
Appendix
Appendix A contains details on the experiments conducted throughout this paper. In Appendix B,
we include additional results from the experiments on GeoAdEx, e.g., attacks on k-NN with k = 1,
runtime comparisons, an ablation study, and different hyperparameter choices. In Appendix C, more
details on the class closeness metric are provided. In Appendix D, we provide the proofs of the
theory and lemmas stated in the paper. Appendix E explains all the performance optimization used
in GeoAdEx, and lastly, in Appendix F, we describe the optimization algorithm, greedy coordinate
ascent, used for the distance computation.

A Details of the Experiments

Datasets. Details regarding the datasets used in the experiments are included in Table 2. It also
includes the accuracy of k-NN classifiers at k = 1, 3, 5, 7. Australian, Covtype, Diabetes, Fourclass,
and fmnist06 are taken directly from Yang et al. [2020]’s implementation. The dataset fmnist06 is a
two-class subset of Fashion-MNIST with a dimension reduction to 25 via PCA. The Letters dataset,
together with the others, is taken from LIBSVM [Chang and Lin, 2011]3. Gaussian is a dataset we
create by sampling from two isotropic Gaussian distributions of 20 dimension and variance of 1. The
distance between the means of the two distributions is 1 by default and is varied only in Section 4.2
to get different values of class closeness.

Environment and implementation. All of the attacks are run on an Ubuntu (16.04) cluster with
128 AMD EPYC 7551 CPU cores (2.5GHz each) and 252 GB of memory. No GPU is used in any of
the experiments. Using GPU could further speed up the attacks, but the official implementation of
the baselines is not compatible with GPUs so we stick to CPUs to present a fair comparison. Yang
et al. [2020] uses explicit parallelization and Cython C-extensions, whereas the rest of the attacks use
pure Python code without explicit parallelization. The code for the baselines are taken directly from
their respective public repository.4 Yang et al. [2020] uses Gurobi as the solver.

Hyperparameters. We evaluate all the baselines using their publicly available code and default
hyperparameters. For fairness, we also attempt to tune the hyperparameters for each baseline to keep
the total runtime comparable across attacks (see Appendix 4.3). In general, the baselines are fairly
insensitive to changes in their hyperparameters. For example, increasing the number of Voronoi cells
searched by Yang et al. [2020] and Wang et al. [2019] almost never reduces the mean perturbation
norm beyond one obtained with the default value. For GeoAdEx, we choose to compute distance to
cell and set m to 20 and applied a time limit of 100 seconds per test point.

Table 2: Details of the datasets used in the experiments.

Datasets # points # features # classes k = 1 acc k = 3 acc k = 5 acc k = 7 acc

Australian 490 14 2 0.805 0.805 0.830 0.845
Covtype 2000 54 7 0.755 0.715 0.730 0.705
Diabetes 568 8 2 0.695 0.755 0.695 0.685
Fourclass 662 2 2 1.000 0.995 1.000 1.000
Gaussian 10000 20 2 0.550 0.660 0.640 0.635
Letters 15000 16 26 0.925 0.940 0.940 0.930
fmnist06 12000 25 2 0.800 0.795 0.810 0.810

B Additional Results

B.1 Exact Attacks for k = 1

For completeness, we also compare the exact version of the attacks on 1-NN where the results are
presented in Table 3. Note that Sitawarin and Wagner [2020] is excluded since it does not have an

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
4Sitawarin and Wagner [2020]: https://github.com/chawins/knn-defense, Yang et al. [2020]:

https://github.com/yangarbiter/adversarial-nonparametrics, Wang et al. [2019]: https://
github.com/wangwllu/knn_robustness
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Table 3: Runtime for the exact version of the attacks on all of the datasets with k = 1. Sitawarin and Wagner
[2020] is not included because it does not offer an exact solution and provide no guarantee on the adversarial
distance.

