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S1 The Poissonian Benchmark

Our benchmark for comparing the efficacy of our estimator would be a subset A ⊂ [N ] obtained via
Poissonian random sampling, which is characterised by independent random choices of the elements
of A from the ground set [N ], with each element of [N ] being selected independently with probability
p/N . The estimator ΞA,Poi for Poissonian sampling is simply an analogue of the empirical average;
in the context of (2) this is simply the choice wi = 1/p for all i. While the true empirical average may
be realised with wi = 1/|A|; we exploit here the fact that, for large p� N , the empirical cardinality
|A| is tightly concentrated around its expectation p.

Denoting by χA(·) the indicator function for inclusion in the set A, the variables χA(zi) are, under
Poissonian sampling, i.i.d. Bernoulli random variables with parameter p/N . It may then be easily
verified that, E[ΞA,Poi|D] = ΞN , whereas

Var[ΞA,Poi|D] =
1

p2
· p
N

(
1− p

N

)
·

(
N∑
i=1

‖∇θL(zi, θ)‖2
)

=
1

p
·

(
1

N

N∑
i=1

‖∇θL(zi, θ)‖2
)

(1 +O(1/N)) . (S1)
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Now, by a uniform central limit theorem [1], we obtain

1

N

N∑
i=1

‖∇θL(zi, θ)‖2 =

∫
‖∇θL(z, θ)‖2dγ(z) +OP (N−1/2). (S2)

Thus, the conditional variance

Var[ΞA,Poi|D] =

(
1

p
·
∫
‖∇θL(z, θ)‖2dγ(z)

)
+OP (N−1/2). (S3)

where γ ∈ P(Rd), the space of probability measures on Rd, is the (compactly supported) distribution
of the data z; see the paragraph on notation in Section 1. Equation (S3) provides us with the theoretical
benchmark against which to compare any new approach to minibatch sampling for stochastic gradient
descent.

S2 Regularity Phenomena

For the purposes of our analysis, we envisage certain regularity behaviour for our kernels and loss
functions, and discuss the natural basis for such assumptions. The discussion here complements the
discussion on this topic undertaken in Section 4 of the main text.

S2.1 Regularity phenomena and uniform CLTs

In addition to the OPE asymptotics discussed in the main text, another relevant class of asymptotic
results is furnished by Glivenko-Cantelli type convergence phenomena for empirical measures and
kernel density estimators. These results are naturally motivated by convergence issues arising from
the law of large numbers. To elaborate, if {Xn}n≥1 is a sequence of i.i.d. random variables following
the same distribution as the random variableX , and f is a function such that E[|f(X)|] <∞, then the
law of large numbers tells us that the empirical average 1/N ·

∑N
i=1 f(Xi) converges almost surely

to E[f(X)]. As is also well-known, the classical central limit theorem provides the distributional
order of the difference [1/N

∑N
i=1 f(Xi)− E[f(X)]] as N−1/2.

But the classical central limit theorem provides only distributional information, and is not sufficient
for tracing the order of such approximations as along a sequence of data {Xi}Ni=1, as N grows. Such
results are rather obtained from uniform central limit theorems, which provide bounds on this error
as OP (N−1/2) that hold uniformly over large classes of functions under very mild assumptions. We
refer the interested reader to the extensive literature on uniform CLTs [1].

On a related note, we would also be interested in the approximation of a measure ν with density by a
kernel smoothing ν̃ obtained on the basis of a dataset {Xi}Ni=1 [2]. Analogues of the uniform CLT for
such kernel density approximations are available, also according an OP (N−1/2) approximation [3].

In our context, the uniform CLT is applicable to situations where the measure γ is approximated by
the empirical measure γ̂N , as well as γ̃ which is a kernel smoothing of γ̂N .

