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Abstract

Actor-critic (AC) algorithms, empowered by neural networks, have had signifi-
cant empirical success in recent years. However, most of the existing theoretical
support for AC algorithms focuses on the case of linear function approximations,
or linearized neural networks, where the feature representation is fixed through-
out training. Such a limitation fails to capture the key aspect of representation
learning in neural AC, which is pivotal in practical problems. In this work, we
take a mean-field perspective on the evolution and convergence of feature-based
neural AC. Specifically, we consider a version of AC where the actor and critic are
represented by overparameterized two-layer neural networks and are updated with
two-timescale learning rates. The critic is updated by temporal-difference (TD)
learning with a larger stepsize while the actor is updated via proximal policy opti-
mization (PPO) with a smaller stepsize. In the continuous-time and infinite-width
limiting regime, when the timescales are properly separated, we prove that neural
AC finds the globally optimal policy at a sublinear rate. Additionally, we prove that
the feature representation induced by the critic network is allowed to evolve within
a neighborhood of the initial one.

1 Introduction

In reinforcement learning (RL) [56], an agent aims to learn the optimal policy that maximizes the
expected total reward by interacting with the environment. Policy-based RL algorithms achieve such a
goal by directly optimizing the expected total reward as a function of the policy, which often involves
two components: policy evaluation and policy improvement. Specifically, policy evaluation refers
to estimating the value function of the current policy, which characterizes the performance of the
current policy and reveals the updating direction for finding a better policy, which is known as policy
improvement. Algorithms with these two ingredients are also called actor-critic (AC) methods [36],
where the actor and the critic refer to the policy and its corresponding value function, respectively.
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Recently, in RL applications with large state spaces, actor-critic empowered by expressive function
approximators such as neural networks have achieved striking empirical successes [3, 4, 9, 20, 51,
52, 60]. These successes benefit from the data-dependent representations learned by neural networks.
Unfortunately, however, the theoretical understanding of this data-dependent benefit is very limited.
The classical theory of AC focuses on the case of linear function approximation, where the actor
and critic are represented using linear functions with the feature mapping fixed throughout learning
[10, 11, 36]. Meanwhile, a few recent works establish convergence and optimality of AC with
overparameterized neural networks [26, 39, 61], where the neural network training is captured by
the Neural Tangent Kernel (NTK) [30]. Specifically, with properly designed parameter initialization
and stepsizes, and sufficiently large network widths, the neural networks employed by both actor and
critic can be assumed to be well approximated by linear functions of a random feature determined
by initial parameters. In other words, concerning representation learning, the features induced by
these algorithms are by assumption infinitesimally close to the initial featural representation, which is
data-independent.

In this work, we make initial steps towards understanding how representation learning comes into
play in neural AC. Specifically, we address the following questions:

Going beyond the NTK regime, does neural AC provably find the globally optimal policy? How does
the feature representation associated with the neural network evolve along with neural AC?

We focus on a version of AC where the critic performs temporal-difference (TD) learning [55] for
policy evaluation and the actor improves its policy via proximal policy optimization (PPO) [49],
which corresponds to a Kullback-Leibler (KL) divergence regularized optimization problem, with
the critic providing the update direction. Moreover, we utilize two-timescale updates where both
the actor and critic are updated at each iteration but with the critic having a much larger stepsize. In
other words, the critic is updated at a faster timescale. Meanwhile, we represent the critic explicitly
as a two-layer overparameterized neural network and parameterize the actor implicitly via the critic
and PPO updates. To examine convergence, we study the evolution of the actor and critic in the
continuous-time limiting regime with the network width going to infinity. In such a regime, the actor
update is closely connected to replicator dynamics [12, 28, 50] and the critic update is captured by a
semigradient flow in the Wasserstein space [59]. Moreover, the semigradient flow runs at a faster
timescale according to the two-timescale mechanism.

It turns out that the separation of timescales plays an important role in the convergence analysis. In
particular, in the continuous-time limit, it enables us to first separately analyze the evolution of actor
and critic and then combine these results to get final theoretical guarantees. Specifically, focusing
solely on the actor, we prove that the time-averaged suboptimality of the actor converges sublinearly
to zero up to the time-averaged policy evaluation error associated with critic updates. Moreover,
for the critic, under proper regularity conditions, we connect the Bellman error to the Wasserstein
distance and show that the time-averaged policy evaluation error also converges sublinearly to
zero. Therefore, we show that neural AC provably achieves global optimality at a sublinear rate.
Furthermore, regarding representation learning, we show that the critic induces a data-dependent
feature representation within an O(1/α) neighborhood of the initial representation in terms of the
Wasserstein distance, where α is a sufficiently large scaling parameter.

The key to our technical analysis reposes on three ingredients: (i) infinite-dimensional variational
inequalities with a one-point monotonicity [27], (ii) a mean-field perspective on neural networks
[19, 41, 42, 53, 54], and (iii) the two-timescale stochastic approximation [13, 37]. In particular, in
the infinite-width limit, the neural network and its induced feature representation are identified with
a distribution over the parameter space. The mean-field perspective enables us to characterize the
evolution of such a distribution within the Wasserstein space via a partial differential equation (PDE)
[5, 6, 58, 59]. For policy evaluation, such a PDE is given by the semigradient flow induced by TD
learning. We characterize the error of policy evaluation by showing that mean-field Bellman error
satisfies a version of one-point monotonicity tailored to the Wasserstein space. Moreover, our actor
analysis utilizes the geometry of policy optimization, which shows that the expected total reward,
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as a function of the policy, also enjoys the property of one-point monotonicity in the policy space.
Finally, the actor and critic errors are connected via two-timescale stochastic approximation. To the
best of our knowledge, this is the first time that convergence and global optimality guarantees have
been obtained for neural AC.

Related Work. AC with linear function approximation has been studied extensively in the literature.
In particular, using a two-timescale stochastic approximation via ordinary differential equations,
[10, 11, 36] establish asymptotic convergence guarantees in the continuous-time limiting regime.
More recently, using more sophisticated optimization techniques, various works [29, 35, 64–66] have
established discrete-time convergence guarantees that show that linear AC converges sublinearly
to either a stationary point or the globally optimal policy. Furthermore, when overparameterized
neural networks are employed, [26, 39, 61] prove that neural AC converges to the global optimum at
a sublinear rate. In these works, the initial value of the network parameters and the learning rates are
chosen such that both actor and critic updates are captured by the NTK. In other words, when the
network width is sufficiently large, such a version of neural AC is well approximated by its linear
counterpart via the neural tangent feature. In comparison, we establish a mean-field analysis that
has a different scaling than the NTK regime. We also establish finite-time convergence to global
optimality, and more importantly, the feature representation induced by the critic is data-dependent
and allowed to evolve within a much larger neighborhood around the initial one.

Furthermore, our work is also related to the recent line of research on understanding stochastic
gradient descent (SGD) for supervised learning problems involving an overparameterized two-layer
neural network under the mean-field regime. See, e.g., [16, 19, 21, 22, 31, 40–42, 53, 54, 63] and the
references therein. In the continuous-time and infinite-width limit, these works show that SGD for
neural network training is captured by a Wasserstein gradient flow [5, 6, 59] of an energy function
that corresponds to the objective function in supervised learning. In contrast, our analysis combines
such a mean-field analysis with TD learning and two-timescale stochastic approximation, which are
tailored specifically to AC. Moreover, our critic is updated via TD learning, which is a semigradient
algorithm and there is no objective functional making TD learning a gradient-based algorithm. Thus,
in the mean-field regime, our critic is given by a Wasserstein semigradient flow, which also differs
from these existing works.

Additionally, our work is closely related to [1, 69], who provide mean-field analyses for neural
TD-learning and Q-learning [62]. In comparison, we focus on AC, which is a two-timescale policy
optimization algorithm. Finally, [2] studies softmax policy gradient with neural network policies in
the mean-field regime, where policy gradient is cast as a Wasserstein gradient flow with respect to the
expected total reward. The algorithm assumes that the critic directly gets the desired value function
and thus the algorithm is single-timescale. Moreover, the convergence guarantee in [2] is asymptotic.
In comparison, our AC is two-timescale and we establish non-asymptotic sublinear convergence
guarantees to global optimality.

Notation. We denote by P(X ) the set of probability measures over the measurable space X . Given
a curve ρ : R → X , we denote by ρ̇s = ∂tρt | t=s its derivative with respect to the time. For an
operator F : X → X and a measure µ ∈ P(X ), we denote by F♯µ = µ◦F−1 the push forward of µ
through F . We denote by χ2(ρ ∥µ) the chi-squared divergence between probability measures ρ and µ,
which is defined as χ2(ρ ∥µ) =

∫
(ρ/µ− 1)2dµ. Given two probability measures ρ and µ, we denote

the Kullback-Leibler divergence or the relative entropy from µ to ρ by KL(ρ ∥µ) =
∫
log(ρ/µ)dρ.

For ν1, ν2, µ ∈ P(X ), we define the Ḣ−1(µ) weighted homogeneous Sobolev norm as ∥ν1 −
ν2∥Ḣ−1(µ) = sup

{
|⟨f, ν1 − ν2⟩|

∣∣∥f∥Ḣ1(µ) ≤ 1
}

. We denote by ∥f(x)∥p,µ = (
∫
|f(x)|pµ(dx))1/p

the ℓp-norm with respect to probability measure µ. We denote by ⊗ the semidirect product, i.e.,
µ ⊗ K = K(y |x)µ(x) for µ ∈ P(X ) and transition kernel K : X → P(Y). For a function
f : X → R, we denote by Lip(f) = supx,y∈X ,x ̸=y |f(x)−f(y)|/∥x−y∥ its Lipschitz constant. We
denote a normal distribution on RD by N (µ,Σ), where µ is the mean value and Σ is the covariance
matrix.
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2 Background

In this section, we first introduce the policy optimization problem and the actor-critic method. We
then present the definition of the Wasserstein space.

2.1 Policy Optimization and Actor-Critic

We consider a Markov decision process (MDP) given by (S,A, γ, P, r,D0), where S ⊆ Rd1 is the
state, A ⊆ Rd2 is the action space, γ ∈ (0, 1) is the discount factor, P : S × A → P(S) is the
transition kernel, r : S × A → R+ is the reward function, and D0 ∈ P(S) is the initial state
distribution. Without loss of generality, we assume that S × A ⊆ Rd and ∥(s, a)∥2 ≤ 1, where
d = d1 + d2. We remark that as long as the state-action space is bounded, we can normalize the
space to be within the unit sphere. Given a policy π : S × A → P(S), at the mth step, the agent
takes an action am at state sm according to π(· | sm) and observes a reward rm = r(sm, am). The
environment then transits to the next state sm+1 according to the transition kernel P (· | sm, am).
Note that the policy π induces Markov chains on both S and S ×A. Considering the Markov chain
on S, we denote the induced Markov transition kernel by Pπ : S → P(S), which is defined as
Pπ(s′ | s) =

∫
A P (s

′ | s, a)π(da | s). Likewise, we denote the Markov transition kernel on S × A
by P̃π : S × A → P(S × A), which is defined as P̃π(s′, a′ | s, a) = π(a′ | s′)P (s′ | s, a). Let D̃
be a probability measure on S ×A. We then define the visitation measure induced by policy π and
starting from D̃ as

ẼπD̃
(
d(s, a)

)
= (1− γ) ·

∑
m≥0

γm · P
(
(sm, am) ∈ d(s, a) | (s0, a0) ∼ D̃

)
, (2.1)

where (sm, am) is the trajectory generated by starting from (s0, a0) ∼ D̃ and following policy π
thereafter. If D̃ = D ⊗ π holds, we then denote such a visitation measure by ẼπD. Furthermore, we
denote by E(ds) =

∫
A Ẽ(ds,da) the marginal distribution of visitation measure Ẽ with respect to

S. In particular, when (s0, a0) ∼ D ⊗ π holds in (2.1), it follows that ẼπD = EπD ⊗ π. In policy
optimization, we aim to maximize the expected total rewards J(π) defined as follows,

J(π) = Eπ
[∑
m≥0

γm · r(sm, am)
∣∣ s0 ∼ D0

]
,

where we denote by Eπ the expectation with respect to am ∼ π(· | sm) and sm+1 ∼ P (· | sm, am)
for m ≥ 0. We define the action value function Qπ : S × A → R and the state value function
V π : S → R as follows,

Qπ(s, a) = Eπ
[∑
m≥0

γm · r(sm, am)
∣∣ s0 = s, a0 = a

]
, V π(s) =

〈
Qπ(s, ·), π(· | s)

〉
A, (2.2)

where we denote by ⟨·, ·⟩A the inner product on the action space A. Correspondingly, the advantage
function Aπ : S ×A → R is defined as

Aπ(s, a) = Qπ(s, a)− V π(s).

It is known that the action value function Qπ is the unique global minimizer to the following
mean-squared Bellman error (MSBE),

MSBE(Q;π) =
1

2
E(s,a)∼Φ̃π

[(
Q(s, a)− r(s, a)− γE(s′,a′)∼P̃π(· | s,a)[Q(s′, a′)]

)2]
, (2.3)

where Φ̃π is a weighting distribution depending on policy π and is with full support, i.e., supp(Φ̃π) =
S×A. Therefore, the policy optimization problem can be written as the following bilevel optimization
problem,

max
π

J(π) = Es∼D0

[〈
Qπ(s, ·), π(· | s)

〉
A

]
, subject to Qπ = argmin

Q
MSBE(Q;π). (2.4)

The inner problem in (2.4) is known as a policy evaluation subproblem, while the outer problem is
the policy improvement subproblem. One of the most popular way to solve the policy optimization
problem is actor-critic (AC) methods [56], where the job of the critic is to evaluate current policy and
then the actor updates its policy according to the critic’s evaluation.
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2.2 Wasserstein Space

Let Θ ⊆ RD be a Polish space. We denote by P2(Θ) ⊆ P(Θ) the set of probability measures with
finite second moments. Then, the Wasserstein-2 (W2) distance between µ, ν ∈ P2(Θ) is defined as
follows,

W2(µ, ν) = inf
{
E
[
∥X − Y ∥2

]1/2 ∣∣∣ law(X) = µ, law(Y ) = ν
}
,

where the infimum is taken over the random variables X and Y on Θ and we denote by law(X) the
distribution of a random variable X . We call M = (P2(Θ),W2) the Wasserstein (W2) space, which
is an infinite-dimensional manifold [59]. See §A.1 for more details.

