
A Implementation Details

A.1 Hyperparameter Ranges

RL Hyperparameters: Below are the continuous hyperparameters optimized as well as the fixed
parameters, which were all taken from [57]. For the categorical variables, we use the data augmenta-
tions used in [57, 37, 35]: crop, grayscale, cutout, cutout-color, flip, rotate, random convolution and
color-jitter.

Table 3: DrAC Learned Hyperparameters

Parameter Value
PPO Clip (‘) [0.01, 0.5]
Learning Rate [10≠5

, 10≠3]
Entropy Coeff [0, 0.2]
Regularization Parameter (–r) [0.01, 0.5]

Table 4: DrAC Fixed Hyperparameters

Parameter Value
“ 0.999
⁄ 0.95
timesteps per rollout 256
epochs per rollout 3
minibatches per epoch 8
optimizer Adam

PB2 Hyperparameters: We use the same UCB hyperparameters as in [52], which come from [7].
Concretely, we set c1 = 0.2, c2 = 0.4. We believe performance may be increased by selecting these
parameters more carefully. However, it is promising to see that this fine tuning is not crucial for
performance.

A.2 Environment Details

We used five games from the Procgen environment [13]. We chose these games as there appeared
to be a greater degree of variance in the optimal data augmentation in [57]. All protocols for the
environment are from [57], as we followed the author’s open source implementation for agent
training4, and only varied the hyperparameters and data augmentation chosen.

(a) BigFish (b) CaveFlyer (c) CoinRun (d) FruitBot

(e) Jumper (f) Leaper (g) StarPilot

Figure 6: Example levels from the seven games considered from [13]

4see: https://github.com/rraileanu/auto-drac

17

https://github.com/rraileanu/auto-drac

A.3 Infrastructure Details

Each trial was run a single GPU, taking around three days to train all four agents. This was due to
the nature of our existing compute infrastructure and could likely be made significantly faster with
parallelization. The existing code is thus not optimized to work in a distributed fashion, however it
will be open sourced in a similar structure to the open source PB2-Rand implementation (part of the
Ray library [45]). Since we followed the open source version of PB2-Rand, it is a trivial extension to
include PB2-Mult and PB2-Mix, using new kernels provided both in the supplementary material (as
part of the research code) or the synthetic function notebook (see the link in Section 6).

B Additional Results

Here we show the test learning curves in Fig.7 where we see particularly strong improvement in
BigFish and CaveFlyer. Notably, PBT performs poorly in many of the tasks.

Figure 7: Test Performance: Learning curves for seven Procgen games. Plots show the mean ±1sem for the
test performance of the best training agents in the population. Results are averaged over 5 seeds.

Table 5: Train performance for seven Procgen games. † indicates training was conducted for a single agent for
25M timesteps. Hyperparameters were initialized at optimized values, meaning the effective number of timesteps
is much higher. Final performance is the average of 100 trials and results were taken from [57]. ‡ indicates
training was conducted by a population of four agents for 25M timesteps each, with several hyperparameters
initialized at random. Each agent is evaluated for 100 trials on train and test levels and we present the mean train
performance of the agent with the best training performance.

Environment PPO† UCB-DrAC† PBT‡ PB2-Rand‡ PB2-Mult‡ PB2-Mix‡

BigFish 8.9 ± 1.5 13.2 ± 2.2 12.0 ± 3.3 20.8 ± 1.8 18.2 ± 2.0 17.1 ± 2.9
CaveFlyer 6.8 ± 0.6 5.7 ± 0.6 7.2 ± 0.4 7.3 ± 1.7 7.0 ± 1.3 7.5 ± 0.9
CoinRun 9.3 ± 0.3 9.5 ± 0.3 8.2 ± 0.8 10.0 ± 0 9.9 ± 0.2 9.6 ± 0.2
FruitBot 29.1 ± 1.1 29.5 ± 1.2 27.4 ± 0.2 32.2 ± 0.7 30.5 ± 1.4 30.9 ± 1.2
Jumper 8.3 ± 0.4 8.1 ± 0.7 8.3 ± 0.2 9.0 ± 0.2 8.9 ± 0.1 9.2 ± 0.5
Leaper 5.5 ± 0.4 5.3 ± 0.5 4.1 ± 0.5 6.9 ± 2.0 5.6 ± 2.1 7.1 ± 2.3
StarPilot 29.8 ± 2.3 35.3 ± 2.2 33.6 ± 7.4 44.1 ± 2.7 40.3 ± 1.3 41.8 ± 2.7

Figure 8: Train Performance: Learning curves for all seven Procgen games. Plots show the mean ±1sem for
the best training performance within the population. Results are averaged over 5 seeds.

In Table 5 we show training performance for the agents shown in the main paper. Interestingly, we
see strong training performance for PB2-Rand, indicating a larger generalization gap. We also show
training learning curves for all algorithms in Fig. 8, where we once again report the best agent at
each timestep.

18

Is there dependence between data augmentation and hyperparameters in Procgen? Next we
consider the dependence between the hyperparameters. For each environment, we fit a linear
regression model predicting the change in reward for 500k steps of training (i.e. one step of PB2),
with the independent variable being one of the continuous hyperparameters. Colors correspond to the
setting where we condition on an individual category (by creating a subset), while black corresponds
to using the entire dataset. We use the data from all trials and show the results in In Fig. 9.

Figure 9: t-statistic for the independent variable (one continuous hyperparameter, in the title of each plot) in
predicting the change in reward for the given environment. Blue columns represent the data being from one.
The dotted line indicates p < 0.05.

