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A Details of variational updates

In this section, we derive the variational updates. The complete log joint likelihood of the augmented
model can be written

logL = logP (X ,U ,V,W,Λ|ζ, µ, τ, k, θ) =
∑
d̄

logP(Xd̄,Ud̄|Vd̄,Wd̄, ζ)

+
∑
d̄∗

logN (νd̄∗|µd̄∗, 1/τd̄∗) +
∑
n,i

logN
(
a

(n)
i |0,

(
Λ

(n)
i

)−1
)

+ logP (Λ|kλ, θλ) , (28)

where the first term represents the Pólya-Gamma augmented factor defined in (12) and (13),

logP(Xd̄,Ud̄|Vd̄,Wd̄, ζ) = log pPG(Ud̄|ζ + Xd̄, 0)

− 1
2Ud̄ (Wd̄ + Vd̄)

2 − 1
2 (Xd̄ − ζ)(Wd̄ + Vd̄) + logF (Xd̄, ζ) , (29)

and we recall that V is determined by ν, andW = [|A(1), . . . , A(D)|] with a(n)
i the rows of A(n).

The VB factored posterior on Z = {U ,V,W,Λ} is given by,

q(Z) = q(U)q(V)q(W)q(Λ) =
∏
d̄

q(Ud̄)
∏
d̄∗

q(νd∗)
∏
n,i

q(a
(n)
i )q(Λ|kλ, θλ) . (30)

For each X ∈ {U ,V,W,Λ}, we represent by q¬X the variational distribution marginalized over X .
Then each VB inference update takes the form

q (X) ∝ exp〈logP (X ,Z|ζ, µ, τ, k, θ)〉q¬X (31)

We note that the expectation of the PG augmentation term (29) with respect to q(U) can be expressed
as

〈logP(X ,U|V,W, ζ〉q(U) =+C −
1

2

∑
d̄

〈Ud̄〉
(
Wd̄ + Vd̄ −

Xd̄ − ζ
2〈Ud̄〉

)2

, (32)

and introduce the notation
〈Y〉 =

X − ζ
2〈U〉

, (33)

for compactness, retaining the expectation brackets to emphasise the dependence on q(U).
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A.1 Updates for low rank tensorW

For n = 1 . . . D, i = 1 . . . In:

〈 logL〉q
¬a(n)
i

=+C

− 1

2

〈
In∑
i=1

(
a

(n)
i B(n)ᵀ − 〈YV(n),i:〉

)
Diag

(
U(n),i:

) (
a

(n)
i B(n)ᵀ − 〈YV(n),i:〉

)ᵀ〉
q
¬a(n)
i

,
(34)

where YV = V − 〈V〉. Keeping only the terms in a(n)
i , we can write the update:

q
(
a

(n)ᵀ
i

)
= N

(
m

(n)
i ,Σ

(n)
i

)
, (35)

where

Σ
(n)
i =

(〈
B(n)ᵀDiag

(
〈U(n),i:〉

)
B(n)

〉
+
〈

Λ
(n)
i

〉)−1

m
(n)
i = Σ

(n)
i

(
〈B(n)ᵀ〉Diag

(
〈U(n),i:〉

) )(
〈Y(n),i:〉 − 〈V(n),i:〉

)
.

(36)

In this expression:

- 〈U〉 is given in closed form using the mean of a PG distribution and (47).

- 〈B(n)〉 is obtained by replacing a(m)
l by m(m)

l (for m 6= n) in the Khatri-Rao product.

To simplify this experession further, we write Ã(n) for the In by R2 matrix whose rows are: ã(n)
i =

Vec
(
m

(n)ᵀ
i m

(n)
i + Σ

(n)
i

)ᵀ
and B̃(n) =

⊙
p6=n

Ã(p). If jp is the index associated to the p-th factor in

the j-th row B
(n)
j: of the Khatri-Rao product B(n), then for r1, r2 = 1 . . . R:

〈B(n)ᵀDiag
(
U(n),i:

)
B(n)〉r1r2 =

∑
j

〈U(n)ij〉
∏
p 6=n

(
m

(p)ᵀ
jp

m
(p)
jp

+ Σ
(p)
jp

)
r1,r2

, (37)

or, using "◦" to denote the Hadamard product and 11×k a 1 by k vector of ones,

Vec
[
〈B(n)ᵀDiag

(
U(n),i:

)
B(n)〉

]ᵀ
= 11×(

∏
Ip)

(
B̃(n) ◦ (11×R ⊗ 〈U(n),i:〉)

)
∈ R1×R2

.