3 Algorithm

Two-timescale Actor-critic. We consider a two-timescale Actor-critic (AC) algorithm [34, 45] for
the policy optimization problem in (2.4). For policy evaluation, we parameter the critic Q with a
neural network and update the parameter via temporal-difference (TD) learning [55]. For policy
improvement, we update the actor policy π via proximal policy optimization (PPO) [49]. Our
algorithm is two-timescale since both the actor and critic are updated at each iteration with different
stepsizes. Specifically, we parameterize the critic Q by the following neural network with width M
and parameter θ̂ = (θ̂(1), · · · , θ̂(M)) ∈ RD×M ,

Qθ̂(s, a) =
α

M

M∑
i=1

σ(s, a; θ̂(i)). (3.1)

Here σ(s, a; θ) : S × A × RD → R is the activation function and α > 0 is the scaling parameter.
Such a structure also appears in [17, 18, 41]. In a descrete-time finite-width (DF) scenario, at the kth
iteration, the critic and actor are updated as follows,

DF-TD: θ̂
(i)
k+1 = θ̂

(i)
k − ε′

α

(
Qθ̂k

(sk, ak)− r(sk, ak)− γQθ̂k
(s′k, a

′
k)
)
∇θσ(s, a; θ̂

(i)
k ), (3.2)

DF-PPO: π̂k+1(· | s) = argmax
π

{〈
Qθ̂k

(s, ·), π(· | s)
〉
A − ε−1 ·KL

(
π(· | s) ∥ π̂k(· | s)

)}
, (3.3)

where (sk, ak) ∼ Φ̃π̂k and (s′k, a
′
k) ∼ P̃ π̂k(· | sk, ak). Here π̂k is the policy for the actor at the kth

iteration, Φ̃π̂k is the corresponding weighting distribution, ε and ε′ are the stepsizes for the DF-PPO
update and the DF-TD update, respectively. In (3.2), the scaling of α−1 arises since our update falls
into the lazy-training regime [18]. In the sequel, we denote by η = ε′/ε the relative TD timescale.
Note that in a double-loop AC algorithm, the critic can usually be solved with high precision. In
the two-timescale AC however, even with the KL-divergence term in (3.3) which regularizes the
policy update and helps to improve the local estimation quality of the TD update, the critic Qθ̂k

for
updating the actor’s policy π̂k can still be far from the true action value function Qπ̂k . Since the
policy evaluation problem is not fully solved at each iteration, the two-timescale AC can be more
efficient in computation while more challenging to establish a theoretical guarantee.

Mean-field (MF) Limit. To analyze the convergence of the two-timescale AC with neural networks,
we employ the analysis that studies the mean-field limit regime [41, 42]. Here, by saying the mean-
field limit, we refer to the infinite-width limit, i.e., M → ∞ for the neural network width M in
(3.1), and the continuous-time limit, i.e., t = kε where ε→ 0 for the stepsize in (3.2) and (3.3). For
θ̂ = {θ̂(i)}Mi=1 independently sampled from a distribution ρ, we can write the infinite-width limit of
(3.1) as

Q(s, a; ρ) = α

∫
σ(s, a; θ)ρ(dθ). (3.4)

In the sequel, we denote by ρ̂k the distribution of θ̂(i)k for the infinite-width limit of the neural network
at the kth iteration. We further let ρt and πt be the continuous-time limits of ρ̂k and π̂k, respectively.
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As studied in [69], the mean-field limit of the DF-TD update in (3.2) is

MF-TD: ∂tρt = −η div
(
ρt · g(·; ρt, πt)

)
, (3.5)

where η is the relative TD timescale and

g(θ; ρ, π) = −Eπ
Φ̃π

{[
Q(s, a; ρ)− r(s, a)− γ ·Q(s′, a′; ρ)

]
· α−1∇θσ(s, a; θ)

}
(3.6)

is a vector field. Here Eπ
Φ̃π

is taken with respect to (s, a) ∼ Φ̃π and (s′, a′) ∼ P̃π(· | s, a). It remains
to characterize the mean-field limit of the DF-PPO update in (3.3). By solving the maximization
problem in (3.3), the infinite-width limit of DF-PPO update can be written in closed form as

ε−1 ·
{
log

[
π̂k+1(a | s)

]
− log

[
π̂k(a | s)

]}
= Q(s, a; ρ̂k)− Ẑk(s),

where Ẑk(s) is the normalizing factor such that
∫
π̂k(da | s) = 1 for any s ∈ S. By letting t = kε

and ε → 0, we have ∂t log πt = Qt − Zt, which can be further written as ∂tπt = πt · (Qt − Zt).
Here we have Qt(a, s) = Q(a, s; ρt) and Zt is the continuous-time limit of Ẑk. Furthermore, noting
that ∂t

∫
πt(da | s) = 0, the mean-field limit of the DF-PPO update in (3.3) is

MF-PPO:
d

dt
πt = πt ·At, where At(s, a) = Qt(s, a)−

∫
Qt(s, a)πt(da | s). (3.7)

The two updates (3.5) and (3.7) correspond to the mean-field limits of (3.2) and (3.3), respectively,
and together serve as the mean-field limit of the two-timescale AC. In particular, we remark that the
MF-TD update in (3.5) for the critic is captured by a semigradient flow in the Wasserstein space [59]
while the MF-PPO update in (3.7) for the actor resembles the replicator dynamics [12, 28, 50]. Note
that such a framework is applicable to continuous state and action space. In this paper, we aim to
provide a theoretical analysis of the mean-field limit of the two-timescale AC.

4 Main Result

In this section, we first establish the convergence of the MF-PPO update in §4.1. Then, with additional
assumptions, we establish the optimality and convergence of the mean-field two-timescale AC in
§4.2.

4.1 Convergence of Mean-field PPO

For the MF-PPO update in (3.7), we establish the following theorem on its global optimality and
convergence rate.

Theorem 4.1 (Convergence of MF-PPO). Let π∗ = argmaxπ J(π) be the optimal policy and π0 be
the initial policy. Then, it holds that

1

T

∫ T

0

(
J(π∗)− J(πt)

)
dt ≤ ζ

T
+ 4κ · 1

T

∫ T

0

∥Qt −Qπt∥2,ϕ̃πt
dt︸ ︷︷ ︸

policy evaluation error

, (4.1)

where ϕ̃πt ∈ P(S × A) is an evaluation distribution for the policy evaluation error and ζ =

Es∼Eπ∗
D0

[
KL

(
π∗(· | s) ∥π0(· | s)

)]
is the expected KL-divergence between π∗ and π0. Furthermore,

letting ϕ̃πt = 1
2 ϕ̃0 +

1
2ϕ0 ⊗ πt, where ϕ̃0 ∈ P(S ×A) is a base distribution and ϕ0 =

∫
A ϕ̃0(·,da),

the concentrability coefficient κ is then given by

κ =

∥∥∥∥ Ẽπ∗

D0

ϕ̃0

∥∥∥∥
∞
.

Proof. See §B.1 for a detailed proof.
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The concentrability coefficient commonly appears in the reinforcement learning literature [7, 23, 24,
38, 39, 43, 48, 57, 61]. In contrast to a more standard concentrability coefficient form, note that κ is
irrelevant to the update of the algorithm. To show the convergence of the MF-PPO, our condition
here is much weaker since we only need a given base distribution ϕ̃0 such that κ <∞.

Theorem 4.1 shows that the MF-PPO converges to the globally optimal policy at a rate of O(T−1) up
to the policy evaluation error. Such a theorem implies the global optimality and convergence of a
double-loop AC algorithm, where the critic Qt is solved to high precision and the policy evaluation
error is sufficiently small. In the sequel, we consider a more challenging setting, where the critic Qt
is updated simultaneously along with the update of the actor’s policy πt.

4.2 Global Optimality and Convergence of Two-timescale AC

In what follows, we aim to characterize the upper bound of the policy evaluation error when the
critic and the actor are updated simultaneously. Specifically, the actor is updated via MF-PPO in
(3.7) and the critic Qt = Q(·; ρt) is updated via the MF-TD in (3.5). For the smooth function σ in
the parameterization of the Q function in (3.4), we consider it to be the following two-layer neural
network,

σ(s, a; θ) = Bβ · β(b) · σ̃
(
w⊤(s, a, 1)

)
, (4.2)

where σ̃ : R → R is the activation function, θ = (b, w) is the parameter, and β : R → (−1, 1) is
an odd and invertible function with scaling hyper-parameter Bβ > 0. It then holds that D = d+ 2,
where d and D are the dimensions of (s, a) and θ, respectively. It is worth noting that the function
class of

∫
σ(s, a; θ)ρ(dθ) for ρ ∈ P2(RD) is the same as

F =
{∫

β′ · σ̃
(
w⊤(s, a, 1)

)
ν(dβ′,dw)

∣∣∣ ν ∈ P2

(
(−Bβ , Bβ)× Rd+1

)}
, (4.3)

which captures a vast function class because of the universal function approximation theorem [8, 47].
We remark that we introduce the rescaling function β in (4.2) to avoid the study of the space of
probability measures over (−Bβ , Bβ) × Rd+1 in (4.3), which has boundary and thus lacks the
regularity in the study of optimal transport. Furthermore, note that we introduce a hyper-parameter
α > 1 in the Q function in (3.4). Thus, we are using α · F to represent F , which causes an “over-
representation” when α > 1. Such over-representation appears to be essential for our analysis. For a
brief peek, we remark that α actually controls the gap in the average total reward over time when the
relative time-scale η is properly selected according to Theorem 4.6. Furthermore, such an influence
is imposed through Lemma 4.4, which shows that the Wasserstein distance between ρ0 and ρπt

is
upper bounded by O(1/α). In what follows, we consider the initialization of the TD update to be
ρ0 = N (0, ID), which implies that Q(s, a; ρ0) = 0. We next impose the following assumption on
the two-layer neural network σ.

Assumption 4.2 (Regularity of the Neural Network). For the two-layer neural network σ defined in
(4.2), we assume that the following properties hold.

(i) The rescaling function β : R → (−1, 1) is odd, L0,β-Lipschitz continuous, L1,β-smooth,
and invertible. Meanwhile, the inverse β−1 is locally Lipschitz continuous. In particular, we
assume that β−1 is ℓβ-Lipschitz continuous in [−2/3, 2/3].

(ii) The activation function σ̃ : R → R is odd, Bσ̃-bounded, L0,σ̃-Lipschitz continuous, and
L1,σ̃-smooth.

We remark that Assumption 4.2 is not restrictive and can be satisfied by a large family of neural
networks, e.g., σ̃(x) = tanh(x) and β(b) = tanh(b). Noting that ∥(s, a)∥2 ≤ 1, Assumption
4.2 implies that the function σ(s, a; θ) in (4.2) is odd with respect to w and b and is also bounded,
Lipschitz continuous, and smooth in the parameter domain, that is,

|∇θσ(s, a; θ)| < B1, |∇2
θθσ(s, a; θ)| < B2. (4.4)

We then impose the following assumption on the MDP.
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Assumption 4.3 (Regularity of the MDP). For the MDP (S,A, γ, P, r,D0), we assume the following
properties hold.

(i) The reward function r and the transition kernel P admit the following representations with
respect to the activation function σ̃,

r(s, a) = Br ·
∫
σ̃
(
(s, a, 1)⊤w

)
µ(dw), (4.5)

P (s′ | s, a) =
∫
σ̃
(
(s, a, 1)⊤w

)
φ(s′)ψ(s′; dw), (4.6)

where µ and ψ(s′; ·) are probability measures in P2(Rd+1) for any s′ ∈ S , Br is a positive
scaling parameter, and φ(s′) : S → R+ is a nonnegative function.

(ii) The reward function r satisfies that r(s, a) ≥ 0 for any (s, a) ∈ S×A. For the representation
of r in (4.5) and the representation of the transition kernel P in (4.6), we assume that

χ2(µ ∥ ρw,0) < Mµ, χ2
(
ψ(s; ·) ∥ ρw,0

)
< Mψ, ∀s ∈ S,∫

φ(s)ds ≤M1,φ,

∫
φ(s)2ds ≤M2,φ,

where ρw,0 is the marginal distribution of ρ0 with respect to w, i.e., ρw,0 =
∫
ρ0(db, ·), χ2

is the chi-squared divergence, and Mµ, Mψ , M1,φ, M2,φ are absolute constants.

(iii) We assume that there exists an absolute constant G such that∥∥ψ(s; ·)− ψ(s′; ·)
∥∥
Ḣ−1(µ)

< G,
∥∥ψ(s; ·)− µ

∥∥
Ḣ−1(µ)

< G,∥∥ψ(s; ·)− µ
∥∥
Ḣ−1(ψ(s′;·)) < G,

∥∥ψ(s; ·)− ψ(s′; ·)
∥∥
Ḣ−1(ψ(s′′;·)) < G, ∀s, s′, s′′ ∈ S,

where ∥·∥Ḣ−1(·) is the weighted homogeneous Sobolev norm.

We remark that by assuming ψ to be a probability measure and that φ(s′) ≥ 0 in (4.6), the represen-
tation of the transition kernel does not lose generality. Specifically, the function class of (4.6) is the
same as

P =
{∫

σ̃((s, a, 1)⊤w)ψ̃(s′; dw)
∣∣∣ ψ̃(s′; ·) is a signed measure for any s′ ∈ S

}
.