As we see, in some cases the category does not have any impact on the relationship, for example
the entropy coefficient for CoinRun: an increase in entropy appears to be negatively related with
training performance across all augmentations. However, for some settings such as the clip parameter
in BigFish, we see large swings in the t-stat depending on category. We even see some settings
where the aggregate relationship (grey) is very small, but conditioning on the category makes it
worthwhile to tune the hyperparameter, for example the learning rate for CaveFlyer. In this case
it may be challenging for PB2-Rand to achieve gains from tuning the learning rate. We note this
analysis is purely illustrative and has many assumptions, in particular 1) we use a linear univariate
model 2) we ignore the time-varying component.

19

Learned Schedules The next pages contain learned schedules from all agents trained by our algo-
rithms and baselines. In each case we show all agents for all seeds, with blue corresponding to a
config that contributed to the final best (training) agent. The most notable observation across all
environments is the stark contrast between PBT and PB2-based methods. PBT clearly increments
parameters, and gradually shifts during training, while PB2 rapidly explores the boundaries. We note
in some cases that PB2-Mult never re-explores the middle regions, which we hypothesize is due to
the lack of data when creating separate models for each of the eight categories.

Figure 10: Learned schedules for BigFish by algorithm, for all seeds. Each point corresponds to one agent.

Figure 11: Learned schedules for CaveFlyer by algorithm, for all seeds. Each point corresponds to one agent.

20

Figure 12: Learned schedules for CoinRun by algorithm, for all seeds. Each point corresponds to one agent.

Figure 13: Learned schedules for FruitBot by algorithm, for all seeds. Each point corresponds to one agent.

21

Figure 14: Learned schedules for Jumper by algorithm, for all seeds. Each point corresponds to one agent.

Figure 15: Learned schedules for Leaper by algorithm, for all seeds. Each point corresponds to one agent.

22

Figure 16: Learned schedules for StarPilot by algorithm, for all seeds. Each point corresponds to one agent.

23

C Additional Background

C.1 DrAC

In recent times, there has been increased interest in generalization of RL agents, after multiple works
showed many RL agents are simply overfitting to a single deterministic training environment [51, 14].
One approach to produce more generalizable agents is data augmentation, which has recently shown
impressive results [82, 35, 37, 38]. To formalize the data augmentation step, we follow [35] and define
an optimality-invariant state transformation f : S ◊ H æ S as a mapping that preserves both the
policy fi and value function V , i.e. V (s) = V (f(s, ‹)) and fi(a|s) = fi(a|f(s, ‹)), ’s œ S, ‹ œ H,
where ‹ are parameters of f(.) drawn from the set of possible parameters H. In this work we focus
on the formulation from [57] who propose additional loss terms for regularizing the policy and value
function:

Gfi = KL[fi◊(a|f(s, ‹])|fi(a|s)], (6)

GV = (V◊(f(s, ‹)) ≠ V (s))2
. (7)

Combining the PPO objective with Gfi and GV produces the data-regularized actor critic or DrAC
objective as follows:

LDrAC(◊) = LPPO(◊) ≠ –r(Gfi + GV) (8)

where –r is the weight of the regularization term, another hyperparameter to consider. The results
in [57] show that learning which data augmentation function f to use (from a fixed set) and grid
searching over the –r parameter can achieve new state-of-the-art results in challenging Procgen
environments.

24

Table 6: Notation used in the theoretical analysis.

Variable Domain Meaning
C N number of categories (number of arms)

T N maximum number of bandit update (the number of tready in PB2)

V N number of time segments, how many times the function has been shifted

B N batch size (number of parallel agents)

St list a list of B selected categories [ct,1, ct,2, ..., ct,B]
e R

+ this is Euler’s number 2.71828
#
p

1
t
, ...p

C

t

$
list probability vector at iteration t and category c = 1....C

wc R weight for categorical c (or arm c)

Wt =
q

C

c=1
wc R

+ sum of the weight vector at iteration t

ct,b œ {1...C} N a selection at iteration t at agent b

ct = [ct,1, ..., ct,B] list a batch of B categorical selections at iteration t

c
ú
t

œ {1...C} list an optimal selection at iteration t

A
ú
v

list a list of B elements taking the (same) optimal selection c
ú
t

at iteration/segment v

gt(c) [0, 1] a gain (reward) occurred at iteration t by pulling an arm c

ĝt(c) = gt(c)

p
c
t +“

I(c = ht) R
+ a normalized gain

– = 1

T
, ÷ = 2“ =

Ò
2 ln C

CT
R

+ hyperparameters, set by Theorem 1

“ =
Ò

ln C

2CT
œ [0, 1] R

+ is the exploration parameter

GT (c) =
q

T

t=1
gt(c) R

+ a total gain if we select an arm c entirely

D Theoretical Results

We derive the theoretical proofs presented in the main paper.

D.1 Time-varying EXP3 Multiple play (TV.EXP3.M)

We present a new algorithm for parallel (or multiple play) multi-armed bandits in the time-varying
setting with adversarial feedback. Particularly, we extend the multiple play EXP3 algorithm (or
EXP3.M) [78], to the time-varying setting where the unknown reward distribution of each arm can
change arbitrarily, but the total number of change points is no more than V times. We refer to Table 6
for the notations used in the proofs.