The various components can then be reassembled to give the moments of q(W):

〈Wd̄〉 = [|〈A(1)〉, . . . , 〈A(D)〉|]d̄ and 〈W2
d̄〉 = [|Ã(1), . . . , Ã(D)|]d̄ .

A.1.1 Updates for factor precisions Λ

By conjugacy, the precision update takes the form

q(Λ|k, θ) ∼ Gamma(kλ, θλ) . (38)

Case 1: Rank ARD. For r = 1 . . . R, if D indicates the dimensions sharing a precision matrix, we
have

kλ,r = k0λ +
1

2

∑
n∈D

In and θλ,r =

(
θ−1

0λ +
1

2

∑
n∈D

In∑
i=1

〈
a

(n)2
ir

〉)−1

. (39)

Case 2: Neuron-Group constraints. For r = 1 . . . R and a neuron group g ∈ G

kλ,gr = k0λ +
1

2
|g| and θλ,gr =

θ−1
0λ +

1

2

∑
i∈g

〈
a

(n)2
ir

〉−1

. (40)
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A.1.2 Updates for offset tensor V

For d̄∗ = (d∗1, . . . , d
∗
D1

), we want to update νd̄∗. Gathering the terms repeated across constrained
dimensions, we get:

〈logL〉q¬(ν
d̄∗)

=+C

(
−1

2

∑
d̄•

〈Ud̄∗∪d̄•〉

)
ν2
d̄∗ +

(∑
d̄•

〈Ud̄∗∪d̄•〉〈Zd̄∗∪d̄•〉

)
νd̄∗ . (41)

Therefore
q(νd̄∗) = N (md̄∗,Σd̄∗, ) , (42)

with

Σd̄∗ =
(
Ũd̄∗ + τd̄∗

)−1

and md̄∗ = Σd̄∗

(
Ũd̄∗Ỹd̄∗ + τd̄∗µd̄∗

)
, (43)

where

Ũd̄∗ =
∑
d̄•

〈Ud̄∗∪d̄•〉 and Ỹd̄∗ =

∑
d̄•〈Ud̄∗∪d̄•〉 (〈Yd̄∗∪d̄•〉 − 〈Wd̄∗∪d̄•〉)∑

d̄•〈Ud̄∗∪d̄•〉
. (44)

A.1.3 Updates for Pólya-Gamma latents U

For d̄ = (d1, . . . , dD), we leverage (9) to rewrite:〈
log
(
e−
Ud̄
2 (Wd̄+Vd̄)2

p(Ud̄|ζ + Xd̄, 0)
)〉

q¬U
d̄

= log
(
e−
Ud̄
2 Ωd̄p(Ud̄|ζ + Xd̄, 0)

)
=+C log p(Ud̄|ζ + Xd̄,Ωd̄) ,

(45)

where

Ωd̄ =

√〈
(Wd̄ + Vd̄)

2
〉
. (46)

Thus, we find that
q(Ud̄) = PG (ζ + Xd̄, Ωd̄) . (47)

A.2 Rewriting the free energy

The free energy (or ELBO) is given by:

F(ζ) = 〈logP (X ,Z|ζ)〉q +H[q] . (48)

Dropping terms in the log joint probability which do not depend on ζ:

F(ζ) =+C〈logP (X|Z, ζ)〉q + 〈logP (U ; ζ + X , 0)〉q +H[q(U)]

=+C

∑
d̄

log Γ(Xd̄ + ζ)/Γ(ζ)− ζ (log 2 + 〈Wd̄/2〉+ 〈Vd̄/2〉)

−
∑
d̄

〈log q(Ud̄)− logP (Ud̄; ζ + Xd̄, 0)〉q(Ud̄) .