See §C.1 for a detailed proof. Assumption 4.3 generalizes the linear MDP in [14, 32, 67, 68]. In
contrast, our representation of the reward function and the transition kernel benefits from the universal
function approximation theorem and is thus not as restrictive as the original linear MDP assumption.
Note that the infinite-width neural network has a two-layer structure by (4.2). We establish the
following lemma on the regularity of the representation of the action value function Qπ by such a
neural network.

Lemma 4.4 (Regularity of Representation of Qπ). Suppose that Assumptions 4.2 and 4.3 hold. For
any policy π, there exists a probability measure ρπ ∈ P2(RD) for the representation of Qπ with the
following properties.

(i) For functionQ(s, a; ρπ) defined by (3.4) with ρ = ρπ and the action value functionQπ(s, a)
defined by (2.2), we have Q(s, a; ρπ) = Qπ(s, a) for any (s, a) ∈ S ×A.

(ii) By letting Bβ ≥ 2(Br + γ(1− γ)−1BrM1,φ) for the neural network defined in (4.2) and
ρ0 ∼ N (0, ID) for the initial distribution, we have W̃2(ρπ, ρ0) ≤ D̄ for any policy π,
where we define W̃2(·, ·) = αW2(·, ·) as the scaled W2 metric. Here constant D̄ depends on
the discount factor γ and the absolute constants L0,β , L1,β , lβ , Br,Mµ,Mψ,M1,φ,M2,φ

defined in Assumptions 4.2 and 4.3.

Proof. See §B.2 for a detailed proof.
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Property (i) of Lemma 4.4 shows that the action value function Qπ can be parameterized with the
infinite-width two-layer neural network Q(·; ρπ) in (3.4). Note that a larger Bβ captures a larger
function class in (4.3). Without loss of generality, we consider thatBβ ≥ 2(Br+γ(1−γ)−1BrM1,φ)

holds in the sequel. Hence, by Property (ii), it holds that W̃2(ρπ, ρ0) ≤ O(1) for any policy π. In
particular, it holds by Property (i) of Lemma 4.4 that ∥Qt−Qπt∥2,ϕ̃πt

= ∥Q(·; ρt)−Q(·; ρπt)∥2,ϕ̃πt

and we have the following theorem to characterize such an error with regard to the W2 space.

Theorem 4.5 (Upper Bound of Policy Evaluation Error). Suppose that Assumptions 4.2 and 4.3 hold
and ρ0 ∼ N (0, ID) is the initial distribution. We specify the weighting distribution Φ̃πt in MF-TD
(3.5) as Φ̃πt = Ẽπt

ϕ̃πt
, where ϕ̃πt ∈ P(S ×A) is the evaluation distribution for the policy evaluation

error in Theorem 4.1. Then, it holds that

(1−√
γ) · ∥Qt −Qπt∥2

2,ϕ̃πt
≤ − d

dt

W̃ 2
2 (ρt, ρπt)

2η
+∆t, (4.7)

where

∆t =2α1/2η−1BB1 · W̃2(ρt, ρ0)W̃2(ρt, ρπt)

+ α−1B2 ·
(
4B1 max

{
W̃2(ρπt

, ρ0), W̃2(ρt, ρ0)
}
+Br

)
W̃2(ρt, ρπ)

2.

Here B1 and B2 are defined in (4.4) of Assumption 4.2, η is the relative TD timescale, α is the
scaling parameter of the neural network, and W̃2 = αW2 is the scaledW2 metric. Moreover, constant
B depends on the dicount factor γ, the scaling parameter Bβ in (4.2), and the absolute constants
lβ , Br,M1,φ,G defined in Assumptions 4.2 and 4.3.

Proof. See §B.3 for a detailed proof.

Here we give a nonrigorous discussion on how to upper bound ∆t in (4.7). If W̃2(ρt, ρ0) ≤ O(1)

holds for any t ∈ [0, T ], by W̃2(ρπt
, ρ0) ≤ O(1) in Lemma 4.4 and the triangle inequality of W2

distance [59], it follows that W̃2(ρt, ρπt) ≤ O(1) and ∆t ≤ O(α1/2η−1 + α−1). Taking a time
average of integration on both sides of (4.7), the policy evaluation error 1

T

∫ T
0
∥Qt −Qπt∥2,ϕ̃πt

dt is
then upper bounded by O(η−1T−1 + α1/2η−1 + α−1). Inspired by such a fact, we introduce the
following restarting mechanism to ensure W̃2(ρt, ρ0) ≤ O(1).

Restarting Mechanism. Let W̃0 = λD̄ be a threshold, where D̄ is the upper bound for W̃2(ρπ, ρ0)
by Lemma 4.4, λ ≥ 3 is a constant scaling parameter for the restarting threshold, ρt is the distribution
of the parameters in the neural network at time t, and ρ0 is the initial distribution. Whenever we detect
that W̃2(ρt, ρ0) reaches W̃0 in the update, we pause and reset ρt to ρ0 by resampling the parameters
from ρ0. Then, we reset the critic with the newly sampled parameters while keeping the actor’s policy
πt unchanged and continue the update.

The restarting mechanism guarantees W̃2(ρt, ρ0) ≤ λD̄ by restricting the distribution ρt of the
parameters to be close to ρ0. Moreover, by letting λ ≥ 3, we ensure that ρπt

is realizable by ρt
since W̃2(ρπt , ρ0) ≤ D̄ ≤ λD̄, which means that the neural network is capable of capturing the
representation of the action value function Qπt . We remark that by letting W̃0 = O(1), we allow ρt
to deviate from ρ0 up to W2(ρt, ρ0) ≤ O(α−1) in the restarting mechanism. In contrast, the NTK
regime [15] which corresponds to letting α =

√
M in (3.1) only allows ρt to deviate from ρ0 by the

chi-squared divergence χ2(ρt ∥ ρ0) ≤ O(M−1) = o(1). That is, the NTK regime fails to induce a
feature representation significantly different from the initial one. Before moving on, we summarize
the construction of the weighting distribution Φ̃πt in Theorem 4.1 and 4.5 as follows,

Φ̃πt = Ẽπt

ϕ̃πt
, ϕ̃πt =

1

2
ϕ̃0 +

1

2
ϕ0 ⊗ πt, ϕ0 =

∫
A
ϕ̃0(·,da), (4.8)

where ϕ̃0 is the base distribution. Now we have the following theorem that characterizes the global
optimality and convergence of the two-timescale AC with restarting mechanism.
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Theorem 4.6 (Global Optimality and Convergence Rate of Two-timescale AC with Restarting
Mechanism). Suppose that (4.8) and Assumptions 4.2 and 4.3 hold. With the restarting mechanism,
it holds that

1

T

∫ T

0

(
J(π∗)− J(πt)

)
dt ≤ ζ

T︸︷︷︸
(a)

+4κ

√
α−1S1 + α1/2η−1S2 +

η−1D̄2

2T (1−√
γ)︸ ︷︷ ︸

(b)

, (4.9)

where we have

ζ = Es∼Eπ∗
D0

[
KL

(
π∗(· | s) ∥π0(· | s)

)]
, κ =

∥∥∥∥ Ẽπ∗

D0

ϕ̃0

∥∥∥∥
∞
,

S1 =
(1 + λ)2D̄2B2(4B1λD̄ +Br)

1−√
γ

, S2 =
2BB1λ(1 + λ)D̄2

1−√
γ

.

Here Br, B1 and B2 are defined in Assumption 4.2 and 4.3, D̄ is the upper bound for W̃2(ρπ, ρ0) in
Lemma 4.4, B depends on the discount factor γ and the absolute constants defined in Assumption
4.2 and 4.3, and λ is the scaling parameter for the restarting threshold. Besides, it holds for the total
restarting number N that

N ≤ (λ− 2)−1
(
(α−1ηS1 + α1/2S2)2TD̄

−2(1−√
γ) + 1

)
.

Proof. See §B.4 for a detailed proof.

Note that for a given MDP with starting distribution D0, the expected KL-divergence ζ and the
concentrability coefficient κ are both independent of the two-timescale update. We remark that our
condition for (4.9) to be bounded is not restrictive. Specifically, we only need a given π0 and ϕ̃0 such
that the KL-divergence ζ <∞ and the concentrability coefficient κ <∞, which is weaker than the
concentrability coefficient used in [7, 23, 24, 38, 39, 43, 48, 57, 61].

The first term (a) on the right-hand side of (4.9) diminishes as T → ∞. The second term (b)
corresponds to the policy evaluation error. We give an example to demonstrate the convergence
of the two-time AC. We let the scaling parameter λ = 3 for the restarting threshold. By letting
η = α3/2, it holds that (b) = O(α−1/2) as α → ∞. Thus, we have that 1

T

∫ T
0

(
J(π∗) − J(πt)

)
dt

descends at a rate of O(T−1 + O(α−1/2) + O(α−3/4T−1/2)). Note that η = α3/2 shows that the
critic has a larger relative TD timescale in (3.5). As for the total number of restartings N , it holds
that N ≤ O(α1/2T ) as α→ ∞, which induces a tradeoff, i.e., a larger α guarantees a smaller gap in
1
T

∫ T
0

(
J(π∗)− J(πt)

)
dt but yields in more restartings and a larger relative TD timescale.
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A Supplement to the Background

In this section, we present some backgrounds on Wasserstein space and replicator dynamics.

A.1 Wasserstein Space

Let Θ ⊆ RD be a Polish space. We denote by P2(Θ) ⊆ P(Θ) the set of probability measures with
finite second moments. Then, the Wasserstein-2 (W2) distance between µ, ν ∈ P2(Θ) is defined as
follows,

W2(µ, ν) = inf
{
E
[
∥X − Y ∥2

]1/2 ∣∣∣ law(X) = µ, law(Y ) = ν
}
, (A.1)

where the infimum is taken over the random variables X and Y on Θ and we denote by law(X) the
distribution of a random variable X . We call M = (P2(Θ),W2) the Wasserstein space, which is an
infinite-dimensional manifold [59]. In particular, we define the tangent vector at µ ∈ M as ρ̇0 for
the corresponding curve ρ : [0, 1] → P2(Θ) with ρ0 = µ. Under certain regularity conditions, the
continuity equation ∂tρt = −div(ρtvt) corresponds to a vector field v : [0, 1] × Θ → RD, which
endows the infinite-dimensional manifold P2(Θ) with a weak Riemannian structure in the following
sense [59]. Given any tangent vectors u and ũ at µ ∈ M and the corresponding vector fields v, ṽ,
which satisfy u+ div(µv) = 0 and ũ+ div(µṽ) = 0, respectively, we define the inner product of u
and ũ as follows,

⟨u, ũ⟩µ,W2
=

∫
v · ṽdµ = ⟨v, ṽ⟩µ, (A.2)

which yields a Riemannian metric. Such a Riemannian metric further induces a norm ∥u∥µ,W2
=

⟨u, u⟩1/2µ,W2
for any tangent vector u ∈ TµM at any µ ∈ M, which allows us to write the Wasserstein-2

distance defined in (A.1) as follows,

W2(µ, ν) = inf

{(∫ 1

0

∥ρ̇t∥2ρt,W2
dt

)1/2
∣∣∣∣∣ ρ : [0, 1] → M, ρ0 = µ, ρ1 = ν

}
. (A.3)

Here ρ̇s denotes ∂tρt | t=s for any s ∈ [0, 1]. In particular, the infimum in (A.3) is attained by
the geodesic ρ̃ : [0, 1] → P2(Θ) connecting µ, ν ∈ M. Moreover, the geodesics on M are
constant-speed, that is,

∥ ˙̃ρt∥ρ̃t,W2
=W2(µ, ν), ∀t ∈ [0, 1]. (A.4)

In Wasserstein space M, a curve ρ : [0, 1] → P2(Θ) is defined to be absolutely continous if there
exists m ∈ L1(a, b), i.e.,

∫ b
a
|ṁ(t)|dt <∞, such that

W2(ρs, ρt) ≤
∫ t

s

m(r)dr, ∀a < s ≤ t < b.

Such an absolutely continuous curve ρt allows us to define the metric derivative in M as follows,

|ρ̇t|W2
= lim
s→t

W2(ρs, ρt)

|s− t|
. (A.5)

By [6], the metric derivative |ρ̇t|W2
is connected to the norm of the tangent vector by

|ρ̇t|W2
= ∥ρ̇t∥ρt,W2

. (A.6)

Furthermore, we introduce the Wasserstein-1 distance, which is defined as

W1(µ
1, µ2) = inf

{
E
[
∥X − Y ∥

] ∣∣∣ law(X) = µ1, law(Y ) = µ2
}

for any µ1, µ2 ∈ P(RD) with finite first moments. The Wasserstein-1 distance has the following
dual representation [6],

W1(µ
1, µ2) = sup

{∫
f(x) d(µ1 − µ2)(x)

∣∣∣∣ continuous f : RD → R,Lip(f) ≤ 1

}
. (A.7)
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A.2 Replicator Dynamics

The replicator dynamics originally arises in the study of evolutionary game theory [50]. For a function
f , the replicator dynamics is given by the differential equation

d

dt
xt(a) = xt(a)[f(a, xt)− ϕ(x)],

where ϕ(x) =
∫
x(a)f(a, x). As for the PPO update in (3.7), for a fixed s, let x(a) = π(a | s) and

f(a, x) = Qπ(s, a), we see that (3.7) corresponds to a replicator dynamics if Qt = Qπt . Note that
in the simultaneous update of both the critic and actor, we do not have access to the true action value
function Qπ. Thus, we use the estimator Qt calculated by the critic step to guide the update of the
actor in the PPO update, which takes the form of a replicator dynamics in the continuous-time limit.

B Proofs of Main Results

In this section, we give detailed proof of the theorems and present a detailed statement of Lemma 4.4.