We summarize the TV.EXP3.M in Algorithm 5 – this is complementary to the brief Algorithm 2 in
the main paper. In Algorithm 5, we maintain a set of probability vectors (step 9) for each arm which
will be specified and weighted in the optimal way derived by the theory. Then, at each round we
select a batch of B arms for parallel evaluations (step 10), observe the reward (step 11) and update
the model (step 12,13,14). The normalization steps 3-7 are to prevent from being biased toward a
single arm which performs overwhelmingly well, thus overly exploiting.

Theorem 3. (Theorem 1 in the main paper) Let T > 0, C > 0, set – = 1

T
and “ =

min
Ó

1,

Ò
C ln(C/B)

(e≠1)BT

Ô
, we assume the reward distributions to change at arbitrary time instants,

but the total number of change points is no more than V times. The expected regret gained by
TV.EXP3.M in a batch satisfies the following sublinear regret bound

E [RT B] Æ [1 + e + V]
Ú

(e ≠ 1)CT

B
ln CT

B
.

Proof. We refer to Table 6 for notations. We follow the proof technique presented in [3] and [78] to

derive the regret bound. Let Wt =
q

C

c=1
Ê

c

t
and using step 9 in Algorithm 5, we have

pc
t

B ≠
“
C

1≠“
= Ê

c
t

Wt
.

25

This equation will be used below.

Wt+1
Wt

=
qC

c=1 Êc
t+1

Wt
=

q
c/œSt(0) Êc

t+1

Wt
+

q
cœSt(0) Êc

t+1

Wt
+

qC

c=1
e–Wt

C

Wt

=
ÿ

c/œSt(0)

Êc
t

Wt
◊ exp

1
B“
C

ĝt(c)
2

+
q

cœSt(0) Êc
t

Wt
+ e–

Æ e– +
ÿ

c/œSt(0)

Êc
t

Wt

5
1 + B“

C
ĝt(c) + (e ≠ 2)

1
B“
C

22
ĝ2

t (c)
6

+
q

cœSt(0) Êc
t+1

Wt
by ex

Æ 1 + x + (e ≠ 2)x2

= e– +
ÿ

c/œSt(0)

Êc
t

Wt
+

ÿ

cœSt(0)

Êc
t+1

Wt

¸ ˚˙ ˝
1

+
ÿ

c/œSt(0)

pc
t

B ≠
“
C

1 ≠ “

5
B“
C

ĝt(c) + (e ≠ 2)
1

B“
C

22
ĝ2

t (c)
6

Æ e– + 1 + B“
C (1 ≠ “)

ÿ

c/œSt(0)

1
pc

t

B
≠

“
C

2
ĝt(c) + (e ≠ 2)

1 ≠ “

1
B“
C

22 ÿ

c/œSt(0)

1
pc

t

B
≠

“
C

2
ĝ2

t (c)

= e– + 1 + “
C (1 ≠ “)

ÿ

c/œSt(0)

pc
t ĝt(c) ≠

B“2

C2 (1 ≠ “)
ÿ

c/œSt(0)

ĝt(c)

+ (e ≠ 2)“2B

(1 ≠ “) C2

ÿ

c/œSt(0)

pc
t ĝ2

t (c) ≠
(e ≠ 2)“3B2

(1 ≠ “) C2

ÿ

c/œSt(0)

ĝ2
t (c)

Æ e– + 1 + “
C (1 ≠ “)

ÿ

c/œSt(0)

pc
t ĝt(c) + (e ≠ 2)“2B

(1 ≠ “) C2

ÿ

c/œSt(0)

pc
t ĝ2

t (c)

Æ e– + 1 + “
C (1 ≠ “)

ÿ

cœSt≠St(0)

gt(c) + (e ≠ 2)“2B

(1 ≠ “) C2

ÿ

c/œSt(0)

ĝt(c) by x2
Æ x, ’x œ [0, 1]

Wt+1
Wt

Æ e– + 1 + “
C (1 ≠ “)

ÿ

cœSt≠St(0)

gt(c) + (e ≠ 2)“2B

(1 ≠ “) C2

ÿ

cœ[C]

ĝt(c). (9)

To demonstrate the time-varying property in our bandit problem, we assume the reward distributions
change at arbitrary time instants, but the total number of change points is no more than V times. We
split the sequence of total decisions T into V segments such that within each segment we have the
time-invariant reward function.

We can write V segments as [T1, ...T2), [T2,, T3), [TV , ..., TV +1) where Tv indicates the starting
index of the v-th segment, Tv+1 is the ending index of the v-th segment which is also the starting
index of the v + 1-th segment – using the same notation in EXP3.S [3]. Similarly, we can write
the optimal sequence [cú

T1 , ...c
ú

T2)
¸ ˚˙ ˝

=c
ú
T1

, [cú

T2 ,, c
ú

T3)
¸ ˚˙ ˝

=c
ú
T2

, [cú

TV
, ..., c

ú

TV +1)
¸ ˚˙ ˝

=c
ú
TV

where the reward function does not

change in each segment, thus takes the same optimal choice c
ú

Tv
.

We consider an arbitrary segment v and denote the length �v = Tv+1 ≠ Tv . Furthermore, let define
the cumulative gain (or reward) achieved by using TV.EXP3.M strategy within a segment v that the
indices are ranging from Tv to Tv+1 ≠ 1

GT V.EXP 3.M (v) =
Tv+1≠1ÿ

t=Tv

ÿ

cœSt

gt(ct = c).