(49)

The last term contains cross entropies between prior and variational PG distributions. We then use the
fact that after a variational E-step, q(Ud̄) is fixed, and to avoid confusion, we denote by ζ̂ the current
estimate of the shape parameter. Recalling that we have:

P (Ud̄; ζ + Xd̄, 0) ∝ cosh−(ζ+Xd̄)(Ωd̄/2)P (Ud̄; ζ + Xd̄,Ωd̄) , (50)

we obtain:

F(ζ) =+C

∑
d̄

log Γ(Xd̄ + ζ)/Γ(ζ)− ζ (log 2 + 〈Wd̄/2〉+ 〈Vd̄/2〉+ log cosh(Ωd̄/2))

−
∑
d̄

KL
(
PG(Xd̄ + ζ̂,Ωd̄)||PG(Xd̄ + ζ,Ωd̄)

)
.

(51)
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B Asymptotic behaviour of the moment matching approximation

In this section we examine the behaviour of the moment-matched Gamma(α,β)-based approximation
to the PG cross entropy terms in (27). We first explore the properties of the VB approximation to a
PG-augmented negative binomial model, arguing that in realistic neural data settings solutions it will
often converge to a parameter regime associated with low conditional Fano factors. We then leverage
the Laplace transforms of the PG and gamma densities to show that expansions of the higher-order
moments of both distributions are dominated by identical leading terms in this regime. This provides
justification for the approximation, the empirical quality of which we then evaluate in numerical
experiments.

B.1 The behaviour of the Pólya-Gamma augmented model

Recall from (12) that PG augmentation replaces the factors associated with the observation likelihoods
by terms derived from the identity

(e−v)ζ

(1 + e−v)ζ+x
≡ 2−(ζ+x)e(

x−ζ
2 )v

∫ ∞
0

e−
u
2 v

2

p(u|ζ + x, 0)du , (52)

where p(u|ζ + x, 0) is a PG density. This augmented form would not be useful if our goal was
to generate samples of x, as the implied distribution p(x|u, v) is considerably more complex than
the original negative binomial p(x|v). Its value arises solely in inference, where the conditional
likelihood on v, that is p(x|v, u) viewed as a function of v, is simplified to a Gaussian-conjugate
form.

This view also emphasises the fact that despite the appearance of the density p(u|ζ + x, 0) in the
definition, the implied prior on u is more complex. Nonetheless, as we saw in the previous section,
the joint likelihood is tractable and yields a PG variational posterior on u.

To understand the behaviour of the model when fit to neural data, it is helpful to consider the shape of
the likelihood landscape generated by the underlying NB observation model

p(x|v, ζ) =
Γ(ζ + x)

x! Γ(ζ)

e−ζv

(1 + e−v)ζ+x
. (53)

The likelihood is highest when the NB mean (given by ζev) is close to the observation x and its
dispersion, controlled by the Fano factor FF = 1 + ev, is small. Thus, for a single observation,
optimisation of the NB likehood will drive ζ to diverge, while v remains close to log(x/ζ).

The full VB model affects this limit in two ways. First, the likelihoods associated with all the
observations X are linked by the restricted structure of the tensorW +V , and so cannot be optimised
individually. Second, the incorporation of posterior uncertainty on the tensorW + V means that
rather than optimising a single-point likelihood, we optimise the expectation of its logarithm under
q(W,V). However, a similar limit applies if the model provides a good fit to the data with low
dispersion. That is, roughly, if the posterior is concentrated such that the X are dispersed around
ζe〈W+V〉 with an effective FF approaching 1. Now, again, optimisation of the model will drive ζ to
grow, while the posterior onW + V concentrates to keep ζe〈W+V〉 close to X . However, in this case
the added constraints of the model introduce a natural limit to this divergence.