B.1 Proof of Theorem 4.1

Proof. Following from the performance difference lemma [33], we have

J(π∗)− J(πt) = (1− γ)−1 · Es∼Eπ∗
D0

[
⟨Aπt(s, ·), π∗(· | s)− πt(· | s)⟩A

]
,

where Eπ∗

D0
is the visitation measure induced by π∗ from D0 and Aπt is the advantage function. Note

that the continuous PPO dynamics in (3.7) can be equivalently written as ∂t log πt = At. Thus, we
have

(1− γ) ·
(
J(π∗)− J(πt)

)
= Es∼Eπ∗

D0

[〈 d

dt
log πt(· | s) +Aπt(s, ·)−At(s, ·), π∗(· | s)− πt(· | s)

〉
A

]
= Es∼Eπ∗

D0

[〈 d

dt
log πt(· | s), π∗(· | s)− πt(· | s)

〉
A

]
+ Es∼Eπ∗

D0

[〈
Qπt(s, ·)−Qt(s, ·), π∗(· | s)− πt(· | s)

〉
A

]
. (B.1)

For the first term on the right-hand side of (B.1), it holds that,〈 d

dt
log πt(· | s), π∗(· | s)− πt(· | s)

〉
A

=
〈 d

dt
log πt(· | s), π∗(· | s)

〉
A −

〈 d

dt
log πt(· | s), πt(· | s)

〉
A (B.2)

= − d

dt
KL

(
π∗(· | s) ∥πt(· | s)

)
,

where the last equality holds by noting that
〈
∂t log πt(· | s), πt(· | s)

〉
A = ∂t

∫
A πt(da | s) = 0. For

the second term on the right-hand side of (B.1), by the Cauchy-Schwartz inequality, we have

Es∼Eπ∗
D0

[〈
Qπt(s, ·)−Qt(s, ·), π∗(· | s)

〉
A

]
= E(s,a)∼ϕ̃πt

[(
Qπt(s, a)−Qt(s, a)

)
π∗(a|s)

Eπ∗

D0
(s)

ϕ̃πt(x)

]
≤

∥∥∥∥ Ẽπ∗

D0

ϕ̃πt

∥∥∥∥
2,ϕ̃πt

·
∥∥Qπt −Qt

∥∥
2,ϕ̃πt

, (B.3)

Es∼Eπ∗
D0

[〈
Qπt(s, ·)−Qt(s, ·), πt(· | s)

〉
A

]
= E(x)∼ϕ̃πt

[(
Qπt(s, ·)−Qt(s, ·))πt(a | s)

Eπ∗

D0
(s)

ϕ̃πt(x)

]
≤

∥∥∥∥Eπ∗

D0
⊗ πt

ϕ̃πt

∥∥∥∥
2,ϕ̃πt

·
∥∥Qπt −Qt

∥∥
2,ϕ̃πt

. (B.4)
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Plugging (B.2), (B.3), and (B.4) into (B.1), we have

J(π∗)− J(πt) ≤ − d

dt
Es∼Eπ∗

D0

[
KL

(
π∗(· | s) ∥πt(· | s)

)]
+
(∥∥∥∥ Ẽπ∗

D0

ϕ̃πt

∥∥∥∥
2,ϕ̃πt

+

∥∥∥∥Eπ∗

D0
⊗ πt

ϕ̃πt

∥∥∥∥
2,ϕ̃πt

)
· ∥Qt −Qπt∥2,ϕ̃πt

. (B.5)

By further letting ϕ̃πt = 1
2 ϕ̃0 +

1
2ϕ0 ⊗ πt, it holds for the concentrability coefficient

∥∥∥∥ Ẽπ∗
D0

ϕ̃πt

∥∥∥∥
2,ϕ̃πt

in

(B.3) that ∥∥∥∥ Ẽπ∗

D0

ϕ̃πt

∥∥∥∥
2,ϕ̃πt

≤
∥∥∥∥2Ẽπ∗

D0

ϕ̃0

∥∥∥∥
2,ϕ̃πt

≤ 2

∥∥∥∥ Ẽπ∗

D0

ϕ̃0

∥∥∥∥
∞
. (B.6)

By further letting ϕ0(s) =
∫
A ϕ̃0(s,da), it holds for the concentrability coefficient

∥∥∥∥Eπ∗
D0

⊗πt

ϕ̃πt

∥∥∥∥
2,ϕ̃πt

in (B.4) that

∥∥∥∥Eπ∗

D0
⊗ πt

ϕ̃πt

∥∥∥∥
2,ϕ̃πt

≤
∥∥∥∥2Eπ∗

D0

ϕ0

∥∥∥∥
2,ϕ̃πt

≤ 2

∥∥∥∥∥
∫ Ẽπ∗

D0
(x)

ϕ̃0(x)
ϕ̃0(s,da)

ϕ0(s)

∥∥∥∥∥
∞

≤ 2

∥∥∥∥ Ẽπ∗

D0

ϕ̃0

∥∥∥∥
∞
. (B.7)

Plugging (B.6) and (B.7) into (B.5) and taking integration on both sides of (B.5), we have

1

T

∫ T

0

(
J(π∗)− J(πt)

)
dt ≤ 1

T
Es∼Eπ∗

D0

[
KL

(
π∗(· | s) ∥π0(· | s)

)]
+

4κ

T
·
∫ T

0

∥Qt −Qπt∥2,ϕ̃πt
dt,

where κ =
∥∥Ẽπ∗

D0
/ϕ̃0

∥∥
∞. Thus, we complete the proof of Theorem 4.1.

B.2 Detailed Statement of Lemma 4.4

We give a detailed version of Lemma 4.4 as follows.

Lemma B.1 (Regularity of Representation of Qπ). Suppose that Assumptions 4.2 and 4.3 hold. For
any policy π, there exists a probability measure ρπ ∈ P2(RD) for the representation of Qπ with the
following properties.

(i) For functionQ(s, a; ρπ) defined by (3.4) with ρ = ρπ and the action value functionQπ(s, a)
defined by (2.2), we have Q(s, a; ρπ) = Qπ(s, a) for any (s, a) ∈ S ×A.

(ii) For g defined in (3.6), we have g(·; ρπ) = 0 for any policy π.

(iii) By letting Bβ ≥ 2(Br + γ(1− γ)−1BrM1,φ) for the neural network defined in (4.2) and
ρ0 ∼ N (0, ID) for the initial distribution, we have W̃2(ρπ, ρ0) < D̄ for any policy π,
where we define W̃ (·, ·) = αW (·, ·) as the scaled W2 metric. Here constant D̄ depends on
the discount factor γ and the absolute constants L0,β , L1,β , lβ , Br,Mµ,Mψ,M1,φ,M2,φ

defined in Assumptions 4.2 and 4.3.

(iv) For any two policies π1 and π2, it holds that,

W2(ρπ1 , ρπ2) ≤ α− 1
2B · sup

s∈S
Es′∼Eπ1

s

[∥∥π1(· | s′)− π2(· | s′)
∥∥
1

]
,

where B depends on the dicount factor γ, the scaling parameter Bβ in (4.2), and the absolute
constants lβ , Br,M1,φ,G defined in Assumptions 4.2 and 4.3.

Proof. See §C.2 for a detailed proof.
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B.3 Proof of Theorem 4.5

Proof. For notation simplicity, we let x = (s, a). By Property (i) of Lemma B.1, it holds that
∥Qt−Qπt∥2

2,ϕ̃πt
= ∥Qt−Q(·; ρπ)∥22,ϕ̃πt

, where Qt = Q(·; ρt). Thus it prompts us to study the W2

distance between ρt and ρπt
. By the first variation formula in Lemma E.2, it holds that

d

dt

W 2
2 (ρt, ρπt

)

2
= −⟨ρ̇t, ˙̃α0

t ⟩ρt,W2 − ⟨ρ̇πt ,
˙̃
β0
t ⟩ρπt ,W2 . (B.8)

Here α̃[0,1]
t is the geodesic connecting ρt and ρπt , and β̃[0,1]

t is its time-inverse, i.e., β̃st = α̃1−s
t .

Besides, we denote by ˙̃αst = ∂sα̃
s
t and ˙̃

βst = ∂sβ̃
s
t the derivation of geodesics α̃st and β̃st with

respect to s, respectively. We denote by vs the corresponding vector field at α̃st , which satisfies
∂sα̃

s
t = −div(α̃stvs). For the first term of (B.8), it holds that

−⟨ρ̇t, ˙̃α0
t ⟩ρt,W2

= −η ·
〈
g(·; ρt, πt), v0

〉
ρt

= η ·
∫ 1

0

∂s⟨g(·; α̃st , πt), vs⟩α̃s
t
ds− η ·

〈
g(·; ρπt

, πt), v1
〉
ρπt

= η ·
∫ 1

0

〈
∂sg(·; α̃st , πt), vs

〉
α̃s

t
ds+ η ·

∫ 1

0

∫
g(θ; α̃st , πt) · ∂s(vsα̃st )(θ)dθds,

(B.9)

where the first equality follows from (A.2) and the third equation follows from g(·; ρπt
, πt) = 0 by

Property (ii) of Lemma B.1. For the first term on the right-hand side of (B.9), we have

η ·
∫ 1

0

〈
∂sg(·; α̃st , πt), vs

〉
α̃s

t
ds

= −α−1η ·
∫ 1

0

∫ 〈
Eπt

Φ̃πt

[
∂s
(
Q(x; α̃st )− γ ·Q(x′; α̃st )

)
∇σ(x; θ)

]
, (vsα̃

s
t )(θ)

〉
dθds

= α−1η ·
∫ 1

0

∫ 〈
Eπt

Φ̃πt

[
∂s
(
Q(x; α̃st )− γ ·Q(x′; α̃st )

)
σ(x; θ)

]
,div(vsα̃

s
t )(θ)

〉
dθds, (B.10)

where the first equality holds by defintion of g in (3.6) and the last equality follows from Stokes’
formula. Note that we have div(vsα̃

s
t ) = −∂sα̃st by the definition of vector field vs. Thus, it holds

for (B.10) that

η ·
∫ 1

0

〈
∂sg(·; α̃st , πt), vs

〉
α̃s

t
ds

= −α−1η ·
∫ 1

0

∫ 〈
Eπt

Φ̃πt

[
∂s
(
Q(x; α̃st )− γ ·Q(x′; α̃st )

)
σ(x; θ)

]
, ∂sα̃

s
t (θ)

〉
dθds

= −α−2η ·
∫ 1

0

Eπt

Φ̃πt

[
∂s
(
Q(x; α̃st )− γ ·Q(x′; α̃st )

)
∂sQ(x; α̃st )

]
ds, (B.11)

where the last equality follows from the definition of Q in (3.4). We let f(D̃) =(
Ex∼Ẽπt

D̃

[
(∂sQ(x; α̃st ))

2
])1/2

with respect to a specific s and t. Recall that for the weighting distri-

bution Φ̃πt , we set Φ̃πt = Ẽπt

ϕ̃πt
. Hence, for the integrand of (B.11), we have

− Eπt

Φ̃πt

[
∂s
(
Q(x; α̃st )− γ ·Q(x′; α̃st )

)
∂sQ(x; α̃st )

]
= −f(ϕ̃πt)2 + γ ·

∫
∂sQ(x; α̃st )∂sQ(x′; α̃st )P̃

πt(x′ |x)Ẽπt

ϕ̃πt
(x)dx′dx

≤ −f(ϕ̃πt)2 + γ ·

√∫ (
∂sQ(x; α̃st )

)2Ẽπt

ϕ̃πt
(dx) ·

√∫ (
∂sQ(x′; α̃st )

)2
P̃πt(dx′ |x)Ẽπt

ϕ̃πt
(dx),

(B.12)
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where the equality follows from the definition of Eπt

Φ̃πt
in (3.6) and the inequality folllows from the

Cauchy-Schwarz inequality. We define T π : P(S ×A) → P(S ×A) as a mapping operator such
that T πD̃(x′) =

∫
D̃(x)P̃π(x′|dx). We rewrite (B.12) as

− Eπt

Φ̃πt

[
∂s
(
Q(x; α̃st )− γ ·Q(x′; α̃st )

)
∂sQ(x; α̃st )

]
≤ −f(ϕ̃πt)2 + γ · f(ϕ̃πt) · f(T πt ϕ̃πt).

(B.13)

By the definition of T πt and the definition of visitation measure in (2.1), it holds that Ẽπt

ϕ̃πt
−

γẼπt

T πt ϕ̃πt
= (1− γ)ϕ̃πt . Hence, we have f(ϕ̃πt)2 − γf2(T πt ϕ̃πt) = (1− γ)Eϕ̃πt

[(
∂sQ(x; α̃st )

)2]
and it holds for (B.13) that

−f(ϕ̃πt)2 + γf(ϕ̃πt) · f(T πt ϕ̃πt) = − f(ϕ̃πt)

f(ϕ̃πt) + γf(T πt ϕ̃πt)
·
(
f(ϕ̃πt)2 − γ2f2(T πt ϕ̃πt)

)

≤ −
f(ϕ̃πt)2 − γ

(
f(ϕ̃πt)2 − (1− γ)Eϕ̃πt

[(
Q(x; α̃st )

)2])
1 +

√
γ

≤ −(1−√
γ) · Eϕ̃πt

[(
∂sQ(x; α̃st )

)2]
, (B.14)

where the first inequality holds by noting that f(ϕ̃πt) ≥ √
γf(T πt ϕ̃πt) and the last inequality holds

by noting that f(ϕ̃πt)2 ≥ (1 − γ)Eϕ̃πt

[(
∂sQ(x; α̃st )

)2]
. Combining (B.11), (B.13), and (B.14)

together, it holds for the first term of (B.9) that

η ·
∫ 1

0

〈
∂sg(·; α̃st , πt), vs

〉
α̃s

t
ds ≤ −α−2η(1−√

γ) ·
∫ 1

0

Eϕ̃πt

[(
∂sQ(x; α̃st )

)2]
ds

≤ −α−2η(1−√
γ) ·

∥∥Q(x; ρπt
)−Q(x; ρt)

∥∥2
2,ϕ̃πt

, (B.15)

where the last inequality holds by the Cauchy-Schwarz inequality. For the second term of (B.9), we
have

η ·
∫ 1

0

∫
g(θ; α̃st , πt) · ∂s(vsα̃st )(θ)dθds = η ·

∫ 1

0

∫ 〈
∇g(θ; α̃st , πt), α̃st (θ) · vs(θ)⊗ vs(θ)

〉
dθds

≤ η ·
∫ 1

0

sup
θ
∥∇g(θ; α̃st , πt)∥F ·W2(ρt, ρπt

)2ds

= η · sup
θ,s

∥∇g(θ; α̃st , πt)∥F ·W2(ρt, ρπt)
2, (B.16)

where the first euality holds by Eulerian representation of geodesic in Lemma E.3 that ∂s(vs · α̃st ) =
−div(α̃st · vs ⊗ vs) and Stokes’s fomula. Here, we denote by ⊗ the outer product between two
vectors. The inequlity of (B.16) follows from ∥vs(θ) ⊗ vs(θ)∥F = ∥vs(θ)∥2 and the property of
geodesic in (A.4) that ∥vs∥α̃s

t ,W2
=W2(ρt, ρπt

).