Taking ln of Eqn. (9), we get

ln Wt+1

Wt

Æ ln

Q

ae– + 1 + “/C

1 ≠ “

ÿ

cœSt≠St(0)

gt(c) +
(e ≠ 2)

!
“

C

"2
B

1 ≠ “

Cÿ

c=1

ĝt(c)

R

b

Æ e– + “/C

1 ≠ “

ÿ

cœSt≠St(0)

gt(c) +
(e ≠ 2)

!
“

C

"2
B

1 ≠ “

Cÿ

c=1

ĝt(c) by 1 + a Æ e
a
.

26

Summing over all indices t = Tv,, Tv+1 ≠ 1 within a segment v-th:

ln WTv+1 ≠ ln WTv Æ �ve– + “/C

1 ≠ “

Tv+1≠1ÿ

t=Tv

ÿ

cœSt≠St(0)

gt(c) +
(e ≠ 2)

!
“

C

"2
B

1 ≠ “

Tv+1≠1ÿ

t=Tv

Cÿ

c=1

ĝt(c)

Æ �ve– + “/C

1 ≠ “

Tv+1≠1ÿ

t=Tv

ÿ

cœSt≠St(0)

gt(c) +
(e ≠ 2)

!
“

C

"2
B

1 ≠ “

Tv+1≠1ÿ

t=Tv

Cÿ

c=1

ĝt(c).

Let j = c
ú

Tv
= ... = c

ú

Tv+1≠1
be the optimal choice in the sequence v, we have Ê

(Tv+1)

j
=

Ê
(Tv+1≠1)

j
◊ exp

1
B“

C
ĝt(j)

2
+ e–

C
WTv+1≠1, ’j /œ STv+1≠1(0) and Ê

(Tv+1)

j
= Ê

(Tv+1≠1)

j
, ’j œ

STv+1≠1(0)

Ê
(Tv+1)

j
= Ê

(Tv+1≠1)

j
◊ exp

3
B“

C
ĝt(j)

4
+ e–

C
WTv+1≠1

Ø Ê
(Tv+1≠1)

j
◊ exp

3
B“

C
ĝt(j)

4

Ø Ê
(Tv+1≠2)

j
◊ exp

3
B“

C
ĝt(j)

4
exp

3
B“

C
ĝ(Tv+1≠2)(j)

4

Ø Ê
(Tv)

j
◊ exp

Q

aB“

C

Tv+1≠1ÿ

t=Tv|t:j /œSt(0)

ĝt(j)

R

b

Ø
e–

C
WTv ◊ exp

Q

aB“

C

Tv+1≠1ÿ

t=Tv|t:j /œSt(0)

ĝt(j)

R

b

Ø
–

C
WTv ◊ exp

Q

aB“

C

Tv+1≠1ÿ

t=Tv|t:j /œSt(0)

ĝt(j)

R

b .

We now consider the lower bound by taking the optimal (batch) set A
ú
v

µ [C] for B elements with
the maximum total of reward within the segment v:

q
cœAú

v

q
T

t=1
gt(c). Since we have the fact that

q
jœAú

v
Ê

(Tv+1)

j
Ø B

1r
jœAú

v
Ê

(Tv+1)

j

21/B

by Cauchy Swatchz inequality, we continue the above
formula

ln
!
WTv+1≠1

"
≠ ln WTv Ø ln B + 1

B

ÿ

jœAú
v

ln Ê
(Tv+1)

j
≠ ln WTv

= ln B + 1
B

ÿ

jœAú
v

ln –

C
WTv + 1

B

ÿ

jœAú
v

B“

C

Tv+1≠1ÿ

t=Tv|t:j /œSt(0)

ĝt(j) ≠ ln WTv

= ln B + 1
B

ÿ

jœAú
v

ln –

C
+

ÿ

jœAú
v

“

C

Tv+1≠1ÿ

t=Tv|t:j /œSt(0)

ĝt(j)

= ln B–

C
+

ÿ

jœAú
v

“

C

Tv+1≠1ÿ

t=Tv|t:j /œSt(0)

ĝt(j).

Combining both the lower bound and upper bound, we get

ln B–

C
+

ÿ

jœAú
v

“

C

Tv+1≠1ÿ

t=Tv|t:j /œSt(0)

ĝt(j) Æ �ve– + “/C

1 ≠ “

Tv+1≠1ÿ

t=Tv

ÿ

cœSt≠St(0)

gt(c)

+
(e ≠ 2)

!
“

C

"2
B

1 ≠ “

Tv+1≠1ÿ

t=Tv

Cÿ

c=1

ĝt(c).

27

Summing over all segments v = 1....V

V ln B–
C

+
Vÿ

v=1

ÿ

jœAú
v

“
C

Tv+1≠1ÿ

t=Tv|t:j /œSt(0)

ĝt(j) ÆT e– + “/C

1 ≠ “

Vÿ

v=1

Tv+1≠1ÿ

t=Tv

ÿ

cœSt≠St(0)

gt(c)

+
(e ≠ 2)

!
“
C

"2
B

1 ≠ “

Vÿ

v=1

Tv+1≠1ÿ

t=Tv

Cÿ

c=1

ĝt(c)

V C
“

ln B–
C

+
Vÿ

v=1

ÿ

jœAú
v

Tv+1≠1ÿ

t=Tv|t:j /œSt(0)

ĝt(j) Æ
C
“

T e– + 1
1 ≠ “

Vÿ

v=1

Tv+1≠1ÿ

t=Tv

ÿ

cœSt≠St(0)

gt(c)

+
(e ≠ 2)

!
“B
C

"

1 ≠ “

Vÿ

v=1

Tv+1≠1ÿ

t=Tv

Cÿ

c=1

ĝt(c)