S3 Fluctuation analysis for determinantal samplers

In this section, we provide the detailed proof of Proposition 4 in the main text on the fluctuations of
the estimator ΞA,s, and a theoretical analysis for the fluctuations of the estimator ΞA,DPP. Sections
S3.1.1 and S3.1.2 elaborate one of the central OPE-based ideas that enable us to obtain reduced
fluctuations.
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S3.1 Detailed proof of Proposition 4

To begin with, we recall the fundamental integral expression controlling the variance of ΞA,s,
exploiting (7) in the case of a projection kernel:

Var[ΞA,s|D] =

∫∫ ∥∥∥∥∥ ∇̂θL(z, θ)

q(z)K
(p)
q (z, z)

− ∇̂θL(w, θ)

q(w)K
(p)
q (w,w)

∥∥∥∥∥
2

2

|K(p)
q (z,w)|2dq(z)dq(w)

=
1

p2

∫∫ ∥∥∥∥∥ ∇̂θL(z, θ)

q(z) · 1pK
(p)
q (z, z)

− ∇̂θL(w, θ)

q(w) · 1pK
(p)
q (w,w)

∥∥∥∥∥
2

2

|K(p)
q (z,w)|2dq(z)dq(w)

.Mθ ·
1

p2

∫ ∫
‖z −w‖22 |K

(p)
q (z,w)|2dq(z)dq(w), (S4)

where we used the 1-Lipschitzianity of ∇̂θL(z,θ)
q(z)K

(p)
q (z,z)

, withMθ = OP (1) the Lipschitz constant.

We control the integral in (S4) by invoking the renowned Christoffel-Darboux formula for the OPE
kernel K(p)

q [4]. As outlined in the main text, a fundamental idea which enables us to obtain reduced
fluctuations in our determinantal samplers is that, in the context of (S4), the ‖z −w‖2 term crucially
suppresses fluctuations near the diagonal z = w; whereas far from the diagonal, the fluctuations are
suppressed by the decay of the OPE kernel K(p)

q .

In Sections S3.1.1 and S3.1.2 below, we provide the details of how this idea is implemented by
exploiting the Christoffel-Darboux formula; first detailing the simpler 1D case, and subsequently
examining the case of general d dimensions. In (S6), we will finally demonstrate the desired
OP (p−(1+1/d)) order of the fluctuations of ΞA,s given the dataset D, thereby completing the proof.

S3.1.1 Reduced fluctuations in one dimension

We first demonstrate how to control (S4) for d = 1.

The Christoffel-Darboux formula reads

K(p)
q (x, y) = ap ·

φp(x)φp−1(y)− φp(y)φp−1(x)

x− y
, (S5)

where ap is the so-called first recurrence coefficient of q; see [4, Section 1 to 3]. But we assumed in
Section 3.3 that q is Nevai-class, which actually implies ap → 1/2 by definition; see [5, Section 4].
This implies that, in d = 1, we have

Var[ΞA,s|D] .Mθ ·
1

p2
·
∫∫

(x− y)2 · (φp(x)φp−1(y)− φp(y)φp−1(x))
2

(x− y)2
dq(x)dq(y)

≤Mθ ·
1

p2
·
∫∫

(φp(x)φp−1(y)− φp(y)φp−1(x))
2

dq(x)dq(y)

=Mθ ·
1

p2
·
(

2‖φp‖2L2(q)
‖φp−1‖2L2(q)

− 2〈φp, φp−1〉2
)

= 2Mθ ·
1

p2
.

S3.1.2 Reduced fluctuations in general dimension

For d > 1, following the main text we consider that the measure q splits as a product measure of d
Nevai-class qis, i.e. q = ⊗di=1qi. Assume that p = md for some m ∈ N for simplicity; we discuss at
the end of the section how to treat the case p1/d /∈ N.

Because of the graded lexicographic ordering that we chose for multivariate monomials, K(p)
q

writes as a tensor product of d coordinate-wise OPE kernels of degree m, namely K(p)
q (·, ·) =∏d

j=1K
(m)
qj (·, ·). Now, observe that for any j = 1, . . . , d,∫∫

|K(m)
qj (z, y)|2dγ(y)dγ(x) =

∫
K(m)
qj (x, x)dγ(x) = m.
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As a result, for d > 1, setting z = (x1, x2, . . . , xd) and w = (y1, y2, . . . , yd), it comes

Var[ΞA,DPP|D] .Mθ ·
1

p2
·
∫∫ ( d∑

i=1

(xi − yi)2
)
· |K(p)

q (z,w)|2dq(z)dq(w)