For the Second term on the right-hand side of (B.8), we denote by ut the corresponding vector field
at ρπt such that ∂tρπt = −div(ρπtut). Then, it holds that

−⟨ρ̇πt ,
˙̃
β0
t ⟩ρπt ,W2 = ⟨ut, v1⟩ρπt

≤ ∥ρ̇πt∥ρπt ,W2 ·W2(ρt, ρπt) = |ρ̇πt |W2 ·W2(ρt, ρπt), (B.17)

where the first equality follows from (A.2), the inequality follows from the Cauchy-Schwarz inequality
and the facts that ∥ut∥ρπt

= ∥ρ̇πt
∥ρπt ,W2

by (A.2) and that ∥v1∥ρπt
= W2(ρt, ρπt

) by (A.4). The
last equality of (B.17) holds by (A.6). Plugging the definition of metric derivative |ρ̇t|W2

in (A.5)
into (B.17), we have

−⟨ρ̇πt
,
˙̃
β0
t ⟩ρπt ,W2

≤ lim
∆t→0

W2(ρπt
, ρπt+∆t

)

|∆t|
·W2(ρt, ρπt)

≤ α−1/2B · lim
∆t→0

sup
s∈S

Es′∼Eπt
s

[∥∥∥πt+∆t(· | s′)− πt(· | s′)
∆t

∥∥∥
1

]
·W2(ρt, ρπt)

= α−1/2B · sup
s∈S

Es′∼Eπt
s

[∥∥At(s′, ·)πt(· | s′)∥∥1] ·W2(ρt, ρπt
), (B.18)
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where the second inequality follows from Property (iv) of Lemma B.1 and the equality follows from
the MF-PPO update in (3.7). For the approximation of the advantage function At, it holds that

sup
x∈S×A

∣∣At(x)∣∣ = sup
x∈S×A

∣∣∣∣Q(x; ρt)−
∫
Q(s, a′)πt(da

′ | s)
∣∣∣∣

≤ 2 sup
x∈S×A

∣∣Q(x; ρt)
∣∣. (B.19)

Plugging (B.19) into (B.18), we have

−⟨ρ̇πt , β̃
0
t ⟩ρπt

≤ α−1/2B · sup
x∈X

∣∣At(x)∣∣ · sup
s∈S

Es′∼Eπt
s

[∥∥πt(· | s′)∥∥1] ·W2(ρt, ρπt)

≤ 2α−1/2B · sup
x∈X

∣∣Q(x; ρt)
∣∣ ·W2(ρt, ρπt). (B.20)

where the last inequality follows from ∥πt(· | s′)∥1 = 1. By first plugging (B.15) and (B.16) into
(B.9), and then plugging (B.9) and (B.20) into (B.8), we have

d

dt

W 2
2 (ρt, ρπt

)

2
≤ −α−2η(1−√

γ) ·
∥∥Qt −Qπt

∥∥2
2,ϕ̃πt

+ η · sup
θ,s

∥∥∇g(θ; α̃st , πt)∥∥F ·W2(ρt, ρπ)
2

+ 2α−1/2B · sup
x∈X

∣∣Q(x; ρt)
∣∣ ·W2(ρt, ρπt). (B.21)

Plugging Lemma D.1 into (B.21), we have

d

dt

W 2
2 (ρt, ρπt

)

2
≤− ηα−2(1−√

γ) ·
∥∥Qt −Qπt

∥∥2
2,ϕ̃πt

+ ηα−1B2 ·
(
2αB1 sup

s∈[0,1]

W2(α̃
s
t , ρ0) +Br

)
·W2(ρt, ρπ)

2

+ 2α1/2BB1 ·W2(ρt, ρ0)W2(ρt, ρπt
). (B.22)

Note that α̃st is the geodesic connecting ρt and ρπ . By Lemma D.2, we have

sup
s∈[0,1]

W2(α̃
s
t , ρ0) ≤ 2max

{
W2(ρπt , ρ0),W2(ρt, ρ0)

}
. (B.23)

Plugging (B.23) into (B.22), it follows that

d

dt

W̃ 2
2 (ρt, ρπt

)

2η
≤− (1−√

γ) ·
∥∥Qt −Qπt

∥∥2
2,ϕ̃πt

+ 2η−1α1/2BB1 · W̃2(ρt, ρ0)W̃2(ρt, ρπt
)

+ α−1B2 ·
(
4B1 max

{
W̃2(ρπt

, ρ0), W̃2(ρt, ρ0)
}
+Br

)
W̃2(ρt, ρπ)

2,

Where W̃2 = α−1W2 is the scaled W2 metric. Thus, we complete the proof of Theorem 4.5.

B.4 Proof of Theorem 4.6

Proof. We remark that the restarting mechanism produces discontinuity in ρt while πt remains
continuous. Let T0, T1, · · · , TN denote the restarting points in [0, T ), where T0 = 0 andN is the total
restarting number in [0, T ). Let T−

n and T+
n denote the moments just before and after the restarting

occurring at Tn, respectively. According to the restarting mechanism, we have W̃2(ρt, ρ0) ≤ λD̄,
W̃2(ρT−

n
, ρ0) = λD̄ and ρT+

n
= ρ0. Recall that we set Φ̃πt = Ẽπt

ϕ̃πt
. By (4.7) of Theorem 4.5, it

holds that

(1−√
γ) · ∥Qt −Qπt∥2

2,ϕ̃πt
≤− d

dt

W̃ 2
2 (ρt, ρπt

)

2η
+ 2η−1α1/2BB1λD̄ · W̃2(ρt, ρπt

)

+ α−1B2 · (4B1λD̄ +Br)W̃2(ρt, ρπ)
2. (B.24)

For simplicity, we let S1 = (1+λ)2D̄2B2(4B1λD̄+Br)
1−√

γ , S2 = 2BB1λ(1+λ)D̄
2

1−√
γ , ξ = 1

2(1−√
γ) ,

Q(t) = ∥Qt − Qπt∥2,ϕ̃πt
, and W̃ (t) = W̃2(ρt, ρπt

). By sum of the integrals of (B.24) on
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[T0, T1], · · · , [TN−1, TN ], and [TN , T ], we have

1

T

∫ T

0

Q2(t)dt ≤ 1

T

∫ T

0

( α−1S1

(1 + λ)2D̄2
W̃ (t)2 +

α1/2η−1S2

(1 + λ)D̄
W̃ (t)

)
dt

− ξ

Tη

(N−1∑
n=0

∫ Tn+1

Tn

d

dt
W̃ (t)2dt+

∫ T

TN

d

dt
W̃ (t)2dt

)
. (B.25)

Note that we have W̃ (t) = W̃2(ρt, ρπt
) ≤ W̃2(ρt, ρ0) + W̃2(ρπt

, ρ0) ≤ (1 + λ)D̄ by the triangle
inequality of W2 distance, the resarting mechanism and Property (iii) of Lemma B.1. It thus holds
for (B.25) that

1

T

∫ T

0

Q2(t)dt ≤ 1

T

∫ T

0

(α−1S1 + α1/2η−1S2)dt

− ξ

Tη

(N−1∑
n=0

(
W̃ 2(T−

n+1)− W̃ 2(T+
n )

)
+

(
W̃ 2(T )− W̃ 2(T+

N )
))
. (B.26)

Note that we have W̃ (T−
n+1) ≥ W̃2(ρ0, ρT−

n+1
) − W̃2(ρ0, ρπ

T
−
n+1

) ≥ (λ − 1)D̄ ≥ D̄ ≥

W̃ (ρ0, ρπ
T

+
n

) = W̃ (T+
n ) by the triangle inequality of W2 distance, the resarting mechanism and

Property (iii) of Lemma B.1. It thus holds for (B.26) that

1

T

∫ T

0

Q2(t)dt ≤ α−1S1 + α1/2η−1S2 +
η−1D̄2

2T (1−√
γ)
. (B.27)

By setting ϕ̃πt = 1
2 ϕ̃0 +

1
2ϕ0 ⊗ πt and plugging (B.27) into (4.1) of Theorem 4.1, we have

1

T

∫ T

0

(
J(π∗)− J(πt)

)
dt ≤ ζ

T
+

4κ

T

∫ T

0

Q(t)dt

≤ ζ

T
+ 4κ

√
1

T

∫ T

0

Q2(t)dt

≤ ζ

T
+ 4κ

√
α−1S1 + α1/2η−1S2 +

η−1D̄2

2T (1−√
γ)
, (B.28)

where κ =
∥∥Ẽπ∗

D0
/ϕ̃0

∥∥
∞ is the concentrability coefficient and ζ = Es∼Eπ∗

[
KL

(
π∗(· | s) ∥π0(· | s)

)]
is the KL-divergence between π∗ and π0. Here the second inequality follows from the Cauchy-
Schwarz inequality. Therefore, we complete the proof of (4.9) in Theorem 4.6. In what follows,
we aim to upper bound the total restarting number N . Recall that we have W̃ (T+

n ) ≤ D̄ and
W̃ (T−

n+1) ≥ (λ− 1)D̄ according to the restarting mechanism. Thus, it holds for (B.26) that

1

T

∫ T

0

Q2(t)dt ≤ α−1S1 + α1/2η−1S2 −
ξ

Tη

(
N(λ− 2)D̄2 − D̄2

)
.

Since Q2(t) ≥ 0, it follows that

N ≤
(
(α−1S1 + α1/2η−1S2)2T (1−

√
γ)η + D̄2

)
· D̄

−2

λ− 2

= (λ− 2)−1
(
(α−1ηS1 + α1/2S2)2TD̄

−2(1−√
γ) + 1

)
,

which upper bounds the total restarting number N . Hence, we complete the proof of Theorem
4.6.

C Proofs of Supporting Lemmas

In this section, we give detailed proof of supporting lemmas.
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C.1 Generality of Transition Kernel Representation

Recall that we have the following representation of the transition kernel in Assumption 4.3,

P (s′ | s, a) =
∫
σ̃
(
(s, a, 1)⊤w

)
φ(s′)ψ(s′;w)dw, (C.1)

where φ(s′) ≥ 0 and ψ̃(s; ·) ∈ P(w). Such a representation has the same function class as

P̃ (s′ | s, a) =
∫
σ̃
(
(s, a, 1)⊤w

)
ψ̃(s′;w)dw, (C.2)

where ψ̃ is a finite signed measure.

Proof. For simplicity, let P and P̃ denote the function class represented by (C.1) and (C.2),
respectively. Note that for any transition kernel P (s′ | s, a) represented by (C.1), by letting
ψ̃(s′;w) = φ(s′)ψ(s′;w), such a transition kernel P (s′ | s, a) can be equivalently represented
by P̃ (s′ | s, a) in (C.2). Thus, it holds that P ⊆ P̃ . Therefore, we only need to prove P̃ ⊆ P ,
which is equivalent to proving that for any P̃ (s′ | s, a) ∈ P̃ given by (C.2), the signed measure ψ̃
can be non-negative. If that is the case, by letting φ(s′) =

∫ (
ψ̃+(s

′;w) + ψ̃−(s
′;−w)

)
dw and

ψ(s′;w) = φ(s′)−1
(
ψ̃+(s

′;w)+ ψ̃−(s
′;−w)

)
, we can have (C.2) equivalently represented by (C.1).

Note that there always exist non-negative functions ψ̃+ and ψ̃− such that ψ̃ = ψ̃+ − ψ̃−. Since σ̃ is
an odd function, it holds that

P̃ (s′ | s, a) =
∫
σ̃(w⊤x)ψ̃(s′;w)dw

=

∫
σ̃(w⊤x)ψ̃+(s

′;w)dw +

∫
σ̃(−w⊤x)ψ̃−(s

′;w)dw

=

∫
σ̃(w⊤x)

(
ψ̃+(s

′;w) + ψ̃−(s
′;−w)

)
dw.

Thus, by letting φ(s′) =
∫ (
ψ̃+(s

′;w) + ψ̃−(s
′;−w)

)
dw and ψ(s′;w) = φ(s′)−1

(
ψ̃+(s

′;w) +

ψ̃−(s
′;−w)

)
, it holds that P̃ (s′ | s, a) =

∫
σ̃(w⊤x)φ(s′)ψ(s′; dw) = P (s′ | s, a), where ψ ∈

P(W) and φ ≥ 0. Hence, any P̃ (s′ | s, a) ∈ P̃ can be equivalently represented by (C.1) and it
follows that P̃ ⊆ P . Thus, (C.1) has the same function class as (C.2) and we complete the proof.