Vÿ

v=1

Tv+1≠1ÿ

t=Tv|jœSt(0)

ÿ

jœAú
v

gt(j) +
Vÿ

v=1

ÿ

jœAú
v

Tv+1≠1ÿ

t=Tv|j /œSt(0)

ĝt(j) Æ
C
“

T e– + 1
1 ≠ “

Vÿ

v=1

Tv+1≠1ÿ

t=Tv

ÿ

cœSt(0)

gt(c)

+ 1
1 ≠ “

Vÿ

v=1

Tv+1≠1ÿ

t=Tv

ÿ

cœSt≠St(0)

gt(c)

+
(e ≠ 2)

!
“B
C

"

1 ≠ “

Vÿ

v=1

Tv+1≠1ÿ

t=Tv

Cÿ

c=1

ĝt(c)

≠
V C
“

ln B–
C

. (10)

Let us denote the optimal gain over all iterations and all parallel agents G
ú

T B
=q

V

v=1

qTv+1≠1

t=Tv

q
jœAú

v
gt(j). We also denote the cumulative gain achieved by using TV.EXP3.M

algorithms GTV.EXP3.M =
q

V

v=1

qTv+1≠1

t=Tv

q
cœSt

gt(c). Then, we continue Eqn. (10) as

G
ú

T B
Æ

C

“
Te– + 1

1 ≠ “
GTV.EXP3.M +

(e ≠ 2)
1

“B

C

2

1 ≠ “

Vÿ

v=1

Tv+1≠1ÿ

t=Tv

Cÿ

c=1

ĝt(c) ≠
V C

“
ln B–

C
(11)

where the number of element in a batch |St| = |A
ú

j
| = B. Let take expectation both sides of Eqn.

(11), we have E [ĝt(c) | S1, S2, ..., Si≠1] = gt(c) from the fact that DepRound [21] selects action c

with probability pc(t), we obtain

G
ú

T B
Æ

1
(1 ≠ “)E [GTV.EXP3.M] +

(e ≠ 2)
1

“B

C

2

1 ≠ “

Vÿ

v=1

Tv+1≠1ÿ

t=Tv

Cÿ

c=1

gt(c) + C

“
Te– ≠

V C

“
ln B–

C
.

We finally have

(1 ≠ “)Gú
T B ÆE [GTV.EXP3.M] + (e ≠ 2)

1
“B
C

2
C
B

Gú
T B + (1 ≠ “)

“
CT e– ≠

(1 ≠ “)V C

“
ln B–

C
(12)

Gú
T B ≠ E [GTV.EXP3.M] Æ(e ≠ 1)“Gú

T B + (1 ≠ “)
“

CT e– + (1 ≠ “)V C

“
ln C

B–

Æ(e ≠ 1)“T B + (1 ≠ “)
“

CT e– + V C
“

ln C
B–

≠ V C ln C
B–

by Gú
T B Æ T B

Æ(e ≠ 1)“T B + 1
“

CT e– + V C
“

ln C
B–

. (13)

In Eqn. (12), we use the fact that
q

V

v=1

qTv+1≠1

t=Tv

q
C

c=1
gt(c) Æ

C

B
G

ú

T B
=

C

B

q
V

v=1

qTv+1≠1

t=Tv

q
cœAú gt(c).

28

Algorithm 5 TV.EXP3.M algorithm

Input: “ =
Ò

C ln(C/B)

(e≠1)BT
, – = 1

T
,C #categorical choice, T #max iteration, B #multiple play

1: Init Êc = 1, ’c = 1...C and denote ÷ = (1

B
≠

“

C
) 1

1≠“

2: for t = 1 to T do
3: if arg maxcœ[C] Êc Ø ÷

q
C

c=1
Ê(c) then

4: ‹ s.t. ‹

÷
=

q
Êt(c)Ø‹

‹ +
q

Êt(c)<Êt(c)
Êt(c)

5: Set S0 = (c : Êt(c) Ø ‹) and Êt(S0) = ‹

6: else
7: Set S0 = ÿ

8: end if
9: Compute p

c

t
= B

3
(1 ≠ “) ÊcqC

c=1
Êc

+ “

C

4
, ’c

10: A batch of B categorical choices St = [c1
t
, c

2
t
, ..., c

B

t
] = DepRound

!
B,

#
p

1
t
p

2
t
....p

C

t

$"

11: Observe the reward gt(c) = f(ct = c) for c œ St

12: ĝt(c) = gt(c)

p
c
t

, ’c œ St and ĝt(c) = 0 otherwise

13: ’c /œ S0 : update Êc = Êc ◊ exp (B“ĝt(c)/C) + e–

C

q
C

i=1
Êc,

14: ’c = S0 : update Êc = Êc + e–

C

q
C

i=1
Êc

15: end for

Set “ = min
Ó

1,

Ò
C ln(C/B)

(e≠1)BT

Ô
and – = 1

T
. Then, we have the cumulative regret over all iterations

and considering the best element in a batch

E [RT B] = E

S

U
Vÿ

v=1

Tv+1≠1ÿ

t=Tv

optimal arms˙ ˝¸ ˚
max
’cÆC

gt(c)

T

V ≠ E

S

U
Vÿ

v=1

Tv+1≠1ÿ

t=Tv

best arm in a batch St˙ ˝¸ ˚
max
’cœSt

gt(c)

T

V (14)

Æ
1
B

G
ú

T B
≠

1
B
E [GTV.EXP3.M] (15)

Æ
1
B

Ú
C(e ≠ 1) ln(C/B)

BT
T + 1

B

C(e ≠ 1)BT

ln(C/B)
e + 1

B

V CÒ
C ln(C/B)

(e≠1)BT

ln CT

B
(16)

Æ [1 + e + V]
Ú

(e ≠ 1)CT

B
ln CT

B
(17)

where we obtain Eqn. (15) because the best gain should be greater than the average gain of a batchq
V

v=1

qTv+1≠1

t=Tv
max’cœSt gt(c) Ø

1

B

q
V

v=1

qTv+1≠1

t=Tv

q
cœSt

gt(c).

