Appendix

For a given set of atomic propositions AP, the syntax of LTL formulas over AP is defined as:

$$\varphi, \psi ::= \top |a| \neg \varphi | \varphi \land \psi | \bigcirc \varphi | \varphi \mathcal{U} \psi ,$$

where \top is the Boolean constant, $a \in AP$, \neg and \land are the Boolean connectives and \bigcirc and \mathcal{U} are temporal operators. We refer to \bigcirc as the *next* operator and to \mathcal{U} as the *until* operator. Other Boolean connectives can be derived. Further, we can derive temporal modalities such as *eventually* $\diamondsuit \varphi := \top \mathcal{U} \varphi$ and *globally* $\square \varphi := \neg \diamondsuit \neg \varphi$. For a given set of atomic propositions AP, the semantics of an LTL formula over AP is defined with respect to the set of infinity words over the alphabet 2^{AP} denoted by $(2^{AP})^{\omega}$. The semantics of an LTL formula φ is defined as the language $Words(\varphi) = \{\sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi\}$ where \models is the smallest relation satisfying the following properties:

$\sigma \models \top$	
$\sigma \models a$	$\text{iff } a \in A_0$
$\sigma \models \neg \varphi$	$\operatorname{iff} \sigma \not\models \varphi$
$\sigma\models\varphi\wedge\psi$	$\text{iff } \sigma \models \varphi \text{ and } \sigma \models \psi$
$\sigma\models\bigcirc\varphi$	$\operatorname{iff} \sigma[1 \ldots] \models \varphi$
$\sigma\models\varphi\mathcal{U}\psi$	iff $\exists j \ge 0$. $\sigma[j \dots] \models \psi$ and $\forall 0 \le i < j$. $\sigma[i \dots] \models \varphi$

where $\sigma = A_0 A_1 \dots \in (2^{AP})^{\omega}$ and $\sigma[i \dots] = A_i A_{i+1} \dots$ denotes the suffix of σ starting at *i*.

Listing 1: Specification of a prioritized arbiter in BoSy input format that is part of the 2020 SYNT-COMP benchmarks [26].

```
{
    "semantics": "mealy",
    "inputs": [
        "r_m",
        "r_0"
],
    "outputs": [
        "g_m",
        "g_0"
],
    "assumptions": [
        "(G (F (! (r_m)))))"
],
    "guarantees": [
        "(true)",
        "(G ((! (g_m)) || (! (g_0))))",
        "(G ((r_0) -> (F (g_0))))",
        "(G ((r_m) -> (X ((! (g_0)) U (g_m)))))"
]
}
```


Figure 8: Distribution of maximal variable index, number of latches, and number of AND gates in the dataset.

d_m	d_{ff}	n_{loc}	n_{glob}	n_{dec}	n_{heads}	Beam Size 1	Beam Size 16
256	1024	4	4	8	4	51.6 (28.9)	81.3 (39.8)
128	512					50.7 (28.4)	76.6 (40.6)
128	512	2	2	4		50.3 (28.0)	76.6 (42.7)
256	256					54.5 (30.6)	81.5 (43.8)
256	512					53.4 (30.9)	78.6 (44.5)
512	512					23.3 (4.9)	57.4 (26.5)
		2	2	4		52.8 (30.9)	79.0 (43.1)
		2	2			50.6 (27.9)	77.1 (40.5)
		2	6			49.9 (25.4)	79.1 (41.2)
		3	3	6		50.5 (28.9)	76.8 (40.0)
				4		53.8 (30.4)	78.0 (42.0)
		5	5	10		15.8 (4.6)	45.9 (18.4)
		6	2			46.2 (27.3)	74.1 (41.0)
					8	55.3 (31.5)	78.9 (45.0)
					16	53.6 (30.3)	78.0 (44.5)

Table 3: Hyper-parameter search for parameters embedding dimension d_m , feed-forward network dimension d_{ff} , number of local encoder layers n_{loc} , number of global encoder layers n_{glob} , number of decoder layers n_{dec} , and number of attention heads n_{heads} . Empty cells have the same value as the base model (first row). For each choice we report the accuracy on Testset for beam size 1 and beam size 16 with syntactic accuracy in parenthesis.

Figure 9: The largest circuit that satisfies a specification on which the classical tool times out.