Attacks Australian Covtype Diabetes Fourclass Gaussian Letters fmnist06

Yang et al. [2020] 72 7186 66 59 9109 34997 18461
Wang et al. [2019] 2 10 2 25 159 78 333
GeoAdEx 17 38 15 39 476 7450 19307

Table 4: Runtime (in seconds) for each of the attacks on all of the seven datasets. The mean adversarial distance
corresponding to these runtimes are shown in Table 1. The numbers in the gray rows are 95%-confidence interval
from 10 runs with random splits between training and testing samples.

k Attacks Australian Covtype Diabetes Fourclass Gaussian Letters fmnist06

S&W [2020] 654 1225 465 336 811 3372 972
±1 ±250 ±121 ±5 ±14 ±13 ±179

Yang et al. [2020] 8 925 9 7 599 1555 2151
±1 ±97 ±1 ±1 ±6 ±38 ±62

Wang et al. [2019] 361 363 128 129 226 259 272
±21 ±20 ±9 ±5 ±19 ±19 ±21

GeoAdEx 3351 727 1987 1424 2525 4030 6427

3

±447 ±100 ±152 ±106 ±146 ±354 ±338

S&W [2020] 654 1225 465 336 811 3372 972
±1 ±250 ±121 ±5 ±14 ±13 ±179

Yang et al. [2020] 8 925 9 7 599 1555 2151
±1 ±97 ±1 ±1 ±6 ±38 ±62

Wang et al. [2019] 361 363 128 129 226 259 272
±21 ±20 ±9 ±5 ±19 ±19 ±21

GeoAdEx 3351 727 1987 1424 2525 4030 6427

5

±447 ±100 ±152 ±106 ±146 ±354 ±338

S&W [2020] 654 1225 465 336 811 3372 972
±1 ±250 ±121 ±5 ±14 ±13 ±179

Yang et al. [2020] 8 925 9 7 599 1555 2151
±1 ±97 ±1 ±1 ±6 ±38 ±62

Wang et al. [2019] 361 363 128 129 226 259 272
±21 ±20 ±9 ±5 ±19 ±19 ±21

GeoAdEx 3351 727 1987 1424 2525 4030 6427

7

±447 ±100 ±152 ±106 ±146 ±354 ±338

exact version. Wang et al. [2019] is generally the fastest, and GeoAdEx is faster than Yang et al.
[2020], which does not seem to scale well with the number of generators and dimension. This is a
direct effect of the solvers of the quadratic programs. Greedy coordinate ascent, used by Wang et al.
[2019] and our attack, is much more efficient than a general-purpose commercial solver.

B.2 Runtime Comparisons and Attack Hyperparameters

Table 4 includes the runtime of all the attacks for k = 3, 5, 7. As we have mentioned, GeoAdEx
with m = 20 and the time limit of 100 seconds takes longer to run compared to the other attacks for
most cases. Sitawarin and Wagner [2020] is the fastest, followed by Wang et al. [2019] and Yang
et al. [2020]. For the other cases, Yang et al. [2020] has the longest runtime. The reported runtime of
GeoAdEx also includes the time used to initialize the adversarial distance ε found by Sitawarin and
Wagner [2020].

As mentioned in Section 4.3, we conduct more thorough sets of experiments on the first three datasets
(Australian, Covtype, and Diabetes) to fairly compare the attacks under a similar runtime. To this
end, we plot the runtime vs. mean adversarial distance curves for GeoAdEx and all the baselines by
varying their hyperparameters in Figure 3.
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B.2.1 Runtime Experiment Setup

For GeoAdEx, we vary m with four different values of time limit per sample which result in
four different curves. For Yang et al. [2020], we progressively doubled the number of regions
searched which is the only adjustable hyperparameter. For Wang et al. [2019], we progressively
doubled the number of trials (both min and max) and the number of neighbors to consider (until it
exceeds the number of all generators). There are four hyperparameters for Sitawarin and Wagner
[2020]: binary_search_steps, max_iterations, thres_steps, and check_adv_steps. We
progressively increased the first two and decreased the last two linearly. For GeoAdEx, we tested a
more detailed breakdown by varying both (from 5 to 120) and time limit.