To see the impact on the inferred PG parameters, recall that the variational posterior on U is given by

q(Ud̄) = PG(ζ + Xd̄,Ωd̄) where Ωd̄ =
√
〈(Wd̄ + Vd̄)2〉 . (54)

Thus, in the “good fit” limit, the growth of ζ directly increases the first parameter of each PG posterior.
Its impact on the second parameter is indirect. When ζ > Xd̄, the corresponding tensor entry will be
negative, and grow more negative with increasing ζ (thus driving FF→ 1). As Ωd̄ depends on its
magnitude, we see that it too grows, but at a rate given by log ζ.3

How plausible is this “good fit” regime? Single neuron spike-counts over repeated trials of an
experiment are often observed to be substantially overdispersed relative to Poisson [16]. However,

3Parenthetically, we note that this behaviour would be more evident in a different but broadly equivalent
parametrisation of the likelihood model as Xd̄ ∼ NB

(
ζ, 1/(1 + e(Wd̄+Vd̄)−log ζ)

)
.
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much of this variability appears to be correlated across neurons [27] and population studies often
report conditional Fano factors closer to 1 once such common variance has been captured by a latent
variable model such as ours [20]. Thus, this “good fit” setting is one that we expect to be encountered
in many neural data sets. For the neural data explored in this study we found a overall conditional FF
of approximately 1.17.

B.2 Moment-matched gamma distribution

Matching the first two central moments of Gamma(α, β) to those of PG(ξ, ω) (11) we have
α

β
= ξ

tanh(ω/2)

2ω
and

α

β2
=

ξ

4ω3cosh2(ω/2)
(sinh(ω)− ω) . (55)

As we will see below, these forms determine the leading terms in the higher-order (non-central)
moments.

B.3 Higher-order moments

We write fPG and fG for the Laplace transforms of PG(ξ, ω) and Gamma(α, β) respectively, and
recall that

fPG(t) = coshξ(ω/2) cosh−ξ

(√
ω2/2 + t

2

)
and fG(t) =

(
1 +

t

β

)−α
. (56)

The nth moment of each distribution is given by the nth derivative with respect to −t at 0 of the
corresponding Laplace transform, that is (−1)nf (n)(0).

For Gamma(α, β), we have immediately that

f
(n)
G (0) = (−1)n

α(α+ 1) . . . (α+ n− 1)

βn
. (57)

The corresponding form for the Pólya-Gamma is more complex. However, we show by induction
that for all n ∈ N, the derivative can be written as a sum of at most 3n terms in polynomials {Pni }
and {Qni }, indexed by tuples i ∈ {1, 2, 3}n.

f
(n)
PG(t) =

coshξ(ω/2)

4n

(∑
i

Pni [ξ]Qni [cosh gω(t), sinh gω(t)]

coshξ+pi gω(t) gω(t)di

)
, (58)

where

gω(t) =

√
ω2/2 + t

2
(59)

and the degrees of the polynomials satisfy
0 ≤ d(Qni ) ≤ d(Pni ) = pi ≤ n ≤ di . (60)

The result follows immediately for n = 0 by inspection of the Laplace transform (56). Assume it
holds for n. Then differentiating (58) with respect to t and noting that g′ω(t) = 1/(4gω(t)) yields:

f
(n+1)
PG (t) =

coshξ(ω/2)

4n

∑
i

(
Pn+1
i,1 [ξ]Qn+1

i,1 [cosh gω(t), sinh gω(t)]

coshξ+pi+1gω(t) gω(t)di

+
Pn+1
i,2 [ξ]Qn+1

i,2 [cosh gω(t), sinh gω(t)]

coshξ+pigω(t) gω(t)di

+
Pn+1
i,3 [ξ]Qn+1

i,3 [cosh gω(t), sinh gω(t)]

coshξ+pigω(t) gω(t)di+1

)(
1

4gω(t)

)
,

(61)

where,
Pn+1
i,1 [ξ] = −Pni [ξ](ξ + pi) Qn+1

i,1 = Qni [cosh gω(t), sinh gω(t)]sinh gω(t)

Pn+1
i,2 [ξ] = Pni [ξ] Qn+1

i,2 =
d

dgω
Qni [cosh gω(t), sinh gω(t)] (62)

