Appendix

For a given set of atomic propositions $A P$, the syntax of LTL formulas over $A P$ is defined as:

$$
\varphi, \psi::=\top|a| \neg \varphi|\varphi \wedge \psi| \bigcirc \varphi \mid \varphi \mathcal{U} \psi
$$

where \top is the Boolean constant, $a \in A P, \neg$ and \wedge are the Boolean connectives and \bigcirc and \mathcal{U} are temporal operators. We refer to \bigcirc as the next operator and to \mathcal{U} as the until operator. Other Boolean connectives can be derived. Further, we can derive temporal modalities such as eventually $\diamond \varphi:=\top \mathcal{U} \varphi$ and globally $\square \varphi:=\neg \diamond \neg \varphi$. For a given set of atomic propositions $A P$, the semantics of an LTL formula over $A P$ is defined with respect to the set of infinity words over the alphabet $2^{A P}$ denoted by $\left(2^{A P}\right)^{\omega}$. The semantics of an LTL formula φ is defined as the language $\operatorname{Words}(\varphi)=\left\{\sigma \in\left(2^{A P}\right)^{\omega} \mid \sigma \models \varphi\right\}$ where \models is the smallest relation satisfying the following properties:

```
\(\sigma \models \top\)
\(\sigma \models a \quad\) iff \(a \in A_{0}\)
\(\sigma \models \neg \varphi \quad\) iff \(\sigma \nLeftarrow \varphi\)
\(\sigma \models \varphi \wedge \psi \quad\) iff \(\sigma \models \varphi\) and \(\sigma \models \psi\)
\(\sigma \models \bigcirc \varphi \quad\) iff \(\sigma[1 \ldots] \models \varphi\)
\(\sigma \models \varphi \mathcal{U} \psi \quad\) iff \(\exists j \geq 0 . \sigma[j \ldots] \vDash \psi\) and \(\forall 0 \leq i<j . \sigma[i \ldots] \models \varphi\)
```

where $\sigma=A_{0} A_{1} \ldots \in\left(2^{A P}\right)^{\omega}$ and $\sigma[i \ldots]=A_{i} A_{i+1} \ldots$ denotes the suffix of σ starting at i.

Listing 1: Specification of a prioritized arbiter in BoSy input format that is part of the 2020 SYNTCOMP benchmarks [26].
\{
"semantics": "mealy",
"inputs": [
"r_m",
" r_0"
],
"outputs": [
"g_m",
" g_0"
],
"assumptions": [
" (G (F (! (r_m))))"
],
"guarantees ": [
"(true)",
" (G ((! (g_m)) \| (! (g_0))))",
" (G ((r_0) -> (F (g_0))) " ,
" $\left(\mathrm{G}\left(\left(\mathrm{r} _\mathrm{m}\right) \rightarrow\right.\right.$ (X ($\left.\left.\left.\left.\left.!\left(\mathrm{g} _0\right)\right) \mathrm{U}\left(\mathrm{g} _\mathrm{m}\right)\right)\right)\right)\right)^{\prime \prime}$
]
\}

Figure 8: Distribution of maximal variable index, number of latches, and number of AND gates in the dataset.

d_{m}	$d_{f f}$	$n_{\text {loc }}$	$n_{\text {glob }}$	$n_{\text {dec }}$	$n_{\text {heads }}$	Beam Size 1	Beam Size 16
256	1024	4	4	8	4	$51.6(28.9)$	$81.3(39.8)$
128	512					$50.7(28.4)$	$76.6(40.6)$
128	512	2	2	4		$50.3(28.0)$	$76.6(42.7)$
256	256					$54.5(30.6)$	$81.5(43.8)$
256	512					$53.4(30.9)$	$78.6(44.5)$
512	512					$23.3(4.9)$	$57.4(26.5)$
		2	2	4		$52.8(30.9)$	$79.0(43.1)$
		2	2			$50.6(27.9)$	$77.1(40.5)$
		2	6			$49.9(25.4)$	$79.1(41.2)$
		3	3	6		$50.5(28.9)$	$76.8(40.0)$
		5	5	4		$53.8(30.4)$	$78.0(42.0)$
		6	2			$15.8(4.6)$	$45.9(18.4)$
					8	$55.2(27.3)$	$74.1(41.0)$
					16	$53.6(30.3)$	$78.0(45.0)$

Table 3: Hyper-parameter search for parameters embedding dimension d_{m}, feed-forward network dimension $d_{f f}$, number of local encoder layers $n_{l o c}$, number of global encoder layers $n_{g l o b}$, number of decoder layers $n_{d e c}$, and number of attention heads $n_{\text {heads }}$. Empty cells have the same value as the base model (first row). For each choice we report the accuracy on Testset for beam size 1 and beam size 16 with syntactic accuracy in parenthesis.
aag 2152514
2
4
6
8
8
10
1217
1443
17
0
0
19

0
161512
181513
20138
22159
242321
26257
2863
302820
323127
34335
3643
38367
403820
424135

Figure 9: The largest circuit that satisfies a specification on which the classical tool times out.