Note that the runtime can be slightly different from what reported in Table 4 since we use a different
machine. To make this figure, we run all the experiments (all attacks, datasets, and choices of
hyperparameters) on a server with 40 cores of Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz.

B.2.2 Discussion on Figure 3

The major trends have already been covered in Section 4.3. Here, we discuss other observations and
minor trends.

Increasingm in GeoAdEx can either increase or decrease the mean adversarial distance. Each
curve for GeoAdEx is generated by increasing m but fixing the time limit. Increasing m reduces the
chance of missing the adversarial facets (hence the downward trend in the adversarial distance), but it
also increases the computation time for each cell which means that there are fewer cells it can search
given a fixed time limit (hence the upward trend). This implies that there is an optimal value of m for
a given time limit.

Increasing m in GeoAdEx can either increase or decrease the total runtime. This outcome is
seemingly perplexing than the previous one. We explain it for different values of m, namely the
small-m and the large-m regions.

Small-m region. When a smallerm is used with GeoAdEx, fewer first-order neighbors are considered,
and thus, the search has a higher chance of missing facets and nearby adversarial cells completely.
As a result, it has to expand the search radius which, in turn, would discover adversarial examples
that are further away and use a longer runtime. Conversely, if we increase m, we may find these
previously missed cells and terminate earlier, resulting in both lower adversarial distance and runtime.
We call the first scenario from the above exposition, the “small-m region.”

Large-m region. On the other hand, when m is sufficiently large and no adversarial cell is missed,
increasing m could have a reversed effect. In particular, when m increases, more first-order neighbors
have to be considered, and hence more nearby cells will have to be searched. For each of the test
samples, this could lead to (i) an increased runtime and/or (ii) the previously found adversarial cells
that are further away may now be missed instead. When (ii) happens, GeoAdEx will timeout and just
return the initialized upper bound. Therefore, in the “large-m region,” both the adversarial distance
and the total runtime may increase with m.

We verify this hypothesis by inspecting the number of samples that are timed out by GeoAdEx. If
our hypothesis holds, when we test different values of m, we expect to see a decreasing trend on the
number of timeouts in the small-m region and an increasing trend in the large-m region. Specifically,
when varyingm ∈ {5, 10, 20, 40, 60, 80, 100, 120} on the Diabetes dataset, we observe the following
number of timeouts over 100 samples: 41, 21, 14, 16, 10, 15, 16, and 17. The first three experiments
(m = 5, 10, 20) which correspond to the small-m region show a decreasing number of timeouts from
41 to 14. The last three experiments (m = 80, 100, 120) correspond to the large-m region where both
runtime and distance increase with m. The same phenomenon also happens on Covtype given the
same hyperparameters and the range of values of m. In this case, the numbers of timeouts are 24, 9,
3, 3, 3, 4, 4, and 5, respectively.

Note that whether a value of m is considered “small” or “large” varies by datasets and the time limit.
Increasing the time limit reduces the number of timeouts and hence delays the large-m region (i.e.,
occurs at a larger m). Additionally, this observation leads to two practical suggestions: (1) regardless
of m, increasing the time limit is always beneficial in terms of the adversarial distance, but (2) for a
fixed time limit, there is an optimal value of m.
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Figure 4: Improvement in the total runtime
of GeoAdEx with (orange) and without (blue)
Sitawarin and Wagner [2020] initialization.

Figure 5: Mean adversarial distance vs. total run-
times on GeoAdEx using S&W initialization with
four different hyperparameter scaling (correspond-
ing to the four curves). Each point on the curve
represents a unique choice of the time limit per sam-
ple in GeoAdEx (from 5 to 200 seconds).