Pn+1
i,3 [ξ] = −Pni [ξ]di Qn+1

i,3 = Qni .
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Note that as cosh′(x) = sinh(x) and vice-versa, Qn+1
i,2 is of the same degree as Qni . Thus, all the

degree conditions (60) are preserved for n + 1, completing the induction. Note in particular that
induction on the first term of the expansion in (61) leads to the only term that satisfies the conditions
with equality: d(Qn1,1,...) = d(Pn1,1,...) = p1 = n = d1,1,.... This term has the form:

coshξ(ω/2)
(−1)n(ξ(ξ + 1)(ξ + 2) . . . (ξ + n− 1)) sinhn gω(t)

4n coshξ+n gω(t) gω(t)n
(63)

Evaluating (58) at t = 0 yields:

f
(n)
PG(0) =

(−1)n(ξ(ξ + 1)(ξ + 2) . . . (ξ + n− 1)) sinhn(ω/2)

coshn(ω/2) (2ω)n

+
∑
i

Pni [ξ]Qni [cosh(ω/2), sinh(ω/2)]

4ncoshpi(ω/2) (ω/2)di
.

(64)

where we have separated the leading term from the remainder of the sum.

B.4 Asymptotic behaviour

We recall that the mean and variance of the NB model are given by:

E(X|ζ,W,V) = ζeW+V and V(X|ζ,W,V) = ζeW+V(1 + eW+V) , (65)

We can therefore define:

FF = 〈1 + eW+V〉q
= 1 + e〈W+V〉+ 1

2 (〈(W+V)2〉−〈W+V〉2) .
(66)

Now consider a single q(Ud̄) = PG(ξ, ω) with ξ = ζ + Xd̄ and ω = Ωd̄. Based on the argument of
Appendix B.1 in the “good fit” limit, ζ ≈ Xd̄/(FF − 1) and 〈(Wd̄ +Vd̄)2〉 = O

(
〈Wd̄ + Vd̄〉2

)
, so:

ω = −〈Wd̄ + Vd̄〉

√
1 +
〈(Wd̄ + Vd̄)2〉 − 〈Wd̄ + Vd̄〉2

〈Wd̄ + Vd̄〉2

= −〈Wd̄ + Vd̄〉+
〈(Wd̄ + Vd̄)2〉 − 〈Wd̄ + Vd̄〉2

〈Wd̄ + Vd̄〉
+O

(
(〈(Wd̄ + Vd̄)2〉 − 〈Wd̄ + Vd̄〉2)2

〈Wd̄ + Vd̄〉3

)
= − log(FF − 1) +

1

2

(
〈(Wd̄ + Vd̄)2〉 − 〈Wd̄ + Vd̄〉2

)
+O

(
〈(Wd̄ + Vd̄)2〉 − 〈Wd̄ + Vd̄〉2

〈Wd̄ + Vd̄〉

)
= − log(FF − 1)

(
1 + O

FF→1
(1)
)

(67)

As a conclusion, although both ω and ξ will grow as FF → 1, we have:

ω = log ξ
(

1 + O
FF→1

(1)
)
, (68)

which we will now use to look at the higher moments of PG(ω, ξ) and Gamma(α,β ). For the latter,
from (57), we have:

mn
G = (−1)nf

(n)
G =

α(α+ 1) . . . (α+ n− 1)

βn

=

(
α

β

)n(
1 +O

(
n2 · α

β2
·
(
α

β

)−2
))

=

(
ξ

2ω

)n(
tanhn(ω/2) +O

(
n2

ξω

sinh(ω)− ω
sinh2(ω/2)

))
=

(
ξ

2ω

)n
+ O
FF→1

(
ξn−1

ωn
(1 + ξe−ω)

)
,

(69)
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giving a leading term of (ξ/2ω)n as FF → 1.

For the PG distribution (64) gives (recalling that d(Qni ) ≤ d(Pni ) = pi ≤ n ≤ di with all equalities
holding only for the leading term)

mn
PG = (−1)nf

(n)
PG = (−1)n

∑
i

Pni [ξ]Qni [cosh(ω/2), sinh(ω/2)]

4ncoshpi(ω/2) (ω/2)di

=

(
ξ

2ω

)n
(tanhn(ω/2)) +O

(
n23n

ω

(
ξ

2ω

)n−1
)

=

(
ξ

2ω

)n
+ O
FF→1

(
ξn−1

ωn
(1 + ξe−ω)

)
,

(70)

Thus, we see that both sets of higher-order moments are equivalent in the leading terms of their
expansions.