Given the number of changing points in our reward function is bounded V π
Ô

T and the number of
category C is a constant, our regret bound achieves sublinear regret rate with the number of iterations
T , i.e., limT æŒ

E[RT B]

T
= 0.

In the above derivation, T refers to the number of bandit updates which is equivalent to the number
of tready in PB2 setting [52].

D.2 Theoretical Derivations for PB2-Mult

We adapt Lemma 1 in [52] to handle categorical variables. We first restate some notations used in
[52]. Let F

ct
t

(xt) be an objective function under a given set of continuous hyperparameters xt and
categorical variable ct at timestep t. An example of F

ct
t

(xt) could be the reward for a deep RL agent.
When training for a total of T steps, our goal is to maximize the final performance F

cT
T

(xT). We
formulate this problem as optimizing the time-varying black-box reward function ft, over D.

29

Lemma 4. Maximizing the final performance FT of a model with respect to a given continuous hy-
perparameter schedule {xt}

T

t=1
and a categorical hyperparameter schedule {ct}

T

t=1
is equivalent to

maximizing the time-varying black-box function ft(xt) and minimizing the corresponding cumulative
regret rt(xt),

max F
cT
T

(xT) = max
Tÿ

t=1

fct(xt) = min
Tÿ

t=1

rt(xt). (18)

Proof. At each tready, we select a categorical variable ct œ {1, ..., C} and a continuous variable
xt œ D

ct . We would emphasize that the continuous variables are conditioned on the choice of
ct. We observe and record noisy observations, yt = fct(xt) + ‘t, where ‘t ≥ N (0, ‡

2I) for
some fixed ‡

2. The function ft represents the change in Ft after training for tready steps, i.e.
fct(xt) = F

ct
t

(xt) ≠ F
ct≠tready
t≠tready (xt≠tready). We define the best choice at each timestep as x

ú
t

=
arg maxxtœDct fct(xt), and c

ú
t

= arg maxct,xt fct(xt). The intermediate regret of each decision is
defined as rt = fc

ú
t
(xú

t
) ≠ fct(xt) where fc

ú
t
(xú

t
) is an unknown constant.

We have a reward at the starting iteration F
c1
1

(x1) as a constant that allows us to write the objective
function as:

F cT
T (xT) ≠ F c1

1 (x1) = F cT
T (xT) ≠ F

cT ≠1
T ≠1 (xT ≠1)

¸ ˚˙ ˝
fcT ≠1 (xT ≠1)

+... + F c3
3 (x3) ≠ F c2

2 (x2)¸ ˚˙ ˝
fc2 (x2)

+ F c2
2 (x2) ≠ F c1

1 (x1)¸ ˚˙ ˝
fc1 (x1)

.

(19)

Therefore, maximizing the left of Eqn. (19) is equivalent to minimizing the cummulative regret as
follows:

max [F cT
T (xT) ≠ F c1

1 (x1)] = max
Tÿ

t=1

F ct
t (xt) ≠ F

ct≠1
t≠1 (xt≠1) = max

T ≠1ÿ

t=1

fct (xt) = min
T ≠1ÿ

t=1

rt(xt)

where we define fct(xt) = F
ct
t

(xt) ≠ F
ct≠1
t≠1

(xt≠1), the regret rt = fc
ú
t
(xú

t
) ≠ fct(xt).

We then restate Theorem 2 in [52] which will be used in deriving the convergence guarantee for
PB2-Mult.
Theorem 5. (Theorem 2 in [52]) Let the domain D µ [0, r]d be compact and convex where d is
the dimension and suppose that the kernel is such that ft ≥ GP (0, k) is almost surely continuously
differentiable and satisfies Lipschitz assumptions ’Lt Ø 0, t Æ T , ’j Æ d, p(sup

--- ˆft(x)

ˆx(j)

--- Ø Lt) Æ

ae
≠(Lt/b)

2
for some a, b. Pick ” œ (0, 1), set —T = 2 log fi

2
T

2

2”
+ 2d log rdbT

2

Ò
log dafi2T 2

2”
and

define C1 = 32/ log(1 + ‡
2

f
), the PB2 algorithm satisfies the following regret bound after T time

steps over B parallel agents with probability at least 1 ≠ ”:

RT B =
Tÿ

t=1

ft(xú

t
) ≠ max

bÆB

ft(xt,b) Æ

Û

C1T—T

3
T

ÑB
+ 1

4 1
“

ÑB
+

#
ÑB

$3

Ê

2
+ 2

the bound holds for any block length Ñ œ {1, ..., T} and B π T .

Next, we are going to derive the main theorem of the paper.
Theorem 6. (Theorem 2 in the main paper) Let the domain for continuous variables D µ [0, r]d be
compact and convex where d is the dimension and suppose that the kernel is such that ft ≥ GP (0, k)
is almost surely continuously differentiable and satisfies Lipschitz assumptions ’Lt Ø 0, t Æ T , ’j Æ

d, p(sup
--- ˆft(x)

ˆx(j)

--- Ø Lt) Æ ae
≠(Lt/b)

2
for some a, b.

