
A Proof of Theorem 1: Normalizing Flow as a special case of DiffFlow
Proof. As g(t) → 0, the stochastic trajectories become deterministic. The forward SDE in DiffFlow reduces to
the ODE in Normalizing Flow. In the discrete implementation, DiffFlow reduces to a normalizing flow consisting
of the discrete layers

Fi(x, θ) = x+ f(x, ti, θ)Δti xi = Fi(xi−1, θ). (17)
In the following, we show that minimizing the KL divergence between trajectory distributions is equivalent to
minimizing the negative log-likelihood in Normalizing flow as g(t) → 0+. The derivation is essentially the
same as that in [42] except that our model is for density estimation instead of sampling [42].

The discrete forward dynamics of DiffFlow is xi = Fi(xi−1) + giδ
F
i

√
Δti, and it is associated with the

conditional distribution
pF (xi|xi−1) = N (xi − Fi(xi−1);0, g

2
i IΔti). (18)

Denote the conditional distribution for the backward process by

pB(xi−1|xi) =
pB(xi−1)pB(xi|xi−1)�

pB(x)pB(xi|x)dx
. (19)

For a fixed forward process, minimizing the KL divergence implies that pB(xi−1|xi) is the posterior of
pF (xi|xi−1), that is, pF (xi|xi−1) = pB(xi|xi−1). This is possible when the diffusion intensity g(t) is small.
It follows that

pF (xi|xi−1)

pB(xi−1|xi)
=

�
pB(x)pB(xi|x)dx

pB(xi−1)
. (20)

In the deterministic limit gi → 0+,

lim
g→0+

�
pB(x)pB(xi|x) = lim

g→0+

�
pB(x)N (xi − Fi(x);0, g

2
i IΔti)dx

= lim
g→0+

�
pB(F

−1
i (x�))N (xi − x�;0, g2i IΔti)|det(

∂F−1
i (x�)

∂x�)|dx�

= pB(F
−1
i (xi))|det(

∂F−1
i (xi)

∂xi
)|

= pB(xi−1)|det(
∂F−1

i (xi)

∂xi
)|.

The second equality is based on the rule of change variable for the map x� = F−1
i (x). Plugging the above and

Equation (20) into Equation (13), we arrive at

Eτ∼pF [log pF (x0)− log pB(xN) +
N�

i=1

log | det ∂F
−1
i (xi)

∂xi
|]. (21)

Therefore minimizing the KL divergence between forward and backward trajectory distributions is equivalent to
maximizing the log probability as in Equation (4).

B Proofs for Eq (10) and Eq (14)
B.1 Proof of Eq (10)
Eq (10) follows from the disintegration of measure theorem and the non-negativity of KL divergence. More
specifically, by disintegration of measure,

pF (τ) =

�
pF (τ |x(t))pF (x(t))dx(t) pB(τ) =

�
pB(τ |x(t))pB(x(t))dx(t).

Eq (10) follows that

KL(pF (τ)|pB(τ)) = KL(pF (x(t))|pB(x(t))+
�

KL(pF (τ |x(t))|pB(τ |x(t)))dx(t) ≥ KL(pF (x(t))|pB(x(t)).

B.2 Proof for Eq (14) and log-likelihood of pB(xi|xi+1)

For a given trajectory τ = {xi} generated from forward dynamics, the density of such trajectory in the
distribution induced by backward dynamics

pB(τ) = pB(xT)

N�

i=1

pB(xi−1|xi).

13

And term pB(xi|xi+1) can be written as

pB(xi|xi+1) =

�
pB(xi|xi+1, δ

B
i)N (δBi)dδBi ,

where N denotes the standard normal distribution. The distribution pB(xi|xi+1) and pB(xi|xi+1, δ
B
i) encode

dynamics in Eq (9). Therefore density can be reformulated as

pB(xi|xi+1, δ
B
i) = I

xi=xi+1−[fi+1(xi+1)−g2i+1si+1(xi+1)]Δti+gi+1δ
B
i

√
Δti

pB(xi|xi+1) = N (
1

gi+1

√
Δt

�
xi − xi+1 + [fi+1(xi+1)− g2i+1si+1(xi+1)]Δt

�
)

Thus, the negative log-likelihood term pB(xi|xi+1) is equal to 1
2
(δBi (τ))2 where δBi (τ) is given by Eq 14.

