
Supplementary Material: A Theoretical Analysis of
Fine-tuning with Linear Teachers

Gal Shachaf
Blavatnik School of Computer Science,

Tel Aviv University, Israel

Alon Brutzkus
Blavatnik School of Computer Science,

Tel Aviv University, Israel

Amir Globerson
Blavatnik School of Computer Science,

Tel Aviv University, Israel
and Google Research

1 Proofs for linear regression

This appendix includes proofs for Section 4. It starts by analyzing the solution achieved by applying
gradient descent on a linear regression problem with non-zero initialization, and shows its exact
population risk. Then, this risk is bounded from above by using concentration bounds to bound various
aspects of the difference between the true target covariance and the estimated target covariance.

Recall the assumptions:

Assumption 3.1 (Main Text). XXT is non-singular. i.e. the rows of X are linearly-independent.

Assumption 3.2 (Main Text). The pretraining optimization process learns the linear teacher perfectly,
e.g. for linear regression we assume that f (x,ΘS) = x>θS , for x ∼ D.

Assumption 3.3 (Main Text). The fine-tuning converges, i.e. limt→∞ L (Θ(t)) = 0.

1.1 Proof of Theorem 4.1

As mentioned in the main text, both parts of the theorem have been proven before [1, 2, 3]. The proof
is provided for completeness, and can be skipped.

Lemma 1.1. Assume Assumption 3.3, and that there exists some vector w ∈ Rd s.t. y = Xw (i.e.
the data is generated via a linear teacher), then the solution achieved by using GD with initialization
θ0 in order to minimize:

min
θ∈Rd

1
2‖Xθ − y‖22. (1)

is

θ? = P⊥θ0 + P‖w. (2)

Proof. First, observe that the gradient step for this problem is

θt+1 = θt + ηXT (y −XθT).

Hence, all of the steps are in the span of XT , and GD converges to a solution of the form:

θ? = θ0 + XTa

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

for some a ∈ Rn. The vector θ? must also achieve a loss of zero in Equation (1) (because we know
that w achieves a loss of zero, and GD minimizes this objective). Therefore:

Xθ? = y

X(θ0 + XTa) = y

XXTa = y −Xθ0

a
1
= (XXT)−1(y −Xθ0)

⇒ θ? = θ0 + XT (XXT)−1(y −Xθ0),

with (1) due to Assumption 3.1.

Replacing y with Xw, and by using the definitions of P‖ and P⊥ from Section 3, it follows that

θ0 + XT (XXT)−1(y −Xθ0) = θ0 + XT (XXT)−1(Xw −Xθ0)

=
(
I−XT (XXT)−1X

)
θ0 + XT (XXT)−1Xw

= P⊥θ0 + P‖w.

�

We can now prove the theorem.

Proof of Theorem 4.1 (Main Text). The proof for Eq.1 in the main text is straightforward by using
Lemma 1.1 with θ0 = θS and w = θT .

As for Eq.2 in the main text, by Lemma 1.1 it follows that

γ = P⊥θS + P‖θT .

Since P‖ + P⊥ = I it follows that

R(γ) = Ex∼D

[(
x>θT − f (x; Θ(t))

)2]
= Ex∼D

[(
x>
(
θT −P⊥θS −P‖θT

))2]
= Ex∼D

[(
x>P⊥ (θT − θS)

)2]
= Ex∼D

[
(θT − θS)

T
P⊥xx>P⊥ (θT − θS)

]
= (θT − θS)

T
P⊥Ex∼D

[
xx>

]
P⊥ (θT − θS) = (θT − θS)

T
PT
⊥ΣP⊥ (θT − θS)

=
∥∥Σ0.5P⊥ (θT − θS)

∥∥2
.

thus concluding the proof. �

1.2 Proof of Theorem 4.2: Upper bound of the population risk for linear regression

Recall the Davis-Kahan sin(Θ) theorem:
Theorem 1.2 ([4]). LetA = E0A0E

T
0 +E1A1E

T
1 andA+H = F0Λ0F

T
0 +F1Λ1F

T
1 be symmetric

matrices with [E0, E1] and [F0, F1] orthogonal. If the eigenvalues of A0 are contained in an interval
(a, b), and the eigenvalues of Λ1 are excluded from the interval (a− δ, b+ δ) for some δ > 0, then

‖FT1 E0‖ ≤
‖FT1 HE0‖

δ
(3)

for any unitarily invariant norm ‖ · ‖.