=Mθ ·
1

p2
·
d∑
i=1

(∫∫
(xi − yi)2 · |K(p)

q (z,w)|2dq(z)dq(w)

)

=Mθ ·
1

p2
·
d∑
i=1

∫∫ (xi − yi)2 ·
d∏
j=1

|Kj(xj , yj)|2
d∏
j=1

dqj(xj)dqj(yj)

 ,

leading to

Var[ΞA,DPP|D]

=Mθ
1

p2

d∑
i=1

∏
j 6=i

(∫∫
|Kj(xj , yj)|2dqj(xj)dqj(yj)

)
·
(∫∫

(xi − yi)2|Ki(xi, yi)|2dqi(xi)dqi(yi)

)
=Mθ ·

1

p2
·
d∑
i=1

[
(p1/d)d−1 ·

(∫∫
(xi − yi)2|Ki(xi, yi)|2dqi(xi)dqi(yi)

)]

.Mθ ·
1

p2
·
d∑
i=1

[
(p1/d)d−1 · 2

]
.Mθ ·

d

p1+1/d
, (S6)

where we have used our earlier analyses of Section S3.1.1.

When p1/d /∈ N, the kernel K(p)
q does not necessarily decompose as a product of d one-dimensional

OPE kernels. However, the graded lexicographic order that we borrowed from [5] ensures that K(p)
q

departs from such a product only up to O(bp1/dc) additional terms, whose influence on the variance
can be controlled by a counting argument; see e.g. [5, Lemma 5.3].

S3.2 Fluctuation analysis for ΞA,DPP

Again using the formula (7) for the variance of linear statistics of DPPs, and remembering that K̃ is a
projection matrix, we may write

Var[ΞA,DPP|D] =
1

N2
·
N∑
i=1

N∑
j=1

∥∥∥∇θL(zi, θ)K̃
−1
ii −∇θL(zj , θ)K̃

−1
jj

∥∥∥2
2
|K̃ij |2. (S7)

At this point, we set τ to be the exponent in the order of spectral approximation OP (N−τ ) obtained
in Section S3.2.1 (our analysis in Section S3.2.1 indicates a choice of τ = 1/2; nonetheless we
present the analysis here in terms of the parameter τ , so as to leave open the possibility of simple
updates to our bound based on more improved analysis of the spectral approximation). We use the
integral and spectral approximations (S15) and (S11), and the inequality |a− b|2 ≤ 2|a|2 + 2|b|2 to
continue from (S7) as∥∥∥∇θL(zi, θ)K̃(zi, zi)

−1 −∇θL(zj , θ)K̃(zj , zj)
−1
∥∥∥2
2
|K̃(zi, zj)|2

≤

(
(2
∥∥∥∇θL(zi, θ)K

(p)
q,γ̃(zi, zi)

−1 −∇θL(zj , θ)K
(p)
q,γ̃(zj , zj)

−1
∥∥∥2
2

+ (K
(p)
q,γ̃(zi, zi)

−2 +K
(p)
q,γ̃(zj , zj)

−2)OP (N−2τ )

)
×
(

2|K(p)
q,γ̃(zi, zj)|2 +OP (N−2τ )

)
. (S8)
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We may combine (S7) and (S8) to obtain

Var[ΞA,DPP|D]

.
1

N2
·
N∑
i=1

N∑
j=1

∥∥∥∇θL(zi, θ)K
(p)
q,γ̃(zi, zi)

−1 −∇θL(zj , θ)K
(p)
q,γ̃(zj , zj)

−1
∥∥∥2
2
|K(p)

q,γ̃(zi, zj)|2

+
1

N2
·
N∑
i=1

N∑
j=1

OP (N−2τ ) ·

(
1

K
(p)
q,γ̃(zi, zi)2

+
1

K
(p)
q,γ̃(zj , zj)2

)
· |K(p)

q,γ̃(zi, zj)|2

+
1

N2
·
N∑
i=1

N∑
j=1

∥∥∥∇θL(zi, θ)K
(p)
q,γ̃(zi, zi)