Curves for Yang et al. [2020] are shorter than the others. For Australian and Diabetes, the lines
associated with Yang et al. [2020] are shorter than the rest because we cannot increase the total
runtime by adjusting the hyperparameter any further. This is a fundamental flaw of the heuristic used
by Yang et al. [2020] which only searches the cells that contain any generator from a wrong class. So
the total number of cells searched is upper bound by the number of generators from a wrong class
which is very limited compared to the total number of cells.

B.3 Ablation Study

B.3.1 Importance of S&W Initialization

We want to compare GeoAdEx with and without the S&W initialization. Figure 4 compares the total
runtime of GeoAdEx on all of the datasets with k = 3 and shows that the S&W initialization speeds
up the attack in all cases. While effects of the initialization are generally minor, we found two cases,
namely Covtype and Fourclass, where the initialization leads to a large improvement in the runtime.
Without the initialization, the runtime increases by 107% and 300% in these two datasets respectively.
We give our explanation for these two datasets below.

For Covtype, GeoAdEx’s runtimes are 561s with the initialization step and 1163s without. Without
an initial upper bound on ε, there is a small chance that GeoAdEx misses a nearby adversarial cell
and keeps running until the time limit is met. While only several test samples are affected, it ends
up raising the total runtime by a relatively large margin (100% from 500s) because the time limit is
set to 100s per sample. The initialization has the same kind of effect on Fourclass as on Covtype,
but it affects a much larger number of samples. The number of timeouts goes from 4 to 43 as the
initialization is removed, explaining the significant increase in the total runtime. One hypothesis is
that this phenomenon takes place because S&W attack is particularly effective on Fourclass (note
its competitive performance compared to the other attacks), and thus removing it as an initialization
results in an equally large degradation on the performance of GeoAdEx.

B.3.2 Effects of S&W Initialization’s Hyperparameters

To test the effect of the initialization’s hyperparameters on GeoAdEx, we ran a simple experiment on
the Diabetes dataset by varying the runtime of S&W initialization and the time limit of GeoAdEx.
The trade-off curves between total runtime and the adversarial distance are shown in Figure 5. Each
curve uses a different scaling factor of the S&W attack as described in our previous experiment to
vary its runtime. Each dot in the curve is generated by varying the time limit of GeoAdEx from 5 to
200 seconds. For a wide range of total runtimes, S&W initialization with a scaling factor between
2 and 3 (or anywhere between 4% and 35% of the total runtime) seems like an optimal spot. This
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suggests that performance of GeoAdEx is fairly insensitive to the hyperparameters of the S&W
initialization. Based on this observation alone, one may aim to run the initialization for ∼10−20% of
the total runtime as the simplest baseline and avoid any additional overhead.

We simply choose S&W attack because it finds an adversarial example quickly (even though the
upper bound is relatively loose) with little impact on the total runtime. The choice is somewhat
arbitrary and can be replaced with the attacks by Yang et al. [2020] or Wang et al. [2019]. Deciding
how long to run S&W initialization is a good question from a practical standpoint. It also depends on
many factors including the dataset, the desired time limit, and hyperparameters of GeoAdEx. So it
should be considered on a case-by-case basis, perhaps by a hyperparameter optimization on a small
subset of the data. A cheaper strategy that works across all datasets is to terminate the initialization
attack (per-sample) when the adversarial distance starts to plateau (e.g, less than A% improvement in
the last B iterations).

C Class Closeness

Intuitively, the class closeness measures distance between one distribution to another that has a
different class and is closest to it. We only consider the closest class because when generating an
adversarial example, one only has to perturb the test point towards the nearest distribution with a
different class and the other classes are almost irrelevant. More formally, we can write the class
closeness as

class closeness :=
1

c

c∑
i=1

min
j∈{1,...,c}

KLD(Di||Dj)

where c is the number of classes, and Di is the distribution conditioned on class i.