The following theorem is a concentration bound on the difference between the true and estimated
covariance matrices:

∥∥∥Σ− Σ̃
∥∥∥:

Theorem 1.3 (Theorem 9 from [5]). Let X,X1, . . . , Xn be i.i.d. weakly square integrable centered
random vectors in E with covariance operator Σ. If X is subgaussian and pregaussian, then there
exists a constant c > 0 such that, for all δ ≥ 1, with probability at least 1− e−δ,

‖Σ̃−Σ‖ ≤ c‖Σ‖max

{√
r(Σ)

n
,
r(Σ)

n
,

√
δ

n
,
δ

n

}
, g(λ, δ, n),

2

where

r(Σ) :=
(E‖x‖)2

‖Σ‖
≤ tr(Σ)

‖Σ‖
=

∑
i λi
λ1

.

The following lemma uses Theorem 1.2 to upper bound the dot product between the d− n bottom
eigenvectors of the estimated covariance and the top k eigenvectors of the target covariance:
Lemma 1.4. For all 1 ≤ k ≤ d such that λk > 0 it holds that:∥∥∥ṼT

>nV≤k

∥∥∥ ≤ ‖Σ̃−Σ‖
λk

Proof. In order to use Theorem 1.2 with δ = λk to bound ‖ṼT
>nV≤k‖, one must show that the

conditions of Theorem 1.2 are met. Let A = Σ, A + H = Σ̃, E0 = V≤k, A0 = Λ≤k, F1 = Ṽ>n,
and Λ1 = Λ̃>n. Notice that X is a rank-n matrix, and so is the estimated covariance Σ̃, hence
it bottom d − n eigenvalues are zero. Thus, all of the d − n eigenvalues of Λ1 equal zero. Also,
recall that the eigenvalues of Σ are in descending order. Thus, all of the eigenvalues of A0 are in
the interval (λk, λ1) and all of the eigenvalues of Λ1 (which equal 0) are excluded from the interval
(0, λ1 + λk). Hence the conditions of Theorem 1.2 are met and for δ = λk:

‖ṼT
>nV≤k‖ ≤

‖ṼT
>n(Σ̃−Σ)V≤k‖

λk
(1)

≤ ‖Ṽ>n‖‖Σ̃−Σ‖‖V≤k‖
λk

(2)
=
‖Σ̃−Σ‖

λk
,

with (1) due to Cauchy-Schwartz inequality, (2) due to Ṽ>n, V≤k being orthonormal matrices, which
concludes the proof. �

We can now prove the theorem.

Proof of Theorem 4.2 (Main Text). Let ŨΓ̃ṼT be the singular value decomposition of X such that
Ũ ∈ Rn×n, Ṽ ∈ Rd×d are unitary matrices and let ṽi be the i-th column of Ṽ.

First, notice that P‖ = X>(XX>)−1X can be also written as I− Ṽ>nṼT
>n:

X>(XX>)−1X = ṼΓ̃>ŨT (ŨΓ̃ṼT ṼΓ̃>ŨT)−1ŨΓ̃ṼT

(1)
= ṼΓ̃>ŨT (Ũ(Γ̃Γ̃>)ŨT)−1ŨΓ̃ṼT

= ṼΓ̃>ŨT (Ũ(Γ̃Γ̃>)ŨT)−1ŨΓ̃ṼT

(2)
= ṼΓ̃>ŨT Ũ(Γ̃Γ̃>)−1ŨT ŨΓ̃ṼT

(3)
= ṼΓ̃>(Γ̃Γ̃>)−1Γ̃ṼT = Ṽ · diag(11:n,0n+1:d) · ṼT

=

n∑
i=1

ṽi · ṽTi =

d∑
i=1

ṽi · ṽTi −
d∑

i=n+1

ṽi · ṽTi

(4)
= I−

d∑
i=n+1

ṽi · ṽTi = I− Ṽ>nṼT
>n.