−1 −∇θL(zj , θ)K
(p)
q,γ̃(zj , zj)

−1
∥∥∥2
2
OP (N−2τ )

+OP (N−2τ ). (S9)

This is where we need more assumptions. We recall our assumption that∇θL(z, θ)( 1
pK

(p)
q (z, z))−1

is uniformly bounded in z ∈ D. This assumption is justified, for the kernel part, by OPE asymptotics
for Nevai-class measures; see Totik’s classical result [5, Theorem 4.8]. For the gradient part, it
is enough to assume that ∇θL(z, θ) is uniformly bounded in z ∈ D and θ (with γ(z) being
bounded away from 0 and ∞). Coupled with the hypothesis that q(z) and the density γ(z) of
γ are uniformly bounded away from 0 and ∞ on D, and the uniform CLT for the convergence
γ̃(z) = γ(z) +OP (N−1/2), we may deduce that

∇θL(z, θ)

(
1

p
K

(p)
q,γ̃(z, z)

)−1
= ∇θL(z, θ)

(
1

p
K(p)
q (z, z)

)−1
· γ̃(z)

q(z)

= ∇θL(z, θ)

(
1

p
K(p)
q (z, z)

)−1
· γ(z)

q(z)
+∇θL(z, θ)(

1

p
K(p)
q (z, z))−1 · 1

q(z)
· OP (N−1/2)

= OP (1) +OP (N−1/2)

= OP (1). (S10)

We now demonstrate how the spectral approximations lead to approximations for integrals appearing
in the above fluctuation analysis for ΞA,DPP. To give the general structure of the argument, to be
invoked multiple times in the following, we note that

1

N2

N∑
i,j=1

OP (a(N))

∣∣∣∣1p ·K(p)
q,γ̃(zi, zj)

∣∣∣∣2 = OP (a(N)), (S11)

using the fact that 1
p ·|K

(p)
q,γ̃(zi, zj)| ≤

√
1
p ·K

(p)
q,γ̃(zi, zi)

√
1
p ·K

(p)
q,γ̃(zj , zj) via the Cauchy-Schwarz

inequality, and that 1
p ·K

(p)
q,γ̃(zi, zi) is OP (1) by OPE asymptotics.

We may combine (S9) and (S10) to deduce that

Var[ΞA,DPP|D]

.
1

N2
·
N∑
i=1

N∑
j=1

∥∥∥∇θL(zi, θ)K
(p)
q,γ̃(zi, zi)

−1 −∇θL(zj , θ)K
(p)
q,γ̃(zj , zj)

−1
∥∥∥2
2
|K(p)

q,γ̃(zi, zj)|2

+OP (N−2τ ). (S12)
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We now proceed as from (S12) as follows:

Var[ΞA,DPP|D]

.
1

N2

N∑
i,j=1

∥∥∥∥∥∇θL(zi, θ)

(
1

p
K

(p)
q,γ̃(zi, zi)

)−1
−∇θL(zj , θ)

(
1

p
K

(p)
q,γ̃(zj , zj)

)−1∥∥∥∥∥
2

2

∣∣∣∣1pK(p)
q,γ̃(zi, zj)

∣∣∣∣2
+OP (N−2τ )

.
∫∫ ∥∥∥∥∥∇θL(z, θ)

(
1

p
K

(p)
q,γ̃(z, z)

)−1
−∇θL(w, θ)

(
1

p
K

(p)
q,γ̃(w,w)

)−1∥∥∥∥∥
2

2

∣∣∣∣1pK(p)
q,γ̃(z,w)

∣∣∣∣2dγ(z)dγ(w)

+OP (N−1/2) +OP (N−2τ )

.
∫∫ ∥∥∥∥∥∇θL(z, θ)

(
1

p
K

(p)
q,γ̃(z, z)

)−1
−∇θL(w, θ)

(
1

p
K

(p)
q,γ̃(w,w)

)−1∥∥∥∥∥
2

2

∣∣∣∣1pK(p)
q,γ̃(z,w)

∣∣∣∣2dγ̃(z)dγ̃(w)

+OP (N−1/2) +OP (N−2τ )

.
1

p2

∫∫ ∥∥∥∥∥∇θL(z, θ)