C.2 Proof of Detailed Version of Lemma 4.4

In this section, we prove a more detailed version of Lemma 4.4, i.e., Lemma B.1.

Proof. We begin by a sketch of the proof of Lemma B.1. We first construct functions Zπ and
νπ(w). With the use of mollifiers, we prove that there exists function pπ(b) satisfying (C.6) and then
formulate a construction of ρ̄π(θ), which gives way to obtain ρπ. For the proof of Property (iii),
using the technique of Talagrand’s inequality and the chi-squared divergence, we establish a constant
upper bound for W2(ρπ, ρ0). For the proof of Property (iv), by exploiting the inequality between
W2 distance and the weighted homogeneous Sobolev norm, we upper bound W2(ρπ1 , ρπ2) up to
O(α−1/2).

Proof of Property (i) of Lemma B.1. We give a proof of Property (i) by a construction of ρπ. For
notational simplicity, we let x = (s, a, 1). By definitions of the action value function Qπ and the
state value function V π in (2.2), we have

Qπ(s, a) = r(s, a) + γ ·
∫
P (s′ | s, a)V π(s′)ds′

=

∫
σ̃(w⊤x)

{
Br · µ(w) + γ ·

∫
φ(s′)ψ(s′;w)V π(s′)ds′

}
dw

=

∫
Zπ · σ̃(w⊤x)νπ(w)dw, (C.3)

22



where

νπ(w) = Z−1
π ·

(
Brµ(w) + γ ·

∫
φ(s′)ψ(s′;w)V π(s′)ds′

)
, (C.4)

Zπ = Br + γ ·
∫
φ(s′)V π(s′)ds′. (C.5)

Here, the second equality in (C.3) holds by (i) of Assumption 4.3. We construct ρ̄π by ρ̄π = νπ × pπ ,
i.e., ρ̄π(w, b) = νπ(w)pπ(b), where pπ(b) is defined to be a probability measure in P2(R) such that∫

Bβ · β(b)pπ(db) = Zπ. (C.6)

We remark that such a pπ exists and we will provide a construction later. Since we have V π ≥ 0,
φ ≥ 0, and ψ ≥ 0 by Assumption 4.3, it turns out that νπ is a probability density function according
to (C.4), which further suggests that ρ̄π ∈ P2(RD). Plugging (C.6) into (C.3), it holds that

Qπ(x) =

∫
σ(x; θ)ρ̄π(θ)dθ,

where the equality holds by noting that σ(x; θ) = Bβ ·β(b) · σ̃(w⊤x) in (4.2) and that ρ̄π = νπ × pπ .
Furthermore, by letting ρπ = ρ̄π + (1− α−1)(ρ0 − ρ̄π), we have

Qπ(x) = α

∫
σ(x; θ)(ρπ − (1− α−1)ρ0)dθ = α

∫
σ(x; θ)ρπdθ = Q(x; ρπ),

where the second equality holds by noting that σ is odd with respect tow and b and that ρ0 ∼ N (0, ID)
is an even function. Thus, we finish the construction of ρπ and also complete the proof of Property (i)
in Lemma B.1.

A Construction for pπ(b). Recall that we have pπ defined in (C.6). Here, we provide a construction
for pπ which has some properties that will facilitate our analysis. Ideally, we want pπ to have global
support and concentrate to its mean, which motivates us to consider pπ to be Gaussian distribution
with high variance. Recall that we assume that β−1 is ℓβ-Lipschitz continuous on [−2/3, 2/3] in
Assumption 4.2. Let q(b) be the probability density function of the standard Gaussian distribution,i.e.,
q ∼ N (0, 1). Then, qϵ(b − z) = ϵ−1 · q((b − z)/ϵ) is the probability density function such that
qϵ ∼ N (z, ϵ2). We define function βϵ as follows,

βϵ(z) =

∫
β(b)qϵ(b− z)db = (β ∗ qϵ)(z), (C.7)

where ∗ denotes the convolution. Note that {qϵ}ϵ>0 can be viewed as a class of mollifiers [25]. In
particular, let

ϵ̄ = min
{√π

2
· 1

6L0,β
,

√
π

2
· 1

2ℓβL1,β
, 1
}
, (C.8)

where L0,β and L1,β characterize the Lipschitz continuity and smoothness of β respectively and
β−1 is ℓβ-Lipschitz continuous in [−2/3, 2/3] by Assumption 4.2. For the approximation error of
mollifier βϵ, it holds that∣∣β(z)− βϵ̄(z)

∣∣ = ∣∣∣ ∫ (
β(z)− β(z′)

)
qϵ̄(z − z′)dz′

∣∣∣
≤ L0,β ·

∫
|z − z′|qϵ̄(z − z′)dz′

= L0,β · ϵ̄ ·
√

2

π
,

where the last inequality follows from
∫
|z|qϵ(z)dz = ϵ ·

√
2/π. Similarly, we have |β̇(z)− β̇ϵ̄(z)| ≤

L1,β · ϵ̄ ·
√
2/π. By definition of ϵ̄ in (C.8), it further holds that

sup
b∈β−1([−2/3,2/3])

∣∣β(b)− βϵ̄(b)
∣∣ ≤ 1/6, (C.9)

sup
b∈β−1([−2/3,2/3])

∣∣β̇(b)− β̇ϵ̄(b)
∣∣ ≤ 1

2ℓβ
. (C.10)

23



Note that β(b) is a monotonic function with |β̇(b)| ≥ 1/ℓβ in β−1([−2/3, 2/3]) by Assumption 4.2.
With regard to (C.10), it follows that βϵ̄(b) is also monotonic in β−1([−2/3, 2/3]) and that

|β̇ϵ̄(b)| ≥ |β̇(b)| − |β̇(b)− β̇ϵ̄(b)| ≥
1

2ℓβ
, ∀b ∈ β−1([−2/3, 2/3]). (C.11)

Furthermore, by (C.9) and the continuity of βϵ̄ in β−1([−2/3, 2/3]), we have

[−1/2, 1/2] ⊆ βϵ̄(β
−1([−2/3, 2/3])). (C.12)

The monotonicity of βϵ̄(b), (C.11), and (C.12) together show that β−1
ϵ̄ exists and is 2ℓβ-Lipschitz

continuous in [−1/2, 1/2]. Moreover, since β is an odd function, it holds by (C.7) that βϵ̄ is also an
odd function with βϵ̄(0) = 0. Hence, it holds that β−1

ϵ̄ ([−1/2, 1/2]) ⊆ [−ℓβ , ℓβ ]. Furthermore, by
(C.5), it holds that

Zπ = Br + γ ·
∫
φ(s′)V π(s′)ds′

≤ Br + γ · (1− γ)−1 ·Br ·
∫
φ(s′)ds′

≤ Br + γ(1− γ)−1BrM1,φ,

where the first inequality follows from the fact that V π(s) ≤ (1 − γ)−1 · sups,a r(s, a) and
the last inequality follows from Assumption 4.3 that

∫
φ(s′)ds′ ≤ M1,φ. By setting Bβ ≥

2(Br + γ(1 − γ)−1BrM1,φ), it holds that |Zπ/Bβ | ≤ 1/2, which indicates that β−1
ϵ̄ (Zπ/Bβ)

exists and allows pπ(b) = qϵ̄(b − β−1
ϵ̄ (Zπ/Bβ)) to be the probability density function such that

pπ(b) ∼ N (β−1
ϵ̄ (Zπ/Bβ), ϵ̄

2). For the mean value β−1
ϵ̄ (Zπ/Bβ), recalling that β−1

ϵ̄ ([−1/2, 1/2]) ⊆
[−ℓβ , ℓβ ], it thus holds that ∣∣β−1

ϵ̄ (Zπ/Bβ)
∣∣ ≤ ℓβ . (C.13)

Following from (C.7), we have∫
β(b)pπ(b)db =

∫
β(b)qϵ̄(b− β−1

ϵ̄ (Zπ/Bβ))db = βϵ̄
(
β−1
ϵ̄ (Zπ/Bβ)

)
= Zπ/Bβ .

Hence, our construction of pπ here is in line with the definition of pπ in (C.6). In the sequel, we
consider pπ(b) = qϵ̄

(
b− β−1

ϵ̄ (Zπ/Bβ)
)

to hold all along.

Proof of Property (ii) of Lemma B.1. Here we show that g(·;π, ρπ) = 0 is a direct result of
Qπ(x) = Q(x; ρπ) in Property (i). Note that

Qπ(x)− r(x)− γEx′∼P̃π(· | x)Q
π(x′) = 0 (C.14)

holds by the definition of the action value function Qπ in (2.2) for any x ∈ S ×A. Since we have
Qπ(x) = Q(x; ρπ) proved, by plugging (C.14) into the definition of g in (3.6), where Q(·; ρπ) is
substituted for Qπ, it follows that g(x;π, ρπ) = 0. Thus, we complete the proof of Property (ii) of
Lemma B.1.

Proof of Property (iii) of Lemma B.1.

In what follows, we aim to upper boundW 2(ρπ, ρ0). We summerize our aforementioned constructions
as follows,

Zπ = Br + γ ·
∫
φ(s′)V π(s′)ds′,

νπ(w) = Z−1
π

(
Brµ(w) + γ ·

∫
φ(s′)ψ(s′;w)V π(s′)ds′

)
, (C.15)

pπ(b) = qϵ̄
(
b− β−1

ϵ̄ (Zπ/Bβ)
)
, (C.16)

ρ̄π(θ) = pπ(b)νπ(w), (C.17)

ρπ = ρ̄π + (1− α−1)(ρ0 − ρ̄π). (C.18)
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Plugging (C.16) into the definition of Chi-squared divergence, we have

χ2
(
pπ ∥ ρ0,b

)
=

∫
p2π
ρ0,b

db− 1 =
1

ϵ̄
√
2− ϵ̄2

· exp
{(
β−1
ϵ̄ (Zπ/Bβ)

)2
2− ϵ̄2

}
− 1, (C.19)

Note that we have ϵ̄ = min
{√

π/2 · (6L0,β)
−1,

√
π/2 · (2ℓβL1,β)

−1, 1
}

by (C.8) and∣∣β−1
ϵ̄ (Zπ/Bβ)

∣∣ ≤ ℓβ by (C.13). Hence, we have χ2(pπ ∥ ρ0,b) upper bounded. As for νπ in (C.15),
we have

χ2(νπ ∥ ρ0,w) = χ2

(
BrZ

−1
π µ+

∫
V π(s′)Z−1

π φ(s′)ψ(s′;w)ds′
∥∥∥ ρ0,w)

≤ 3

(
χ2(BrZ

−1
π µ ∥ ρ0,w) + χ2

(∫
V π(s′)Z−1

π φ(s′)ψ(s′; ·)ds′
∥∥∥ ρ0,w)+ 1

)
,

(C.20)

where the inequality holds by Property (iii) of Lemma D.3. For the first term on the right-hand side
of (C.20), we have

χ2(BrZ
−1
π µ ∥ ρ0,w) = B2

rZ
−2
π χ2(µ ∥ ρ0,w) + (1−BrZ

−1
π )2

≤ χ2(µ ∥ ρ0,w) + 1

≤Mµ + 1, (C.21)

where the equality holds by Property (i) of Lemma D.3, the first inequality holds by noting that
|BrZ−1

π | ≤ 1 and the last inequality follows from χ2(µ ∥ ρ0,w) < Mµ by Assumption 4.3. Hence,
the first term on the right-hand side of (C.20) is upper bounded. As for the second term, by Property
(iv) of Lemma D.3, we have

χ2
(∫

V π(s′)Z−1
π φ(s′)ψ(s′; ·)ds′

∥∥∥ ρ0,w)
≤

∫ (
V π(s′)Z−1

π φ(s′)
)2
ds′ ·

∫
χ2(ψ(s′; ·) ∥ ρ0,w)ds′ +

(∫
V π(s′)Z−1

π φ(s′)ds′ − 1
)2

≤ (1− γ)−2M2,φ ·Mψ + (1− γ)−2M2
1,φ + 1, (C.22)

where the last inequality holds by noting that |V π| ≤ (1 − γ)−1Br, Zπ ≥ Br, ∥S∥ ≤ 1, and that
χ2

(
ψ(s′; ·) ∥ ρ0,w

)
< Mψ by Assumption 4.3. Hence, it holds that the second term of (C.20) is

also upper bounded. Plugging (C.21) and (C.22) into (C.20), we can establish the upper bound for
χ2(νπ ∥ ρ0,w). Furthermore, by Property (ii) of Lemma D.3 and noting that ρ̄π = pπ × νπ , we have
χ2(ρ̄π ∥ ρ0) upper bounded as well, that is,

χ2(ρ̄π ∥ ρ0) <
1

2
D̄2,

where D̄ depends on absolute constants occurring in (C.19), (C.21), and (C.22), i.e.,
ℓβ , L0,β , L1,β , Br,M1,φ,M2,φ,Mµ,Mψ in Assumptions 4.2 and 4.3. Since ρ0 ∼ N (0, ID), it
holds for any ρπ that,

1

2
W2(ρπ, ρ0)

2 ≤ KL(ρπ ∥ ρ0) ≤
∫ (ρπ

ρ0
− 1

)ρπ
ρ0
ρ0(dθ) =

∫ (ρπ
ρ0

− 1
)2

ρ0(dθ)

=

∫ ( (1− α−1)ρ0(θ) + α−1ρ̄π(θ)

ρ0(θ)
− 1

)2

ρ0(dθ) = α−2χ2(ρ̄π ∥ ρ0) <
α−2

2
D̄2,

(C.23)

where the first inequality follows from Talagrand’s inequality in Lemma E.4. Plugging W̃2 = αW2

into (C.23), we complete the proof of Property (iii) of Lemma B.1.