Where (1),(3),(4) are due to Ũ, Ṽ being unitary, and (2) is due to Ũ(Γ̃Γ̃>)ŨT (Ũ(Γ̃Γ̃>)−1ŨT) = I.

From Eq.2 in the main text it follows that:

R(γ) =
∥∥Σ0.5P⊥ (θT − θS)

∥∥2

= (θT − θS)T Ṽ>nṼT
>nΣṼ>nṼT

>n(θT − θS)

= (θT − θS)T Ṽ>nṼT
>nVΛVT Ṽ>nṼT

>n(θT − θS),

3

Notice that P⊥Σ̃P⊥ = 0, as was shown in [2]:

P⊥Σ̃ = P⊥ṼΛ̃ṼT = P⊥

(
Ṽ≤nΛ̃≤nṼT

≤n + Ṽ>nΛ̃>nṼ>>n

)
= Ṽ>nṼT

>nṼ≤nΛ̃≤nṼT
≤n + Ṽ>nṼT

>nṼ>nΛ̃>nṼT
>n

(1)
= 0

where (1) is due to Ṽ>n, Ṽ≤n being orthogonal and λ̃j = 0,∀j > n.

Then:

R(γ) = (θS − θT)
>

P⊥ΣP⊥ (θS − θT)

= (θS − θT)
>

P⊥

(
Σ− Σ̃

)
P⊥ (θS − θT)

=

∥∥∥∥(Σ− Σ̃
)0.5

P⊥ (θS − θT)

∥∥∥∥2

≤
∥∥∥Σ− Σ̃

∥∥∥ ‖P⊥ (θS − θT)‖2 , (4)

where the last inequality is due to the Cauchy-Schwartz inequality.

The next step in the proof is to bound ‖P⊥ (θS − θT)‖2. We start by bounding ‖P⊥ (θS − θT)‖ by
decomposing (θT − θS) to its top-k span component and bottom-k span component. First notice
that since P⊥ = Ṽ>nṼT

>n, ‖P⊥ (θS − θT)‖ =
∥∥∥Ṽ>>n (θS − θT)

∥∥∥, we can write ∀k ∈ [d]:

‖P⊥ (θS − θT)‖ = ‖ṼT
>n(θT − θ0)‖

= ‖ṼT
>nVVT (θT − θ0)‖

= ‖ṼT
>nV≤kV

T
≤k(θT − θ0) + ṼT

>nV>kV
T
>k(θT − θ0)‖

≤ ‖ṼT
>nV≤k‖‖VT

≤k(θT − θ0)‖+ ‖ṼT
>nV>k‖‖VT

>k(θT − θ0)‖, (5)

Where the last inequality is due to Cauchy Schwartz for matrix-vector. The last step in the proof is to
bound ‖ṼT

>nV≤k‖ by using Lemma 1.4 ∀k ∈ [d] : λk > 0, and bound ‖ṼT
>nV>k‖ by 1 as follows:

‖ṼT
>nV>k‖ ≤ ‖Ṽ>n‖‖V>k‖ ≤ 1,

due to Ṽ>n and V>k being orthonormal matrices and because spectral norm is sub-multiplicative.

Plugging (5) into (4) gives the inequality:

R(γ) ≤

∥∥∥∥∥∥∥
∥∥∥Σ− Σ̃

∥∥∥3/2

λk
‖P≤k (θS − θT)‖+

∥∥∥Σ− Σ̃
∥∥∥1/2

‖P>k (θS − θT)‖

∥∥∥∥∥∥∥
2

.