C Derivation of the loss function
The KL divergence between the distributions induced by the forward process and the backward process is

KL(pF (τ)|pB(τ)) = KL(pF (x0)pF (τ |x0)|pB(xN)pB(τ |xN)) (22)

= E
pF (x0)pF (τ |x0)

[log pF (x0)− log pB(xN) + log
pF (τ |x0)

pB(τ |xN)
]

In discrete implementation, the density ratio between conditional forward and reverse process can be reformulated
as

pF (τ |x0)

pB(τ |xN)
=

pF (xN |xN−1) · · · pF (x2|x1)pF (x1|x0)

pB(xN−1|xN) · · · pB(x1|x2)pB(x0|x1)
.

Since
pF (xi|xi−1)

pB(xi−1|xi)
=

giN (δFi |0, 1)
gi+1N (δBi |0, 1) .

and

log
p(δFi)

p(δBi)
=

1

2
[(δBi)2 − (δFi)2],

we can rewrite the loss function as

KL(pF (τ)|pB(τ)) = −H(pF (x0)) + E
τ∼pF

[− log pB(xN) +

N�

i=1

log
pF (xi|xi−1)

pB(xi−1|xi)
]

= −H(pF (x0)) + E
τ∼pF

[− log pB(xN) +
N�

i=1

log
pF (xi|xi−1)

pB(xi−1|xi)
]

= −H(pF (x0)) + E
τ∼pF

[− log pB(xN) + log
g0
gN

+

N�

i=1

log
p(δFi)

p(δBi)
].

The first and third terms are constant, so minimizing KL divergence is equivalent to minimizing

E
τ∼pF

[− log pB(xN) +
N�

i=0

1

2
((δBi)2 − (δFi)2)].

We sample the trajectory τ from the forward process and δFi is Gaussian random noise that is independent of the
model. Thus, its expectation is a constant and the objective function can be simplified to

E
τ∼pF

[− log pB(xN) +

N�

i=1

1

2
(δBi)2]. (23)

Additionally, for a given trajectory τ , the following equations holds

fiΔt+ giδ
F
i

√
Δt = [fi+1 − g2i+1si+1]Δti + gi+1δ

B
i

√
Δti.

Hence, the backward noise can be evaluated as

δBi =
gi

gi+1
δFi − [

fi+1 − fi
gi+1

+ gi+1si+1]
√
Δti. (24)

14

D Implemtation of Stochastic Adjoint in PyTorch [34]
Below is the implementation of stochastic adjoint method with torch.autograd.Function in PyTorch. The
roles of most helper functions and variables can be informed from their names and comments.

class SdeF(torch.autograd.Function):
@staticmethod
@amp.custom_fwd
def forward(ctx , x, model , times , diffusion , condition ,*m_params):

shapes = [y0_.shape for y0_ in m_params]

def _flatten(parameter):
flatten the gradient dict and parameter dict
...

def _unflatten(tensor , length):
return object like parameter groups
...

history_x_state = x.new_zeros(len(times) - 1, *x.shape)
rtn_logabsdet = x.new_zeros(x.shape[0])
delta_t = times[1:] - times[:-1]
new_x = x
with torch.no_grad ():

for i_th , cur_delta_t in enumerate(delta_t):
history_x_state [i_th] = new_x
new_x , new_logabsdet = model.forward_step(

new_x ,
cur_delta_t ,
condition[i_th],
condition[i_th + 1],
diffusion[i_th],
diffusion[i_th + 1],

)
rtn_logabsdet += new_logabsdet

ctx.model = model
ctx._flatten = _flatten
ctx._unflatten = _unflatten
ctx.nparam = np.sum([shape.numel() for shape in shapes])
ctx.save_for_backward(

history_x_state.clone (), new_x.clone (), times ,
diffusion , condition

)
return new_x , rtn_logabsdet

@staticmethod
@amp.custom_bwd
def backward(ctx , dL_dz , dL_logabsdet):

history_x_state , z, times , diffusion , condition = ctx.
saved_tensors

dL_dparameter = dL_dz.new_zeros ((1, ctx.nparam))

model , _flatten , _unflatten = ctx.model , ctx._flatten , ctx.
_unflatten

m_params = tuple(model.parameters ())
delta_t = times[1:] - times[:-1]
with torch.no_grad ():

for bi_th , cur_delta_t in enumerate(\
torch.flip(delta_t , (0,))):
bi_th += 1
with torch.set_grad_enabled(True):

x = history_x_state [-bi_th].requires_grad_(True)
z = z.requires_grad_(True)
noise_b = model.cal_backnoise(

x, z, cur_delta_t ,

15

condition[-bi_th], diffusion[-bi_th]
)

cur_delta_s = -0.5 * (
torch.sum(noise_b.flatten(start_dim=1) ** 2,

dim=1)
)
dl_dprev_state , dl_dnext_state , *dl_model_b =

torch.autograd.grad(
(cur_delta_s),
(x, z) + m_params ,
grad_outputs =(dL_logabsdet),
allow_unused =True ,
retain_graph =True ,