We first experiment with the Gaussian dataset because its KL-divergence has a analytical form.
Specifically, the KL-divergence between two multivariate Gaussian distributions in Rd, D1 =
N (µ1,Σ1) and D2 = N (µ2,Σ2), is given by

KLD(D1||D2) =
1

2

[
log
|Σ2|
|Σ1|

− d+ tr(Σ−12 Σ1) + (µ2 − µ1)>Σ−12 (µ2 − µ1)

]
In particular, we use isotropic Gaussian distributions so the means and the covariance matrices can be
simplified even further.

µ1 =


α
0
...
0

 , µ2 =


−α
0
...
0

 ,Σ1 = Σ2 = Id

Note that we pick d = 20, and without loss of generality, we can simply assign different values
of α and −α to the first coordinate of µ1 and µ2 to vary the distance between the two means.
We pick α among {0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}. This specific case yields a very simple form of
KL-divergence:

KLD(D1||D2) = 2α2

For the second part, since the distributions of the other datasets are unknown, we use a non-parametric
method from Wang et al. [2009] to approximate the KL-divergence. This method only requires
samples from the distributions and is coincidentally based on k-NN. We pick k = 5 for this
approximation method which has nothing to do with the value of k in k-NN classifiers we experiment
with.

D Proofs

D.1 Theorem 1

Now we restate Theorem 1 and then the proof.
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Theorem 1. Let S = {x1, . . . , xk−1} ⊂ X be a set of k − 1 generators. Let xk, xl ∈ X be
two generators such that xk, xl /∈ S. If V (S ∪ {xk}) and V (S ∪ {xl}) are two neighboring
order-k Voronoi cells, then the order-1 Voronoi cell V ({xl}) is neighboring with at least one of the
V ({x1}), . . . , V ({xk−1}), V ({xk}).

Proof. Let V (x′|G) denote the order-1 Voronoi cell for x′ on the set of generators G. From property
OK1 in Section 3.2.1 of Okabe et al. [1992] we know that the order-k Voronoi cell V (S ∪ {xi}) can
be expressed as:

V (S ∪ {xi}) =

(
k−1⋂
l=1

V (xl|(X \ (S ∪ {xi})) ∪ {xl})

)
∩ V (xi|X \ S)

From the fact that V (S ∪ {xi}) is a order-k Voronoi cell, we know that V (S ∪ {xi}) is nonempty.
Let us assume for the sake of contradiction that V ({xi}) is not neighboring with any of the
V ({x1}), . . . , V ({xk−1}). Then we know that:

V ({xi}) = V (xi|X \ S)

This is because the removal of S from the set of generators of the Voronoi diagram did not affect
V ({xi}) since V ({xi}) is not neighboring with any of V ({x1}), . . . , V ({xk−1}). Additionally, the
removal of xi from the set of generators in the term V (xl|xl ∪ (X \ S ∪ {xi})) is not affecting the
corresponding cell, again, because V ({xi}) is not neighboring with V ({x1}), . . . , V ({xk−1}). This
implies that:

V (xl|(X \ (S ∪ {xi})) ∪ {xl}) = V (xl|(X \ S) ∪ {xl})

Using the above observations we can rewrite the first relation as:

V (S ∪ {xi}) =

(
k−1⋂
l=1

V (xl|(X \ S) ∪ {xl})

)
∩ V ({xi})

For the last part of the proof we will show that the above intersection is empty which contradicts the
fact that V (S ∪{xi}) is a nonempty Voronoi cell. Notice that the changes in the set of generators that
take place in the term V (xl|(X \ S) ∪ {xl}) for l = [1, k − 1] do not affect the Voronoi cell of xi.
This means that even after the changes in the set of generators, the cell of xi is a superset of V ({xi}),
or to put it differently, the polytope V (xl|(X \ S) ∪ {xl}) never enters the area of V ({xi}). As a
result, none of these terms intersects with V ({xi}). But this contradict the fact that V (S ∪ {xi}) is
nonempty.

D.2 Lemma 1: Correctness of GeoAdEx

Lemma 1 (Correctness of GeoAdEx). Provided no time limit, GeoAdEx terminates when it finds
the optimal adversarial examples or equivalently, one of the solutions of Eqn. (1).