B.5 Numerical evaluation of the moment matching approach.

In this section, we report a range of numerical examples and experiments to evaluate the moment
matching approximation and its asymptotic behavior.

We first compared the accuracy with which the Pólya-Gamma density could be approximated using
moment-matched gamma, generalised gamma, inverse gamma and normal distributions. We exploited
the convolutional property of the PG distribution to obtain numerical density estimates. Each sample-
based density was estimated with at least 100000 draws using the bayesreg toolbox [28]. Visually,
the gamma distribution provides the best approximation, following the sampled PG density closely
for ξ ≥ 10 (Fig. 5).

We quantified the match using the normalised L2 discrepancy, obtained analytically from the PG,
gamma and normal characteristic functions; that is, for X ∈ {G, IG,N},

d(fPG, fX) =
2||pPG − pX ||2L2

||pPG||2L2
+ ||pX ||2L2

. (71)

This L2 discrepancy was consistently smallest for the gamma-based approximation (Fig. 6).
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Figure 5: Densities of gamma, inverse gamma, normal and generalised gamma distributions moment-
matched to PG(ξ, 0) for different values of ξ (In the generalized gamma case, the first three moments
were matched).
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A B C

Figure 6: Normalized L2 norm between pPG and pX for X ∈ {G, IG,N} as a function of the
Fano factor FF = 1 + e−ω and ξ. The lines indicate the expected relationship between ξ and FF for
different numbers of observed spikes.

Finally, we compared numerical estimates of the KL divergences between PG distributions in non di-
verging regions, to the closed form divergence between the moment-matched gamma approximations
(Fig. 7; comparisons are anchored on PG(50, 1)). We found the match to be good, particularly when
the divergence was relatively small.
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Figure 7: KL divergence between PG distributions PG(50, 1) and PG(ξ, ω) obtained by numerical
estimation (A-C) and moment matching mean and variance of Gamma distribution (D-E). Crosses
indicate the minimum of the KL.
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C Metrics

Performances are reported in terms of Variance Explained (VE), deviance explained (DE) and a
similarity metric, which we define here. If X0 is the average spike count of the dataset across all
conditions, neurons and time points, and X̂ a reconstructed tensor from the decompositions estimates,
the VE and Poisson DE are given by

VE = 1−
∑
d̄(X̂d̄ −Xd̄)2∑
d̄(X0 −Xd̄)2

and DE = 1−
∑
d̄(Xd̄ logXd̄/X̂d̄ + X̂d̄ −Xd̄)∑
d̄(Xd̄ logXd̄/X0 + X0 −Xd̄)

. (72)

Although we assessed similarities across both cross-validation folds and initializations, we used the
same metric as employed in Ref. [7]. Given two CP [9] decompositions A = [|A(1), . . . , A(D)|]
and V = [|V (1), . . . , V (D)|], we normalize each column A(n)

0,:r = A
(n)
:r /||A(n)

:r ||L2
and V (n)

0,:r =

V
(n)
:r /||V (n)

:r ||L2
and gather the normalization constants across modes in γAr and γVr . In essence,

the similarity metric is a generalized scalar product (∈ [0, 1]) between factors which accounts for
possible permutations (σ ∈ σR) of the components:

S = max
σ∈σR

R∑
r=1

(
|γAr + γVσ(r)| − |γ

A − γVσ(r)|
|γA + γVσ(r)|+ |γAr − γ

V
σ(r)|

)
D∏
n=1

A
(n)ᵀ
0,:r V

(n)
0,:σ(r) , (73)

We used an efficient search over permutation by leveraging Munkres (Hungarian) algorithm for the
linear assignment problem.
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D Qualitative Experiments

Figures 8 to 10 show the results of two qualitative experiments described in Section 4.1. Briefly, in
both cases, we generated a 5 dimensional dataset (size 100× 70× 3× 5× 4) using a generative NB
model with shape ζ = 80 and R = 4. Each CP-component loads only on a subsets of "neurons". We
assumed that the subsets were known and used them to define neuron-group priors (section 3.1).