)
dl_dx , *dl_model_f = torch.autograd.grad(

(
model.cal_next_nodiffusion(

x, cur_delta_t , condition [-bi_th - 1]
)

),
(x,) + m_params ,
grad_outputs =(dl_dnext_state + dL_dz),
allow_unused =True ,
retain_graph =True ,

)
del x, z, dl_dnext_state

z = history_x_state [-bi_th]
dL_dz = dl_dx + dl_dprev_state
dL_dparameter += _flatten(dl_model_b).unsqueeze(0)

+ _flatten(dl_model_f).unsqueeze(0)

return (dL_dz , None , None , None , None ,
*_unflatten(dL_dparameter , (1,)))

E 2-D sythetic examples
E.1 Time discretization for DDPM
DDPM uses a fixed noising schema, p(xi|xi−1) = N (xi;

√
1− βixi−1,βiI). The discretization can be

reformulated as
xi =

�
1− βixi−1 +

�
βiwi−1.

Since βi is very small in DDPM implementation, the corresponding SDE is

dx = −1

2
xdt+ dw, (25)

and DDPM follows discretization Δti = βi. Clearly, DDPM has a fixed forward diffusion f(x, t) = − 1
2
x with

no learnable parameters. We can compare trajectory evolution of DDPM with that of DiffFlow in the following
examples.

E.2 Trajectories on 2D points
We use similar architectures for DiffFlow and DDPM. To capture the dependence of the drift as well as the score
networks on time, we use the Fourier feature embeddings with learned frequencies. Points positions embeddings
and the embedded time signals are added before standard MLP layers. In various points datasets, we use 3 layers
MLP with 128 hidden neurons for DiffFlow. We increase the width for DDPM so that the two models have
comparable sizes. We adopt the official code for evaluating FFJORD. To further illustrate the backward process
of all those three models, we include the comparison in Figure 8. We use 30 steps sampling for DiffFlow and
500 steps for DDPM. It can be observed from Figure 8 that DiffFlow diffuses data efficiently and meanwhile
keeps the details of the distributions better.

E.3 NLL comparison on 2D points and Sharp Datasets
The negative log-likelihood results on 2-D data are reported in Table 6. We use torchdiffeq3 for integral
over time. We use atol= 10−5 and rtol= 10−5 for FFJORD and DiffFlow (ODE). Clearly, DiffFlow has

3https://github.com/rtqichen/torchdiffeq

16

F
or
w
ar
d

B
ac
k
w
ar
dD
iff
F
lo
w

B
ac
k
w
ar
d

F
or
w
ar
dD
D
P
M

F
or
w
ar
d

B
ac
k
w
ar
d

F
F
JO

R
D

Figure 8: We compare the forward and backward sequences of DiffFlow, DDPM and FFJORD. Due
to the unsatisfying forward process, the backward sequence and forward sequence for FFJORD are
mismatched. The backward process of DDPM misses the details presented in the forward process. In
contrast, DiffFlow has its backward trajectory distribution in alignment with the forward process.

.

much better performance on all these examples. The advantage of DiffFlow is even more obvious when the
distribution concentrates on a 1d submanifold. Indeed, in the absence of noise as in FFJORD, it is easier to
transform a smooth distribution than a sharp one to a Gaussian distribution. This phenomenon is better illustrated
by comparing performance between Sharp Olympics and Olympics and their trajectories in Figure 9.

S
h
ar
p
O
ly
m
p
ic
s

O
ly
m
p
ic
sD
iff
F
lo
w

S
h
ar
p
O
ly
m
p
ic
s

O
ly
m
p
ic
s

F
F
JO

R
D

Figure 9: Forward sequences of DiffFlow and FFJORD on Sharp Olympics and Olympics. For
FFJORD, it is more challenging to diffuse Sharp Olympics than Olympics. Thanks to the added
noise, DiffFlow is more powerful in transforming data into Gaussian.

.