Assume the reward distributions to change at arbitrary time instants, but the total number of
change points is no more than V . Set – = 1

T
, “ = min

Ó
1,

Ò
C ln(C/B)

(e≠1)BT

Ô
, —T = 2 log fi

2
T

2

2”
+

2d log rdbT
2

Ò
log dafi2T 2

2”
, pick ” œ (0, 1) and define C1 = 32/ log(1 + ‡

2

f
), the PB2-Mult algo-

rithm satisfies the following regret bound after T time steps over B parallel agents with probability

30

at least 1 ≠ ”:

E [RT B] Æ [1 + e + V]
Ú

(e ≠ 1)CT
B

ln CT
B

+

Û

C1Tcú
t
—Tcú

t

3
Tcú

t

ÑB
+ 1

4 1
“ÑB +

#
ÑB

$3
Ê

2
+ 2.

The bound holds for any Ñ œ {1, ..., Tc
ú
t
} and V π

Ô
T .

Proof. We expand the cumulative regret and optimize it using time-varying GP bandit optimization
[7, 52]

RT B =
Tÿ

t=1

f
ú

≠ max
b=1...B

Tÿ

t=1

fct,b(xt,b)

= max
b=1,...,B

Tÿ

t=1

fc
ú
t,b

(xt,b) ≠ max
b=1,...,B

Tÿ

t=1

fct,b(xt,b) +
Tÿ

t=1

f
ú

≠ max
b=1,...,B

Tÿ

t=1

fc
ú
t,b

(xt,b)

where b œ {1, ..., B} is an agent’s index being trained in parallel, fc
ú
t
(xt) = max’ctœ{1,...,C} fct(xt)

and c
ú
t

= arg max’cœ{1,...C} fc(xt) is the optimal categorical choice at iteration t.

We bound the two terms separately as follows. The first term is bounded by Theorem 1. We assume
the process of generating the arm ct’s reward fct(.) := fct(xt) is by the “adversary” that TV.EXP3.M
does not have the direct control on the selection of xt. Particularly, xt will be chosen by TV-GP-BUCB
(as part of PB2) in Eqn. (3). We take the expectation of the first term to have

E

S

WU max
b=1...B

Tÿ

t=1

fcú
t,b

(.)
¸ ˚˙ ˝

pull optimal arm

T

XV ≠ E

S

U max
b=1...B

Tÿ

t=1

fct,b (.)
¸ ˚˙ ˝
pull arm ct

T

V = E

S

WU
Tÿ

t=1

fcú
t
(.)

¸ ˚˙ ˝
pull optimal arm

T

XV ≠ E

S

U max
b=1...B

Tÿ

t=1

fct,b (.)
¸ ˚˙ ˝
pull arm ct

T

V

= E
#
R̃T B

$

Æ [1 + e + V]
Ú

(e ≠ 1)CT
B

ln CT
B

where RT B is cumulative regret of the TV.EXP3.M, defined in Theorem 1.

Assuming the best arm (the best categorical choice) c
ú
t

can be identified by TV.EXP3.M in Theorem
1. The second term is the regret bound presented in Theorem 2 of the PB2 [52]:

Tÿ

t=1

f
ú

t
≠ max

b=1...B

Tÿ

t=1

fc
ú
t,b

(xt,b) =
Tÿ

t=1

f
ú

t
≠ max

b=1...B

Tÿ

t=1

fc
ú
t
(xt,b)

Æ

Û

C1Tc
ú
t
—Tcú

t

3
Tc

ú
t

ÑB
+ 1

4 1
“

ÑB
+

#
ÑB

$3

Ê

2
+ 2

¸ ˚˙ ˝
O(P B2)

where Tc
ú
t

denotes the number of times the optimal category c
ú
t

(or optimal arm) is selected. We
follow [7, 52] to denote a block length Ñ œ {1,Tc

ú
t
} in which the function does not change

significantly. In the above equation, Ê œ [0, 1] is a time-varying hyperparameter which is estimated
by maximizing the GP log marginal likelihood, B is a batch size or the number of population agents,
“

ÑB
is the maximum information gain [74] defined within a block Ñ over B parallel agents.

Note that the theoretical result for PB2 comes with the additional smoothness assumption on the
kernel k that holds for some (a, b) and ’Lt Ø 0. The kernel satisfies for all dimensions j = 1, ..., d

’Lt Ø 0, t Æ T , p(sup

ˆft(x)
ˆx(j)

---- Ø Lt) Æ ae
≠(Lt/b)

2
. (20)

We combine the two terms to obtain the final regret bound of the PB2-Mult algorithm:

E [RT B] Æ [1 + e + V]
Ú

(e ≠ 1)CT
B

ln CT
B

+

Û

C1Tcú
t
—Tcú

t

3
Tcú

t

ÑB
+ 1

4 1
“ÑB +

#
ÑB

$3
Ê

2
+ 2.

31

The final regret bound is a summation of two sub-linear terms. Therefore, the regret bound grows
sublinearly with the number of iterations T , i.e., limT æŒ

E[RT B]

T
= 0. This is under a common

assumption [7, 52] that the time-varying function is correlated, i.e., we have Ê æ 0, thus Ñ æ T .
We also note that when T æ Œ, then Tc

ú
T

æ Œ due to Theorem 1.