Lemma 1 can be obtained directly from a similar theorem in Jordan et al. [2019]. We first restate this
theorem and the definition of polyhedral complex. Then, we provide a short proof.
Theorem 2 (Correctness of GeoCert). (Restate from Theorem C.2 in Jordan et al. [2019]) For a
fixed polyhedral complex P , a fixed input point x0 and a potential function φ that is ray-monotonic,
GeoCert returns a boundary facet with minimal potential Φ.

Definition 1 (Polyhedral Complex). (Restate from Definition 2 in Jordan et al. [2019]) A nonconvex
polytope, described as the union of elements of the set P = P1, ...,Pk forms a polyhedral complex
if, for every Pi,Pj ∈P with nonempty intersection, Pi ∩ Pj is a face of both Pi and Pj .

Proof. In order to apply Theorem 2 to GeoAdEx, we need to show two things: (i) the test point lies
in a polyhedral complex, and (ii) Euclidean distance is a ray-monotonic potential function. First, it
is trivial to see that the set of non-adversarial Voronoi cells connected to and including the cell the
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test input x falls into forms a polyhedral complex. Since Voronoi cells are polytopes and any pair of
them intersect at most at the shared facet, any set of Voronoi cells forms a polyhedral complex. This
(informally) proves part (i).

For part (ii), we refer the readers to Corollary C.3 of Jordan et al. [2019] which shows that Euclidean
distance is a ray-monotonic potential function. With these two conditions in mind, GeoAdEx behaves
in the same way as GeoCert algorithmically in their respective settings, and so Theorem 2 directly
applies to GeoAdEx as well.

D.3 Lemma 2: Lower Bound of the Optimal Adversarial Distance

Lemma 2 (Lower bound guarantee). If GeoAdEx terminates early, the distance from test point x
to the last deleted facet from PQ is a lower bound to the optimal adversarial distance ε∗.

Theorem 3. (Restate from Lemma C.1 in Jordan et al. [2019]) For any polyhedral complex P point
x0, and ray-monotonic potential φ, let Fi be the facet popped at the i-th iteration of GeoCert. Then
for all i < j,Φ(Fi) < Φ(Fj).

Proof. From Lemma 1, the first adversarial facet deleted from PQ is the nearest one to x, and if that
happens, GeoAdEx terminates. It is implied by Theorem 3 that the facets are always deleted from
PQ in an ascending order of their distance to x. Combining these two facts, we can conclude that the
distance of any facets deleted before the adversarial one is always smaller than ε∗.

E GeoAdEx Performance Optimization

We introduce a total of four performance optimizations to speed up the computation of GeoAdEx.
We have explained the first two in Section 3.5 and will describe all of them here in more details.

E.1 Pruning Distant Facets

This was described in the main text. So here, we only provide examples of where the pruning can
occur to remove unnecessary facet computation. First, before computing the distance between x and
a facet, as proposed in Section 3.3, we can first use ε to filter unnecessary computation. Specifically,
we can compute the orthogonal projection of x onto the bisector implied by the facet. If the distance
to the bisector, which is a lower bound on the distance to the facet, is larger than ε, then this facet can
be safely discarded.

Even if we proceed with the distance computation, we can still use ε to terminate the optimization in
Eqn. (2) early. Specifically, if the dual objective of Eqn. (2) surpasses ε2, we can terminate the solver
and discard this facet since, from strong duality, the dual objective is a lower bound of the primal
objective, i.e. the (squared) distance between x and this facet.

E.2 Rethinking the Initialization of ε

Recall that Line 1 of Algorithm 1 initializes ε to∞. Given the upgraded role of ε in the previous
paragraph, it is clear that a non-simplistic initialization would filter out more unnecessary computation
early on and, thus, scale the overall performance. A natural choice is to pick one of the baseline attacks
for this purpose. The closer this adversarial distance is to the optimal one, the more computation we
are likely to save by the first performance optimization, (I) Pruning Distant Facets.