Since 2a2 + 2b2 ≥ (a+ b)2, it follows that:

R(γ) ≤
2
∥∥∥Σ− Σ̃

∥∥∥3

λ2
k

‖P≤k (θS − θT)‖2 + 2
∥∥∥Σ− Σ̃

∥∥∥ ‖P>k (θS − θT)‖2 .

To conclude the proof we apply Theorem 1.3 from [5] to provide a high probability bound for∥∥∥Σ− Σ̃
∥∥∥, as was done in [2]. �

4

2 Proofs for deep linear networks

In this section we analyze the solution achieved by applying gradient flow optimization to fine-tuning
a deep linear regression task (i.e. a regression task using a deep linear network as the regression
model).

Our results show that the population risk of a fine-tuned deep linear model depends not only on the
source and target tasks and the target covariance, as was shown in the previous section, but also on
the depth of the model. We show that as the depth of the model goes to infinity, its population risk
depends on the difference between the directions of the source and target task (i.e. the difference
between their normalized vectors), instead on the difference between the un-normalized task vectors.

In Section 2.2 this is shown by analysing two settings where this effect is most pronounced: one
where we make an assumption on the target task (but not on the target covariance), and one where we
make an assumption on the target covariance (but not on the target task).

We conclude in Section 2.3 by showing that fine-tuning only some of the layers can lead to failure to
learn.

We begin by recalling some definitions. An L-layer linear fully-connected network is defined as

β(t) = W1(t) · · ·WL−1(t)WL(t),

where Wl ∈ Rdl×dl+1 for l ∈ [L− 1] (we use d1 = d) and WL ∈ RdL . Thus, the linear network is
equivalent to a linear function with weights β.

The weights of a deep linear network are called 0-balanced (or perfectly balanced) at time t if:

W>
j (t)Wj(t) = Wj+1(t)W>

j+1(t) for j ∈ [L− 1]. (6)

2.1 Proof of Theorem 5.2: The inductive bias of deep linear network fine-tuning

For this section, let ul, vl and sl denote the top left singular vector, top right singular vector and top
singular value of the weights Wl, respectively. Define t = 0 as the end of pretraining.

Before proving the theorem, we state several useful lemmas.
Lemma 2.1. Assume that at time t the weights W1(t), . . . ,WL(t) are 0-balanced. Then Wl(t) =
ul(t)sl(t)v

>
l (t),

vl(t) = ul+1(t), (7)

and:

sl(t) = ‖β(t)‖1/L for l ∈ [L]. (8)

Proof for Lemma 2.1. This proof is a similar to the proof of Theorem 1 in [6]. Focusing on j = L−1
balancedness implies that:

WL−1(t)>WL−1(t) = WL(t)WL(t)>.

Hence, W>
L−1(t)WL−1(t) is (at most) rank-1 and so is WL−1(t). By iterating j from L− 2 to 1, it

follows that Wl(t) is rank-1 for j ∈ [L].

Consider the SVD of the weights at time t. Since all weights are rank-1, they can be decomposed
such that

Wl(t) = ul(t)sl(t)vl(t)
>.

Plugging this into (6) it follows that

vj(t)s
2
j (t)v

>
j (t) = uj+1(t)s2

j+1(t)u>j+1(t) for j ∈ [L− 1],

Thus proving (7) and showing that the top singular values of all the layers in time t are equal to each
other.1

1maybe add in footnote that because the two matrices have the same SVD, their spectra are equal.

5

We now consider the norm of the end to end solution at time t, β(t):

‖β(t)‖ = ‖W1(t) · · ·WL(t)‖
= ‖u1(t)s1(t)v>1 s2(t) · · · sL(t)‖

= ‖u1(t)

L∏
i=1

sl(t)‖ =

L∏
i=1

sl(t)‖u1(t)‖ =

L∏
i=1

sl(t).

Since all of the top singular values at time t equal each other, and ‖u1‖ = 1 by construction, the
result follows. �

The following Lemma is also used in the analysis:
Lemma 2.2 (Theorem 1 from [6]). Suppose a deep linear network is optimized using GF, starting
from a 0-balanced initialization, i.e. initialization in which weights are 0-balanced. Then the weights
stay balanced throughout optimization.