Proof of Property (iv) of Lemma B.1.
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Upper Bounding W2(pπ1 , pπ2). Following the property of W2 distance with respect to Gaussian
distribution, we have W2(pπ1 , pπ2) =

∣∣β−1
ϵ̄ (Zπ1/Bβ) − β−1

ϵ̄ (Zπ2/Bβ)
∣∣. Recall that we have

|Zπ/Bβ | ≤ 1/2 and that β−1
ϵ̄ is 2ℓβ-Lipschitz continuous on [−1/2, 1/2]. It then holds that

W2(pπ1
, pπ2

) =
∣∣β−1
ϵ̄ (Zπ1

/Bβ)− β−1
ϵ̄ (Zπ2

/Bβ)
∣∣ ≤ 2ℓβ · |Zπ1

− Zπ2
|/Bβ . (C.24)

Meanwhile, we have

|Zπ1
− Zπ2

| ≤ γ ·
∫
φ(s′) ·

∣∣V π1(s′)− V π2(s′)
∣∣ds′

≤ γ ·
∫
φ(s′)ds′ · sup

s′∈S

∣∣V π1(s′)− V π2(s′)
∣∣

≤ γ ·M1,φ · sup
s′∈S

∣∣V π1(s′)− V π2(s′)
∣∣, (C.25)

where the last inequality holds by (ii) of Assumption 4.3. Plugging (C.25) into (C.24), it holds for
W2(pπ1

, pπ2
) that

W2(pπ1 , pπ2) ≤
2ℓβ · γ ·M1,φ · sups′∈S

∣∣V π1(s′)− V π2(s′)
∣∣

Bβ
. (C.26)

Upper Bounding W2(νπ1 , νπ2). By definition of νπ in (C.15), we have

νπ1 − νπ2 =
Br(Zπ2 − Zπ1)

Zπ1
Zπ2

µ+ γ

∫
φ(s′)ψ(s′; ·)

(V π1

Zπ1

− V π2

Zπ2

)
ds′. (C.27)

For V π1/Zπ1
− V π2/Zπ2

, it holds that∣∣∣∣V π1

Zπ1

− V π2

Zπ2

∣∣∣∣ ≤ max{V π1 , V π2} · |Zπ1
− Zπ2

|
Zπ1

Zπ2

+max{Z−1
π1
, Z−1

π2
}|V π1 − V π2 |

≤ (B−1
r (1− γ)−1γM1,φ +B−1

r ) sup
s′∈S

∣∣V π1(s′)− V π2(s′)
∣∣, (C.28)

where the last inequality holds by noting that∣∣∣∣Zπ2 − Zπ1

Zπ1
Zπ2

∣∣∣∣ ≤ γM1,φB
−2
r sup

s′∈S

∣∣V π1(s′)− V π2(s′)
∣∣. (C.29)

Here the inequality in (C.29) holds by (C.25) and the fact that Zπ ≥ Br. For W2(νπ1 , νπ2), by
Lemma E.5, it holds that

W2(νπ1
, νπ2

) ≤ 2∥νπ1
− νπ2

∥Ḣ−1(νπ1
). (C.30)

Recall that we have νπ defined in (C.15) that

νπ(w) = Z−1
π ·

(
Brµ(w) + γ ·

∫
φ(s′)ψ(s′;w)V π(s′)ds′

)
,

Zπ = Br + γ ·
∫
φ(s′)V π(s′)ds′

where Z−1
π (Br + γ ·

∫
φ(s′)V π(s′)ds′) = 1, BrZ−1

π ≥ 0, and γφ(s′)V π(s′)Z−1
π ≥ 0, which

indicate that νπ is in the convex hull of µ and ψ(s′; ·). Hence, by Property (i) of Lemma D.4, it holds
that

2∥νπ1
− νπ2

∥Ḣ−1(νπ1
) ≤ 2max

{
sup
s
∥νπ1

− νπ2
∥Ḣ−1(ψ(s;·)), ∥νπ1

− νπ2
∥Ḣ−1(µ)

}
. (C.31)

Furthermore, following from (C.27) and Z−1
π (Br + γ ·

∫
φ(s′)V π(s′)ds′) = 1, by Property (ii) of

Lemma D.4, it holds for 2∥νπ1
− νπ2

∥Ḣ−1(µ) that

2∥νπ1 − νπ2∥Ḣ−1(µ) ≤ max{sup
s′∈S

∥µ− ψ(s′; ·)∥Ḣ−1(µ), sup
(s′,s′′)∈S×S

∥ψ(s′; ·)− ψ(s′′; ·)∥Ḣ−1(µ)}

·
(∣∣∣Br(Zπ2 − Zπ1)

Zπ1
Zπ2

∣∣∣+ γ

∫
φ(s′)

∣∣∣V π1

Zπ1

− V π2

Zπ2

∣∣∣ds′). (C.32)
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Plugging (iii) of Assumption 4.3, (C.28), and (C.29) into (C.32), we have

2∥νπ1
− νπ2

∥Ḣ−1(µ) ≤ G ·
(
γM1,φB

−1
r + γM1,φ

(
B−1
r (1− γ)−1γM1,φ +B−1

r

))
· sup
s′∈S

∣∣V π1(s′)− V π2(s′)
∣∣. (C.33)

By simply substituting ∥·∥Ḣ−1(ψ(s;)) for ∥·∥Ḣ−1(ν) in both (C.32) and (C.33), it also holds for
2∥νπ1

− νπ2
∥Ḣ−1(ψ(s;·)) that

2∥νπ1 − νπ2∥Ḣ−1(ψ(s;·)) ≤ G ·
(
γM1,φB

−1
r + γM1,φ

(
B−1
r (1− γ)−1γM1,φ +B−1

r

))
· sup
s′∈S

∣∣V π1(s′)− V π2(s′)
∣∣. (C.34)

Combining (C.30), (C.31), (C.33), and (C.34), we have

W2(νπ1
, νπ2

) ≤ G ·
(
γM1,φB

−1
r + γM1,φ

(
B−1
r (1− γ)−1γM1,φ +B−1

r

))
· sup
s′∈S

∣∣V π1(s′)− V π2(s′)
∣∣. (C.35)

Upper Bounding W2(ρπ1
, ρπ2

). Note that we have ρ̄π = νπ × pπ in (C.17). By Lemma D.5, we
have

W2(ρ̄π1 , ρ̄π2) ≤
√
W 2

2 (νπ1 , νπ2) +W 2
2 (pπ1 , pπ2) ≤ B′ sup

s′∈S

∣∣V π1(s′)− V π2(s′)
∣∣, (C.36)

where B′ depends on the discount factor γ and absolute constants ℓβ , Bβ , Br,M1,φ,G in Assumption
4.2 and 4.3 according to (C.26) and (C.35). By performance difference lemma [33], we have∣∣V π1(s)− V π2(s)

∣∣ = (1− γ)−1 ·
∣∣∣∣Es′∼Eπ1

s

[〈
Aπ2(s′, ·), π1(· | s′)− π2(· | s′)

〉
A

]∣∣∣∣
= (1− γ)−1 ·

∣∣∣∣Es′∼Eπ1
s

[〈
Qπ2(s′, ·), π1(· | s′)− π2(· | s′)

〉
A

]∣∣∣∣
≤ (1− γ)−2 ·Br · Es′∼Eπ1

s

[∥∥π1(· | s′)− π2(· | s′)
∥∥
1

]
. (C.37)

Here the inequality follows from |Qπ(s, a)| ≤ (1−γ)−1 ·Br. We let B = B′Br(1−γ)−2. Plugging
(C.37) into (C.36), we have

W2(ρ̄π1
, ρ̄π2

) ≤ B · sup
s∈S

Es′∼Eπ1
s

[∥∥π1(· | s′)− π2(· | s′)
∥∥
1

]
.

Recall that we have ρπ = ρ̄π + (1− α−1)(ρ0 − ρ̄π) in (C.18). Then, by Lemma D.6, it holds that

W2(ρπ1
, ρπ2

) ≤ α− 1
2W2(ρ̄π1

, ρ̄π2
) ≤ α− 1

2B · sup
s∈S

Es′∼Eπ1
s

[∥∥π1(· | s′)− π2(· | s′)
∥∥
1

]
,

which completes the proof of Lemma B.1.

D Technical Results

In this section, we state and prove some technical results used in the proof of main theorems and
lemmas.

Lemma D.1. Under Assumptions 4.3 and 4.2, it holds for any ρ ∈ P2(RD) that

sup
x∈X

∣∣Q(x; ρ)
∣∣ ≤ α ·B1 ·W2(ρ, ρ0), (D.1)

sup
θ∈RD

∥∥∇θg(θ; ρ)
∥∥
F
≤ α−1 ·B2 ·

(
2α ·B1 ·W2(ρ, ρ0) +Br

)
. (D.2)
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Proof. Following from Assumptions 4.3 and 4.2, we have that ∥∇θσ(x; θ)∥ ≤ B1 for any x ∈ X
and θ ∈ RD, which implies that Lip(σ(x; ·)/B1) ≤ 1 for any x ∈ X . Note that Q(x; ρ0) = 0 for
any x ∈ X . Thus, by (A.7) and the inequality between W1 distance and W2 distance [58], we have
for any ρ ∈ P2(RD) and x ∈ X that∣∣Q(x; ρ)

∣∣ = α ·
∣∣∣∣∫ σ(x; θ) · d(ρ− ρ0)(θ)

∣∣∣∣ ≤ α ·B1 ·W1(ρ, ρ0) ≤ α ·B1 ·W2(ρ, ρ0). (D.3)

which completes the proof of (D.1) in Lemma D.1. Following from the definition of g in (3.6), we
have for any x ∈ X and ρ ∈ P2(RD) that∥∥∇θg(θ; ρ)

∥∥
F
≤ α−1 · ED̃

[∣∣Q(x; ρ)− r − γ ·Q(x′; ρ)
∣∣ · ∥∥∇2

θθσ(x; θ)
∥∥
F

]
≤ α−1 ·B2 ·

(
2α ·B1 ·W2(ρ, ρ0) +Br

)
.

Here the last inequality follows from (D.3) and the fact that ∥∇2
θθσ(x; θ)∥F ≤ B2 for any x ∈ X and

ρ ∈ P2(RD), which follows from Assumptions 4.3 and 4.2. Thus, we complete the proof of Lemma
D.1.

Lemma D.2. For ρ0, ρt, ρπt
∈ P2(RD) and the geodesic α[0,1]

t connecting ρt and ρπt
, we have

sup
s∈[0,1]

W2(α
s
t , ρ0) ≤ 2max{W2(ρπt , ρ0),W2(ρt, ρ0)}. (D.4)

Proof. We give a proof by contradiction. Note that αst is the geodesic connecting ρπt
and ρt. Assume

there exists t such that

sup
s∈[0,1]

W2(α
s
t , ρ0) > 2max{W2(ρπt

, ρ0),W2(ρt, ρ0)}.

Then, according to the triangle inequality of W2 metric [59], we have

W2(ρt, α
s
t ) ≥ |W2(α

s
t , ρ0)−W2(ρt, ρ0)| > |2W2(ρt, ρ0)−W2(ρt, ρ0)| =W2(ρt, ρ0),

and W2(ρπt
, αst ) > W2(ρπt

, ρ0) for the same sake, which conflicts with the definition of geodesic
that W2(ρt, α

s
t ) +W2(α

s
t , ρπt

) = W2(ρt, ρπt
) ≤ W2(ρt, ρ0) +W2(ρπt

, ρ0). Hence, such t does
not exist and (D.4) holds. Thus we complete the proof of Lemma D.2.

Lemma D.3. The Chi-squared divergence has the following properties.

(i) For any probability measure g ∈ P(Θ), function f : Θ → R, and α ∈ R, we have

χ2(αf ∥ g) = α2χ2(f ∥ g) + (1− α)2.

(ii) For any probability measures g1 ∈ P(Θ1) and g2 ∈ P(Θ2), functions f1 : Θ1 → R and
f2 : Θ2 → R, we have

χ2(f1 × f2 ∥ g1 × g2) = χ2(f1 ∥ g1) · χ2(f2 ∥ g2) + χ2(f1 ∥ g1) + χ2(f2 ∥ g2),

where f1 × f2 is the product of f1 and f2, and g1 × g2 is the product measure of g1 and g2,
i.e., (f1×f2)(θ1×θ2) = f1(θ1)f2(θ2) and (g1×g2)(θ1×θ2) = g1(θ1)g2(θ2), respectively.

(iii) For any probability measure g ∈ P(Θ), functions f1 : Θ → R and f2 : Θ → R, we have

χ2(f1 + f2 ∥ g) ≤ 3
(
χ2(f1 ∥ g) + χ2(f2 ∥ g) + 1

)
.

(iv) For any probability measure g ∈ P(Θ), function f : X ×Θ → R and α : X → R, we have

χ2
(∫

α(x)f(d, ·)dx
∥∥∥ g) ≤

∫
α(x)2dx ·

∫
χ2(f(x, ·) ∥ g)dx+

(∫
α(x)dx− 1

)2

.
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Proof. Proof of Property (i) of Lemma D.3. By definition of the Chi-squared divergence, we have

χ2(αf ∥ g) =
∫ (αf

g
− 1

)2

dg

=

∫ (
α
(f
g
− 1

)
+ α− 1

)2

dg

= α2χ2(f ∥ g) + (α− 1)2.

Thus, we complete the proof of Property (i) of Lemma D.3.

Proof of Property (ii) of Lemma D.3. Let f̃1 = f1/g1 − 1 and f̃2 = f2/g2 − 1. It then holds that

χ2(f1 × f2 ∥ g1 × g2) =

∫ (f1 × f2
g1 × g2

− 1
)2

d(g1 × g2) =

∫
(f̃1 × f̃2 + f̃1 + f̃2)

2d(g1 × g2).