D.3 Gradients

We optimize the GP hyperparameters by maximizing the log marginal likelihood [58]. We fit
the GP hyperparameters by maximizing their posterior probability (MAP), p (‡x, ‡t | X, t, y) Ã

p (‡x, ‡t, X, t, y), which, thanks to the Gaussian likelihood, is available in closed form

L := ln p (y, X, t, ◊) =1
2yT

!
K + ‡

2

y
IN

"≠1 y ≠
1
2 ln

--K + ‡
2

y
IN

-- + ln phyp (◊) + const (21)

where IN is the identity matrix in dimension N (the number of points in the training set), and phyp(◊)
is the prior over hyperparameters. We optimize Eqn. (21) with a gradient-based optimizer, providing
the analytical gradient to the algorithm.

Our time-varying CoCaBO kernel is defined as

kz(z, z
Õ) = (1 ≠ ⁄) (kxt + kct) + ⁄kxtkct

where kxt = kContinuous(x, x
Õ)◊ktime1(t, t

Õ), kct = kCategorical(c, c
Õ)◊ktime2(t, t

Õ), kContinuous(x, x
Õ) =

‡1 ◊ exp
1

≠
||x≠x

Õ
||

2

l

2
, kCategorical(c, c

Õ) = ‡2
C

q
I(c, c

Õ), ktime1(t, t
Õ) = (1 ≠ ‘1) |t≠tÕ|

2 and

ktime2(t, t
Õ) = (1 ≠ ‘2) |t≠tÕ|

2 .

Our hyperparameters include ◊ = {‘1, ‘2, l, ‡1, ‡2, ⁄}. We need to compute the gradients of
ˆL

ˆ‘1
,

ˆL

ˆ‘2
,

ˆL

ˆl
,

ˆL

ˆ‡1
,

ˆL

ˆ‡2
,

ˆL

ˆ⁄
as follows:

• The gradient of ˆL

ˆ‘1

ˆL

ˆ‘1

= ˆL

ˆkz

◊
ˆkz

ˆ‘1

ˆkz

ˆ‘1

= (1 ≠ ⁄) kContinuous(x, x
Õ)ˆktime1

ˆ‘1

+ ⁄kctkContinuous(x, x
Õ)ˆktime1

ˆ‘1

ˆktime1

ˆ‘1

= ≠
|t ≠ t

Õ
|

2 (1 ≠ ‘1)
|t≠tÕ|

2 ≠1

• The gradient of ˆL

ˆ‘2

ˆL

ˆ‘2

= ˆL

ˆkz

◊
ˆkz

ˆ‘2

ˆkz

ˆ‘2

= (1 ≠ ⁄) kCategorical(c, c
Õ)ˆktime2

ˆ‘2

+ ⁄kxtkCategorical(c, c
Õ)ˆktime2

ˆ‘2

ˆktime2

ˆ‘2

= ≠
|t ≠ t

Õ
|

2 (1 ≠ ‘2)
|t≠tÕ|

2 ≠1

• The gradient of ˆL

ˆl

ˆL

ˆl
= ˆL

ˆkz

◊
ˆkz

ˆl

ˆkz

ˆl
= (1 ≠ ⁄) ktime1(t, t

Õ)ˆkContinuous

ˆl
+ ⁄kctktime1(t, t

Õ)ˆkContinuous

ˆl

ˆkContinuous

ˆl
= ||x ≠ x

Õ
||

2

l2
kContinuous(x, x

Õ)

32

• The gradient of ˆL

ˆ‡1

ˆL

ˆ‡1

= ˆL

ˆkz

◊
ˆkz

ˆ‡1

ˆkz

ˆ‡1

= (1 ≠ ⁄) ktime1(t, t
Õ)ˆkContinuous

ˆ‡1

+ ⁄kctktime1(t, t
Õ)ˆkContinuous

ˆ‡1

ˆkContinuous

ˆ‡1

=kContinuous(x, x
Õ)

• The gradient of ˆL

ˆ‡2

ˆL

ˆ‡2

= ˆL

ˆkz

◊
ˆkz

ˆ‡2

ˆkz

ˆ‡2

= (1 ≠ ⁄) ktime2(t, t
Õ)ˆkCategorical

ˆ‡2

+ ⁄kxtktime2(t, t
Õ)ˆkCategorical

ˆ‡2

ˆkCategorical

ˆ‡2

=kCategorical(c, c
Õ)

• The gradient of ˆL

ˆ⁄

ˆL

ˆ⁄
= ˆL

ˆkz

◊
ˆkz

ˆ⁄

ˆkz

ˆ⁄
= ≠ (kct + kxt) + kctkxt

33

	Introduction
	Related Work
	The Case for AutoRL
	Reinforcement Learning Background
	Case study: Proximal Policy Optimization

	Population Based Bandits
	Online Hyperparameter Selection as GP-Bandit Optimization
	Parallel Gaussian Process Bandits for a Time-Varying Function

	Efficient Selection of Continuous and Categorical Variables
	Time-varying Parallel EXP3
	New Exploration Strategies
	Main theoretical results

	Experiments
	Synthetic Function with Dependency
	Learning Hyperparameters and Data Augmentation for Generalization in RL
	Discussion

	Conclusion and Future Work
	Implementation Details
	Hyperparameter Ranges
	Environment Details
	Infrastructure Details

	Additional Results
	Additional Background
	DrAC

	Theoretical Results
	Time-varying EXP3 Multiple play (tv.exp3.m)
	Theoretical Derivations for PB2-Mult
	Gradients