F Density estimation
We use similar network architectures with the following modifications. Since the ReZero [17] network shows
better convergence property and often leads to lower negative log-likelihood, we use it instead of the MLP
with the cost of additional number of layers parameters for ReZero. We find N = 30 works well for training
on tabular datasets. We normalize the data with zero mean and standard deviation before feeding them into
networks. We search over terminal time T = 0.1, 0.25, 0.5, 0.75, 1.0. We also try different widths and depths
of the network. We stop training once the loss plateaus for five epochs. The architecture choices for different
datasets can be found in Table 7. We rerun the density estimation with different random seeds and report the

17

Table 6: Negative log-likelihood on 2-d synthetic datasets.
Dataset RealNVP FFJORD CIF-ResFlow DiffFlow (ODE)

Sharp Olympics 2.12 1.52 1.32 -0.63
Olympics 2.19 1.64 1.59 1.24
Checkerboard 2.35 2.05 1.95 1.82
Fractal Tree 2.43 2.16 2.17 1.02
Carpet 2.47 2.37 3.32 2.08
2 Spirals 2.04 1.84 1.83 1.73

Dataset layers hidden dims T batchsize

POWER 3 128 1.0 20000
GAS 4 128 0.1 20000
HEPMASS 4 128 0.5 20000
MINIBOONE 3 128 0.75 2500
BSDS300 3 256 0.1 20000

Table 7: DiffFlow architectures for density estimation on tabular data.

standard deviation over 3 runs in Table 8. DiffFlow is trained on one RTX 2080 Ti and the training takes between
14 minutes and 2 hours depending on the datasets and the model size.

G Image generation
G.1 Settings
We rescale the images into [−1, 1] for all experiments on images. We adopt U-net style model as used successfully
in DDPM for both the drift and the score networks and they are trained with training data. We use the Adam
optimizer with a learning rate 2× 10−4 for all three datasets. On MNIST, we use batchsize 128 and train 6k
iterations. It takes 20 hours on one RTX 3090Ti. On CelebA, we train with N = 10 for 10k iterations, N = 30
for next 10k iterations and N = 50 for 10k iterations. It takes around 40 hours on 8 RTX 2080 Ti. On CIFAR10,
we follow the similar scheduling over N = {10, 30, 50, 75} for a total of 100k iterations. It takes around 4 days
in 8 RTX 2080 Ti GPUs. We found that the exponential moving average (EMA) with a decay factor of 0.999
stabilizes the updating of the parameters of models. As it is reported in existing works [17, 41], we also found
EMA dramatically improves the sampling quality. We save checkpoints for every 500 steps and report the best
NLL and sampling quality among those checkpoints. We tested performance with three different random seeds
and report mean in Table 2 and Table 3. The FIDs and NLL reported in this works are based on the selected
checkpoints that achieve the best performance.

Among all hyperparameters, we find that the parameter T is very crucial for training and sampling quality.
The length of time interval deals with the trade-off between diffusion and learning backward process from
the reconstruction. Larger T injects more noise into the processes. On one hand, it helps diffuse data into
Gaussian. On the other hand, larger T requires backward process remove more noise to recover the original data
or generate high-quality samples. Figure 10 shows the impacts of different T values. We sweep the choice of
0.05, 0.1, 0.2, 0.5, 1.0. T = 0.05 works best for CIFAR10 and T = 0.1 for CelebA.

Dataset POWER GAS HEPMASS MINIBOONE BSDS300

RealNVP [8] -0.17± 0.01 -8.33± 0.14 18.71± 0.02 13.55± 0.49 -153.28± 1.78
FFJORD [14] -0.46± 0.01 -8.59± 0.12 14.92± 0.08 10.43± 0.04 -157.40± 0.19
MADE [11] 3.08± 0.03 -3.56± 0.04 20.98± 0.02 15.59± 0.50 -148.85± 0.28
MAF [33] -0.24± 0.01 -10.08± 0.02 17.70± 0.02 11.75± 0.44 -155.69± 0.28
TAN [31] -0.48± 0.01 -11.19± 0.02 15.12± 0.02 11.01± 0.48 -157.03± 0.07
NAF [18] -0.62± 0.01 -11.96± 0.33 15.09± 0.40 8.86± 0.15 -157.73± 0.04

DiffFlow (ODE) -1.04± 0.01 -10.45± 0.15 15.04± 0.04 8.06± 0.13 -157.80± 0.17
Table 8: Average negative log-likelihood (in nats) on tabular datasets [33] for density estimation (lower
is better).

18

G.2 Image Completion
We also perform image completion tasks using our methods. The task is to complete the full images given partial
masked images. The task is similar to image inpainting [27] but we use the whole masked forward trajectory
instead of masked image [41, 17]. For a given real image x, we denote the trajectories {xF

i }Ni=0 by running
forward process started with x0 = x. For a given mask Γ, x̂F

i = xF
i · Γ is the masked image, with · denotes

element wise multiplication. {x̂F
i }Ni=0 gives information for backward process to complete original images.