By further noting that
∫
f̃1dg1 = 0,

∫
f̃2dg2 = 0,

∫
f̃21dg1 = χ2(f1 ∥ g1), and

∫
f̃22dg2 =

χ2(f2 ∥ g2), we have

χ2(f1 × f2 ∥ g1 × g2)

=

∫ (
f̃21 × f̃22 + f̃21 + f̃22 + 2(f̃1)

2 × f̃2 + 2(f̃2)
2 × f̃1 + 2f̃1 × f̃2

)
d(g1 × g2)

= χ2(f1 ∥ g1) · χ2(f2 ∥ g2) + χ2(f1 ∥ g1) + χ2(f2 ∥ g2).
Thus, we complete the proof of Property (ii) of Lemma D.3.

Proof of Property (iii) of Lemma D.3. Let f̃1 = f1/g1 − 1 and f̃2 = f2/g2 − 1. It then holds that

χ2(f1 + f2 ∥ g) =
∫ (f1 + f2

g
− 1

)2

dg =

∫
(f̃1 + f̃2 + 1)2dg.

By further noting that
∫
f̃21dg1 = χ2(f1 ∥ g1) and

∫
f̃22dg2 = χ2(f2 ∥ g2), we have

χ2(f1 + f2 ∥ g) ≤ 3

∫ (
(f̃1)

2 + (f̃2)
2 + 1

)
dg

= 3
(
χ2(f1 ∥ g) + χ2(f2 ∥ g) + 1

)
,

where the inequality follows from the Cauchy-Schwarz inequality. Thus, we complete the proof of
Property (iii) of Lemma D.3.

Proof of Property (iv) of Lemma D.3. Let f̃(x, ·) = f(x, ·)/g(·)− 1. It then holds that

χ2
(∫

α(x)f(x, ·)dx
∥∥ g) =

∫ (∫
α(x)f̃(x, θ)dx

)2

g(dθ) +
(∫

α(x)dx− 1
)2

≤
∫ (∫

α(x)2dx ·
∫
f̃(x, θ)2dx

)
g(dθ) +

(∫
α(x)dx− 1

)2

=

∫
α(x)2dx ·

∫
χ2(f(x, ·) ∥ g)dx+

(∫
α(x)dx− 1

)2

,

where the first equality holds by noting that
∫
f̃(x, ·)dg = 0 and the inequality follows from the

Cauchy-Schwarz inequality. Thus, we complete the proof of Property (iv) of Lemma D.3.

Lemma D.4. For weighted homogeneous Sobolev norm defined by

∥ν1 − ν2∥Ḣ−1(µ) = sup
{
|⟨f, ν1 − ν2⟩|

∣∣∥f∥Ḣ1(µ) ≤ 1
}
.

we have the following properties.

(i) For a group of probability measures µx : X → P2(Θ) and ν1, ν2 ∈ P2(Θ), if µ is in the
convex hull of µx, i.e., there exists αx ≥ 0 such that both

∫
αxdx = 1 and µ =

∫
αxµxdx

hold, it then holds that

∥ν1 − ν2∥Ḣ−1(µ) ≤ sup
x∈X

∥ν1 − ν2∥Ḣ−1(µx)
.

29



(ii) Assume that we have measures µ ∈ P2(Θ) and νx : X → P2(Θ). Let β1, β2 : X → R be
two functions on X such that

∫
β1(x)dx =

∫
β2(x)dx. Then, by letting ν1 =

∫
νxβ1(x)dx

and ν2 =
∫
νxβ2(x)dx, we have

∥ν1 − ν2∥Ḣ−1(µ) ≤
1

2
sup

(x′,x′′)∈X×X
∥νx′ − νx′′∥Ḣ−1(µ) ·

∫ ∣∣β1(x)− β2(x)
∣∣dx.

Proof. Proof of Property (i) of Lemma D.4. By definition of the weighted homogeneous Sobolev
norm, we have

∥ν1 − ν2∥Ḣ−1(µ) = sup
f

{∣∣⟨f, ν1 − ν2⟩
∣∣∣∣∣∣ ∫ |∇f |2αxdµxdx ≤ 1

}
= sup
f,λx≥0

{∣∣⟨f, ν1 − ν2⟩
∣∣∣∣∣∣ ∫ |∇f |2dµx ≤ λx,∀x;

∫
αxλxdx = 1

}
(D.5)

≤ sup∫
λxαxdx=1,
λx≥0

inf
x

sup
fx

{∣∣⟨fx, ν1 − ν2⟩
∣∣∣∣∣∣ ∫ |∇fx|2dµx ≤ λx

}
, (D.6)

where the first equality holds by noting that µ =
∫
αxµxdx. To illustrate the last equality, we denote

by F and Fx the allowed function class for f in (D.5) and fx in (D.6) to choose from, respectively.
Note that we have F ⊆ Fx for any x, which is because the constraints for each fx in (D.6) are
relaxation of the constraints for f in (D.5). And so, the supremum taken over F is no larger than the
supremum over Fx for any x. Therefore, the supremum over F is no larger than the the smallest
supremum over Fx. Thus, (D.6) holds. Furthermore, we have

∥ν1 − ν2∥Ḣ−1(µ) ≤ sup∫
λxαxdx=1,
λx≥0

inf
x

sup
fx

{∣∣⟨fx, ν1 − ν2⟩
∣∣∣∣∣∣ ∫ |∇fx|2dµx ≤ λx

}
(D.7)

= sup∫
λxαxdx=1,
λx≥0

inf
x

{√
λx∥ν1 − ν2∥Ḣ−1(µx)

}
(D.8)

≤ sup∫
λxαxdx=1,
λx≥0

inf
x

{√
λx

}
· sup
x
∥ν1 − ν2∥Ḣ−1(µx)

,

where the first equality holds by noting that (D.8) is a rescaling of (D.7) with respect to λx in the
constraints of (D.7). Here, we let

y = sup∫
λxαxdx=1,
λx≥0

inf
x

{√
λx

}
.

Then, it holds that y ≤ 1. Otherwise, there must exists λx such that
∫
λxαxdx = 1 and that λx > 1

holds for any x ∈ X , which contradicts with our conditions that
∫
αxdx = 1 and αx ≥ 0. Therefore,

it further holds that

∥ν1 − ν2∥Ḣ−1(µ) ≤ y · sup
x
∥ν1 − ν2∥Ḣ−1(µx)

≤ sup
x
∥ν1 − ν2∥Ḣ−1(µx)

.

Thus, we complete the proof of Property (i) of Lemma D.4.

Proof of Property (ii) of Lemma D.4. Let α = β1 − β2. Then, we have
∫
α(x)dx = 0. Let

α+ = max{0, α} and α− = −min{0, α}. Then, we have α+ − α− = α = β1 − β2 and that
α+ + α− = |α| = |β1 − β2|. Since

∫
α = 0, it holds that

∫
α+(x)dx =

∫
α−(x)dx = A, where

A ≥ 0. We further let λ(x, x′) = A−1α+(x)α−(x′). Then, it holds that α+(x) =
∫
λ(x, x′)dx′ and

that α−(x′) =
∫
λ(x, x′)dx. Therefore, we have

∥ν1 − ν2∥Ḣ−1(µ) =
∥∥∥∫

X
(α+ − α−)νxdx

∥∥∥
Ḣ−1(µ)

=
∥∥∥∫

X×X
λ(x, x′)(νx − νx′)dxdx′

∥∥∥
Ḣ−1(µ)

.
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By defintion of the weighted homogeneous Sobolev norm, it further holds that∥∥∥∫
X×X

λ(x, x′)(νx − νx′)dxdx′
∥∥∥
Ḣ−1(µ)

= sup
f

{∣∣∣〈∫ λ(x, x′)(νx − νx′)dxdx′, f
〉∣∣∣ ∣∣∣∣ ∫ |∇f |2 ≤ 1

}
. (D.9)

We assume the supremum in (D.9) is reached at f∗. Then, we have
∫
|∇f∗|2dµ ≤ 1 and that∥∥∥∫

X×X
λ(x, x′)(νx − νx′)dxdx′

∥∥∥
Ḣ−1(µ)

=
∣∣∣〈∫ λ(x, x′)(νx − νx′)dxdx′, f∗

〉∣∣∣
≤ sup

(x,x′)∈X×X

∣∣⟨νx − νx′ , f∗⟩
∣∣ · ∫ λ(x, x′)dxdx′

≤ 1

2
sup

(x,x′)∈X×X
∥νx − νx′∥Ḣ−1(µ) ·

∫
|β1 − β2|dx,

where the last inequality holds by noting that
∫
λ(x, x′)dxdx′ = A = 1/2 ·

∫
|α|dx = 1/2 ·

∫
|β1 −

β2|dx. Thus, we complete the proof of Property (ii) of Lemma D.4.

Lemma D.5. For probability measures ν1, ν2 ∈ P2(Θ1) and p1, p2 ∈ P2(Θ2), it holds that

W 2
2 (ν1 × p1, ν2 × p2) ≤W 2

2 (ν1, ν2) +W 2
2 (p1, p2).

Proof. By the property of optimal transport [6], there exists mapping Tν and Tp such that

W 2
2 (ν1, ν2) =

∫
∥θ1 − Tν(θ1)∥ν1(dθ1),

W 2
2 (p1, p2) =

∫
∥θ1 − Tp(θ1)∥p1(dθ1),

and that (Tν)♯ν1 = ν2 and (Tp)♯p1 = p2. Note that we have (Tν × Tp)♯(ν1 × p1) = ν2 × p2. Thus,
by definition of W2 distance, it holds that

W 2
2 (ν1 × p1, ν2 × p2) ≤

∫ ∥∥(θ1, θ2)− (
Tν(θ1), Tp(θ1)

)∥∥2ν1(dθ1)p1(dθ2)
=

∫ (∥∥θ1 − Tν(θ1)
∥∥2 + ∥∥θ2 − Tp(θ2)

∥∥2)ν1(dθ1)p1(dθ2)
=W 2

2 (ν1, ν2) +W 2
2 (p1, p2).

Thus, we complete the proof of Lemma D.5.

Lemma D.6. For probability density function ρ, ρ1, ρ2 ∈ P2(Θ), let ρ̃1 = α−1ρ1 + (1 − α−1)ρ
and ρ̃2 = α−1ρ2 + (1− α−1)ρ. Then, We have

W2(ρ̃1, ρ̃2) ≤ α−1/2W2(ρ1, ρ2).

Proof. Recall the definition of Wasserstain-2 distance that

W2(ρ1, ρ2) =
(

inf
γ∈Γ(ρ1,ρ2)

∫
∥x− y∥2dγ(x, y)

)1/2

,

where Γ(ρ1, ρ2) is the set of all couplings of ρ1 and ρ2. We assume that the infimum is reached by
γ∗(x, y) ∈ Γ(ρ1, ρ2), i.e.,

W2(ρ1, ρ2) =
(∫

∥x− y∥2dγ∗(x, y)
)1/2

.

We denote by γ′(x, y) the distribution such that

γ′(x, y) = α−1γ∗(x, y) + (1− α−1)ρ(x)δ(x− y),
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where δ(x, y) is dirac delta function and it holds that γ′(x, y) ∈ Γ(ρ̃1, ρ̃2). Hence, it follows that

W2(ρ̃1, ρ̃2) ≤
(∫

∥x− y∥2dγ′(x, y)
)1/2

=
(∫

∥x− y∥2
(
α−1γ∗(x, y) + (1− α−1)ρ(x)δ(x− y)

)
d(x, y)

)1/2

= α−1/2W2(ρ1, ρ2).

Thus, we complete the proof of Lemma D.6.

E Auxiliary Lemmas

We use the definition of absolutely continuous curves in P2(RD) in [6].

Definition E.1 (Absolutely Continuous Curve). Let β : [a, b] → P2(RD) be a curve. Then, we say
β is an absolutely continuous curve if there exists a square-integrable function f : [a, b] → R such
that

W2(βs, βt) ≤
∫ t

s

f(τ) dτ

for any a ≤ s < t ≤ b.

Then, we have the following first variation formula.

Lemma E.2 (First Variation Formula, Theorem 8.4.7 in [6]). Given ν ∈ P2(RD) and an absolutely
continuous curve µ : [0, T ] → P2(RD), let β : [0, 1] → P2(RD) be the geodesic connecting µt
and ν. It holds that

d

dt

W2(µt, ν)
2

2
= −⟨µ̇t, β̇0⟩µt,W2 ,

where µ̇t = ∂tµt, β̇0 = ∂sβs | s=0, and the inner product is defined in (A.2).

Lemma E.3 (Eulerian Representation of Geodesics, Proposition 5.38 in [58]). Let β : [0, 1] →
P2(RD) be a geodesic and v be the corresponding vector field such that ∂tβt = − div(βt · vt). It
holds that

d

dt
(βt · vt) = −div(βt · vt ⊗ vt),

where ⊗ is the outer product between two vectors.

Lemma E.4 (Talagrand’s Inequality, Corollary 2.1 in [44]). Let ν be N(0, κ · ID). It holds for any
µ ∈ P2(RD) that

W2(µ, ν)
2 ≤ 2DKL(µ ∥ ν)/κ.

Lemma E.5 (Theorem 1 in [46]). Let µ, ν be two probability measures in P2(θ). Then, it holds that

W2(µ, ν) ≤ 2∥µ− ν∥Ḣ−1(ν).

F Conclusions and Limitations

In this work, we study the time envolution of a two-timescale AC represented by a two-layer
neural network in the mean-field limit. Specifically, the actor updates its policy via proximal
policy optimization, which is closely related to the replicator dynamics, while the critic updates by
temporal-difference learning, which is captured by a semigradient flow in the Wasserstein space.
By introducing a restarting mechanism, we establish the convergence and optimality of AC with
two-layer overparameterized neural network. However, the study has potential limitations. In this
work we only study the continuous-time limiting regime, which is an ideal setting with infinitesimal
learning rates, and establish finite-time convergence and optimality guarantees. Finite-time results for
the more realistic discrete-time setting is left for future research.
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