(
1

p
K

(p)
q,γ̃(z, z)

)−1
−∇θL(w, θ)

(
1

p
K

(p)
q,γ̃(w,w)

)−1∥∥∥∥∥
2

2

∣∣∣K(p)
q (z,w)

∣∣∣2dq(z)dq(w)

+OP (N−1/2) +OP (N−2τ ), (S13)

where, in the last two steps, we have used the assumption that
∣∣∣ 1pK(p)

q,γ̃(z,w)
∣∣∣2 and

∇θL(z, θ)
(

1
pK

(p)
q,γ̃(z, z)

)−1
are OP (1), and used the rate of convergence of γ̂N to γ to pass from

the sum to the integral respect to γ, and from there to the integral with respect to γ̃ using the rate
estimates for kernel density estimation, incurring an additive cost of OP (N−1/2) in each step.

Using the hypothesis that∇θL(z, θ)
(

1
pK

(p)
q,γ̃(z, z)

)−1
is 1-Lipschitz with a Lipschitz constant that

is OP (1), we may proceed from (S13) as

Var[ΞA,DPP|D] .Mθ
1

p2

∫ ∫
‖z −w‖22

∣∣∣K(p)
q (z,w)

∣∣∣2 dq(z)dq(w)+OP (N−1/2)+OP (N−2τ ),

(S14)

whereM1/2
θ is the Lipschitz constant that is OP (1). We are back to analyzing the same variance

term as in Section S3.1, and the rest of the proof follows the very same lines.

S3.2.1 Spectral approximations

We analyse in this section the approximation error when we replace K(p)
q,γ̃ by K̃ in Equation (S8). To

this end, we study the difference between the entries of K̃ and those of K(p)
q,γ̃(·, ·) when restricted to

the data set D. We recall the fact that K̃ is viewed as a kernel on the space L2(γ̂N ).

The idea is that, since N is large, the kernel K̃ acting on L2(γ̂N ), which is obtained by spec-
trally rounding off the kernel K(p)

q,γ̃ acting on L2(γ̂N ), is well approximated by the kernel K(p)
q,γ̃

acting on L2(γ̃). By definition, K(p)
q,γ̃(z,w) =

√
q(z)
γ̃(z)K

(p)
q (z,w)

√
q(w)
γ̃(w) , we may deduce that

K
(p)
q,γ̃(·, ·)dγ̃(·)dγ̃(·) = K

(p)
q (·, ·)dq(·)dq(·). Now, the kernel K(p)

q (·, ·) is a projection on L2(q). As

such, the spectrum of (K
(p)
q,γ̃ ,dγ̃) is also close to a projection. Since K̃ is obtained by rounding off the

spectrum of K(p)
q,γ̃ to {0, 1}, the quantities |K̃(zi, zj)−K(p)

q,γ̃(zi, zj)| will be ultimately by controlled

by how close the kernel (K
(p)
q,γ̃ |D, γ̂N ) is from a true projection.
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To analyse this, we consider the operator [K
(p)
q,γ̃ |D]2 on L2(γ̂N ), which is an integral operator given

by the convolution kernel

K
(p)
q,γ̃ |D ? K

(p)
q,γ̃ |D(zi, zk) =

∫
K

(p)
q,γ̃(zi, zj)K

(p)
q,γ̃(zj , zk)dγ̂N (zj)

=
1

N

N∑
j=1

K
(p)
q,γ̃(zi, zj)K

(p)
q,γ̃(zj , zk)

=

∫
K

(p)
q,γ̃(zi,w)K

(p)
q,γ̃(w, zk)dγ̃(w) +OP (N−1/2)

= K
(p)
q,γ̃(zi, zk) +OP (N−1/2)

= K
(p)
q,γ̃ |D(zi, zk) +OP (N−1/2),

where we have used the convergence of the kernel density estimator γ̃ as well as the empirical
measure γ̂N to the underlying measure γ, at the rate OP (N−1/2) described e.g. by the uniform CLT.

We may summarize the above by observing that K(p)
q,γ̃ |2D on L2(γ̂N ) is a projection up to an error of

OP (N−1/2), which indicates an approximation of |K̃(zi, zj)−K(p)
q,γ̃ |D(zi, zj)| = OP (N−1/2).