However, there is a trade-off between the tightness of the estimates and its computation time. Using
an expensive attack to initialize ε can be a huge overhead that increases the total runtime rather than
reduces it. For our experiments, we run Sitawarin and Wagner [2020] to initialize ε since it yields a
reasonable and is significantly faster than Yang et al. [2020] and Wang et al. [2019].

E.3 Exploiting the Sparsity of Solutions

Solving a typical quadratic program has a complexity of O(poly(n, d, k)), but fortunately, this
problem can be solved very efficiently in its dual form. Wang et al. [2019] show that solving Eqn. (2)
via greedy coordinate ascent (GCA) is much faster than using a standard off-the-shelf solver as
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it is able to exploit the sparsity in the solution. More details about this speedup can be found in
Appendix F.

E.4 Setting a Time Limit

To ensure that GeoAdEx terminates in a reasonable time even when no adversarial facet has been
deleted from PQ, we set a time limit as a termination criterion. In this case, lower and upper bounds
of ε∗ are returned instead. Note that the approximate version of Yang et al. [2020] and Wang et al.
[2019] also terminates early by setting the maximum number of adversarial cells to search through
instead of a limit on the runtime.

F Distance Computation with Greedy Coordinate Ascent

We first restate the distance computation from Eqn. (2):

min
z

‖z − x‖22
s.t. Az ≤ b

Note that without loss of generality, the equality constraint 〈z, â〉 = b̂ can be subsumed by the
inequality. Now we provide the dual form of Eqn. (2):

max
λ

g(λ) := −1

2
λ>AA>λ+ λ>(Ax− b)

s.t. λ ≥ 0

In the case that the primal and the dual problems are feasible, we know that strong duality holds
because the objective is convex quadratic, and the constraints are affine [Boyd and Vandenberghe,
2004]. Thus, by setting the derivative of the Lagrangian to zero, we have that z∗ = x+A>λ∗.

According to the complementary slackness from the KKT conditions, we know that λ∗i 6= 0 if and
only if 〈ai, z∗〉 = bi, which geometrically corresponds to z∗ lying on the i-th bisector associated
with ai and bi. Intuitively, it is unlikely that z∗ lies on an intersection of many bisectors. Hence,
there should be very few indices i such that λ∗i 6= 0. This is the condition that makes solving the dual
problem with greedy coordinate ascent very fast [Wang et al., 2019].

Greedy coordinate ascent (or descent) optimizes the variable only one coordinate per iteration, and
there are multiple rules for choosing the coordinate at each iteration. Here, we follow Wang et al.
[2019] and simply pick the i-th coordinate of λ such that its projected gradient is the largest. We
describe greedy coordinate ascent in Algorithm 2. To avoid the full gradient computation at every
iteration, we keep track and update it given that λ only changes by one coordinate.

Algorithm 2: Greedy Coordinate Ascent
Data: Test point (x, y), Voronoi cell described by Az ≤ b
Result: Projection of x onto the Voronoi cell

1 Initialize λ← 0
2 for t ∈ {1, . . . , T} do
3 ∇g(λ)← −AA>λ+Ax− b
4 j ← arg maxi|(max{λ+∇g(λ), 0} − λ)i|

5 λj ← max

{
λj +

∇g(λ)j
‖aj‖22

, 0

}
6 end
7 return z = x+A>λ;

F.1 Details on Bisector Activeness Testing

We do a total of three checks to determine the feasibility: (i) check if the dual objective converges
fast. When unbounded, the dual objective diverges or keeps increasing with a constant rate or faster.
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Additionally, we test whether the KKT conditions hold at the end of the optimization. Namely, (ii)
check if the primal residual is zero, and (iii) check if the complementary slackness is satisfied. When
all three checks pass, we conclude that the bisector is active. Otherwise, it is considered inactive, and
there is no need to finish the distance computation or insert it to PQ.
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