

(V
re

se
t)

101 102 103 104

Time [min]

1

0

1

(r
ou

t)

Figure 10: Learning trajectories for LIF neurons with SuperSpike surrogate gradient (β = 0.25), for
all possible parameter combinations. Even when trained only on synaptic weights (first row), many
initialisation get stuck in a local minimum with a close to accurate output firing rate but synaptic
weights that are different from the teacher’s weights, i.e. a different input-output function. Similarly,
for other parameter combinations, the output firing rate converges to and is kept close to the right
level, however, often at the cost of inaccurate or even diverging parameter values.

29