Instead of simulating reverse-time SDE, we incorporate the signals of {x̂F
i }Ni=0 by

x̄B
i−1 = x̂B

i − [fi(x̂
B
i)− g2i si(x̂

B
i)]Δti + giδ

B
i

√
Δti (26a)

x̂B
i−1 = x̄B

i−1 · (1− Γ) + x̂F
i−1. (26b)

Compared with sampling through the backward process, the Equation (26) iteratively refine the masked regions
based on the unmasked image regions. We present the image completion results in Figure 11 and Figure 12.

G.3 More samples
We present more generated image samples in Figure 13, Figure 14 and Figure 15.

H Marginal Equivalent SDEs
Below we provide a derivation for the marginal equivalent SDEs in Equation (16). The reverse time SDE in
DiffFlow is

dx = [f(x, t)− g2(t)s(x, t)]dt+ g(t)dw, (27)

where the drift f : Rd → Rd, the diffusion coefficients g : R → R, and w(t) ∈ Rd is a standard Brownian
motion. According to Fokker-Planck-Kolmogorov (FPK) Equation for reverse time,

∂p1(x, t)

∂t
= −

�

i

∂

∂xi
{[fi(x, t)− g2(t)si(x, t)]p1(x, t)} − g2(t)

2

�

i

∂2

∂x2
i

[p1(x, t)], (28)

with p1(x, t) being the marginal distribution induced by (27).

Now consider the SDE

dx = [f(x, t)− 1 + λ2

2
g2(t)s(x, t)]dt+ λg(t)dw (29)

with λ ≥ 0. To simplify notation, we denote f̂(x, t) = f(x, t) − 1+λ2

2
g2(t)s(x, t). According to Fokker-

Planck-Kolmogorov (FPK) Equation, its marginal distribution evolves as

∂p2(x, t)

∂t
= −

�

i

∂

∂xi
[f̂i(x, t)p2(x, t)] − λ2g2(t)

2

�

i

∂2

∂x2
i

[p2(x, t)]. (30)

Since
�

i

∂2

∂x2
i

[p(x, t)] =
�

i

∂

∂xi

∂

∂xi
[p(x, t)] =

�

i

∂

∂xi
[p(x, t)

∂ log p(x, t)

∂xi
],

in view of s(x, t) = ∇ log p2(x, t), we can rewrite Equation (30) as

−
�

i

∂

∂xi
[f̂i(x, t)p2(x, t)] − λ2g2(t)

2

�

i

∂2

∂x2
i

[p2(x, t)]

=−
�

i

∂

∂xi
[f̂i(x, t)p2(x, t)]− (λ2 − 1)g2(t)

2

�

i

∂

∂xi
[p2(x, t)

∂ log p2(x, t)

∂xi
]− g2(t)

2

�

i

∂2

∂x2
i

[p2(x, t)]

=−
�

i

∂

∂xi
{[f̂i(x, t) + λ2 − 1

2
g2

∂ log p2(x, t)

∂xi
]p2(x, t)}− g2(t)

2

�

i

∂2

∂x2
i

[p2(x, t)]

=−
�

i

∂

∂xi
{
�
fi(x, t)− g2

∂ log p2(x, t)

∂xi

�
p2(x, t)}− g2(t)

2

�

i

∂2

∂x2
i

[p2(x, t)].

Thus, given that p1(x, T) and p2(x, T) are identical, Equation (28) and Equation (30) are equivalent. Therefore,
Equation (29) and Equation (27) share the same marginal distributions.

19

F
or
w
ar
d

B
ac
kw

ar
d
R
ec
on
st
ru
ct
io
n

S
am

p
le
s

T = 0.01 T = 0.1 T = 0.5

Figure 10: Illustration of impacts of time interval length T . First two rows show the trade-off between
forward diffusion and backward reconstruction. The first row displays the xN while the second row
shows the reconstructed image from xN . We show generated samples from three models in the last
row. With small T , it is easy to reconstruct origin data but difficult to diffuse the data. On the other
hand, more noise makes it diffuse the data effectively but poses more challenges for reconstructions
and as well as sampling high quality samples.

20

Figure 11: CIFAR10 image completion samples

21

Figure 12: CelebA image completion samples

22

Figure 13: Uncurated MNIST Generated samples

23

Figure 14: Uncurated CIFAR10 Generated samples

24

Figure 15: Uncurated CelebA Generated samples

25