To understand the estimator ΞA,DPP, we also need to understand K̃(zi, zi)
−1, which we will deduce

from the above discussion. To this end, we observe that

|K̃(zi, zi)
−1 −K(p)

q,γ̃(zi, zi)
−1| = |(K(p)

q,γ̃(zi, zi) +OP (N−1/2))−1 −K(p)
q,γ̃(zi, zi)

−1|

= K
(p)
q,γ̃(zi, zi)

−1 · OP (N−1/2). (S15)

In drawing the above conclusion, we require that K(p)
q,γ̃(zi, zi) stays bounded away from 0, which

we justity as follows. We recall that K(p)
q,γ̃(zi, zi) = K

(p)
q (zi, zi) · q(zi)γ̃(zi)

. We recall from OPE

asymptotics that K(p)
q (zi, zi) is of the order p; whereas γ̃(zi) = γ(zi) +OP (N−1/2) from kernel

density approximation and uniform CLT asymptotics. We recall our hypothesis that the densities q, γ
are bounded away from 0 and∞ on D. Putting together all of the above, we deduce that K(p)

q,γ̃(zi, zi)
is of order p; in particular it is bounded away from 0 as desired.

S3.3 Order of p vs N and future work

In this section, we discuss the relative order of p and N , especially in the context of the estimator
ΞA,s. In order to do this for ΞA,s, we undertake a classic bias-variance trade-off argument. To this
end, we recall that while the bias is OP (ph/N) (with h being the window size for kernel smoothing),
the variance is OP (p−(1+1/d)). Further, we substitute one of the canonical choices for the window
size h, which is to set h = N−1/d for dimension d and data size N . Setting the bias and the
standard deviation to be roughly of the same order, we obtain a choice of p as p = N

2d+1
3d+1 . For

the estimator ΞA,DPP, a similar analysis may be undertaken. However, while the finite sample bias
is 0, the variance term is more complicated, particularly with the contributions from the spectral
approximation OP (N−τ ). We believe that the present analysis of the spectral approximation can be
further tightened and rigorised to yield more optimal values of τ that more closely mimic experimental
performance. Further avenues of improvement include better ways to handle the boundary effects
(to control the asymptotic intensity of the OPE kernels that behave in a complicated manner at the
boundary of the background measure); methods to bypass the spectral round-off step in constructing
the estimator ΞA,DPP; hands-on analysis of the errors caused by switching between discrete measures
and continuous densities that is tailored to our setting (and therefore raising the possibility of sharper
error bounds), among others.

S4 Experiments on a real dataset

To extensively compare the performance of our gradient estimator ΞA,DPP to the default ΞA,Poi,
we run the same experiment as in Section 5 of the main paper, but on a benchmark dataset from
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LIBSVM3. We download the letter dataset, which consists of 15000 training samples and 5000 testing
samples, where each sample contains 16 features. We modify the 26-class classification problem into
a binary classification problem where the goal is to separate the classes 1-13 from the other 13 classes.
Denote the preprocessed dataset as letter.binary. We consider L = Llin, λ0 = 0.001 and p = 10.
Figure 1 summarizes the experimental results on letter.binary, where the performance metrics are
averaged over 1000 independent runs of each SGD variant. The left figure shows the decrease of the
objective function value, the middle figure shows how the norm of the complete gradient ‖ΞN (θt)‖
decreases with the budget, and the right figure shows the value of the test error. Error bars in the
last figure are ± one standard deviation of the mean. In the experiment, we can see that using a
DPP improves over Poisson minibatches of the same size both in terms of minimizing the empirical
loss, and of reaching a small test error with a given budget. Compared to the experimental results
on the simulated data in the main paper, we can see that although the OP (p−(1+1/d)) rate discussed
in Section 4 becomes slower as d grows, our DPP-based minibatches still gives better performance
on this real dataset with d = 16 compared to Poisson minibatches of the same size, which again
demonstrates the significance of variance reduction in SGD.
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Figure 1: Logistic regression on the letter.binary dataset.
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