In the first experiment, we added an offset tensor that varies across the first and third dimensions and
treated only 1/4 of the full tensor X as observed. In this stitching setting, each "neuron" is observed
in a single "experimental session", which is accounted by the last dimension (not plotted Figure 8) of
the observed tensor.

The algorithm converged over about 4000 iterations (Fig. 8) and was able to retrieve the dataset
shape parameters and infer both the tensor factors and rank in a fully probabilistic manner (Fig. 9
left). When the algorithm was run from the same initial values, but without ARD or neuron group
constraints it inaccurately identified additional components with similar amplitudes to the true factors
(Fig. 9 right).

Figure 8: Evolution of the shape parameter (Left) and approximate free energy (Right) across
variational EM iterations for probabilistic decomposition of the count tensor from Section 4.1.
Inference used ARD and knowledge about the "neuron" groups.
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Figure 9: Probabilistic decomposition of the count tensor from Section 4.1. Ground truth generating
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In the second experiment, we illustrate how standard GCP decompositions are prone to misidentify
the dataset rank and how this can affect the decomposition itself. We removed the offset and
tested our method against GCP with NB observation model [10] for a range of shape parameter ζ
(GCP-NB required an additional hyperparameter selection step). We report the error (defined as the
squared Euclidean distance between the reconstructed tensor X̂ and the true E(X|ζ,W)) and the
similarities between decompositions obtained with 20 random initializations for each algorithm and
each putative rank. Results are reported Figure 10. The decompositions that are plotted maximize the
similarity metric across the initialization sets. With standard GCP method, it is not straightforward
to balance goodness of fit with robustness. Although the results suggest that all models require at
least 4 components to accurately reconstruct the simulated dataset, one might need to fix an arbitrary
thresholds to select the tensor rank, which can lead to incorrect rank selection or bad decomposition
(Figure 10 top and bottom right).
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Figure 10: Goodness of Fit and Similarities (Top Left) are often balanced to select the rank of
an empirical tensor decomposition. As a consequence, standard GCP (Right: top and bottom)
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E Spike Recordings

In this section, we detail the results of the benchmark analysis described in Section 4.2. Training
and testing results are plotted in Figure 11 and Figures 12 to 14 show the full VB-GCP (ours), CP
and GCP decompositions described in Section 4.2. As mentioned in the main text, we also tested
NB observation models with exponential link functions. Hong et al. [10] worked with a fixed shape
parameter for the NB likelihood. As the most appropriate parameter value for our data was unknown,
we ran a gridsearch using 50 shape parameters ranging from 1 to 100 and looked at the best models
in terms of DE, Robustness (as assessed by the similarity metric) or NB likelihood. NB-GCP turned
out to perform little or no better than Poisson GCP.
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Figure 12: Full inferred factors obtained with our probabilistic decomposition. Grey patches
represent 1 standard deviation around the mean based on variational posteriors.
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Figure 13: Full inferred factors obtained with standard CP decomposition.

26



RSPd RSPg
-0.2

-0.1

0

r=
1

2 4 6

0.11

0.12

0.13

Vest Both Visu
100

200

300

RSPd RSPg
-0.2

0

0.2

r=
2

2 4 6
0.08

0.1

0.12

0.14

Vest Both Visu

160

180

200

220

RSPd RSPg
-0.2

0

0.2

r=
3

2 4 6
0.05

0.1

0.15

0.2

Vest Both Visu

0

100

200

RSPd RSPg
-0.2

-0.1

0

r=
4

2 4 6

0.1

0.12

0.14

Vest Both Visu
-100

0

100

200

RSPd RSPg

-0.1

0

0.1

0.2

r=
5

2 4 6
-0.2

0

0.2

Vest Both Visu
-100

-50

0

RSPd RSPg
-0.2

0

0.2

r=
6

2 4 6
Sec

-0.2

0

0.2

Vest Both Visu

40

60

80

100

Layer 2/3
Layer 5
Layer 6

Figure 14: Full inferred factors obtained with standard GCP decomposition.
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