We are now ready to prove the theorem.

Proof of Theorem 5.2. First consider the pretraining of the model under Assumption 3.2. Assume
that before the pretraining, the model weights are perfectly balanced. From Lemma 2.2 it follows that
after pretraining on the source task, i.e. at t = 0, the weights of the model are still balanced. From
Lemma 2.1, this means they are also rank-1. From Assumption 3.2:

XSβ(0) = yS ,

and since nS > d this implies:

β(0) = θS . (9)

Lemma 2.1 gives us that:

β(0) = W1(0) · · ·WL(0) = u1(0)

L∏
i=1

sl(0) = u1(0)sL1 (0),

Hence:

u1(0) =
θS
‖θS‖

,

and

s1(0) = ‖θS‖
1/L, (10)

Hence:

W1(0) = u1(0)s1(0)v>1 (0) =
θS
‖θS‖

‖θS‖
1/Lv>1 (0) =

θS
‖θS‖(L−1)/L

v>1 (0). (11)

We next analyze the fine-tuning dynamics. Lemma 2.2 ensures that if the pretrained model has
0-balanced weights, then the weights will remain 0-balanced during finetune. This implies that
Lemma 2.1 holds for all t ≥ 0.

Observe the gradient flow dynamics of the layers during fine-tuning:

Ẇl(t) = −WT
l−1(t) · · ·WT

1 (t)XTr(t)WT
L(t) · · ·WT

l+1(t) for l ∈ [L],

where r(t) ∈ Rn is the residual vector satisfying [r]i = x>i β(t)− yi.

From Lemma 2.1:

Ẇl(t) =− vl−1(t)sl−1(t)uTl−1(t)vl−2(t)sl−2(t)uTl−2(t) · · ·
v1(t)s1(t)uT1 (t)XTr(t)vL(t)sL−1(t)uTL(t) · · ·
vl+1(t)sl+1(t)uTl+1(t) for l ∈ [L].

6

Using (7) and (8) it follows that ∀t ≥ 0:

Ẇl(t) = −vl−1(t)

(
l−1∏
i=1

si(t)

)
u1(t)TXTr(t)

(
L∏

i=l+1

si(t)

)
uTl+1(t) for l ∈ [L]

= −vl−1(t)sl−1(t)uT1 (t)XTr(t)sL−l(t)uTl+1(t) for l ∈ [L].

For W1,

Ẇ1(t) = −XTr(t)sL−1(t)uT2 (t) = −XTr(t)sL−1(t)vT1 (t), (12)

Where the last equality is due to (7). Hence Ẇ1 is always a rank-1 matrix whose columns are in the
row space of X. This implies that the decomposition W1 into two orthogonal components W⊥

1 and
W
‖
1 so that W

‖
1 = P‖W1 and W⊥

1 = P⊥W1 yields that ∀t ≥ 0 it follows that

Ẇ⊥
1 (t) = 0,

Ẇ
‖
1(t) = Ẇ1(t) = XTr(t)sL−1(t)vT1 (t).

Hence, W⊥
1 (t) does not change for all t ≥ 0. Using (11) it follows:

W⊥
1 (t) = W⊥

1 (0) (13)

= P⊥

(
θS

‖θS‖
L−1
L

v>1 (0)

)

=
P⊥θS

‖θS‖
L−1
L

v>1 (0). (14)

The next lemma states that v1(t) does not change during optimization if ‖P⊥W1(0)‖F > 0.

Lemma 2.3. Suppose we run GF over a deep linear network starting from 0-balanced initialization.
Also assume that at initialization W1(0) is rank-1 and:

‖P⊥W1(0)‖F > 0,

Then for all t > 0:

v1(t) = v1(0).

Proof. Assume towards contradiction that there exists t > 0 s.t. v1(t) 6= v1(0).
From W1(t) being rank-1 (Lemma 2.1), it follows that

P⊥W1(t) = P⊥u1(t)s(t)v>1 (t) = (P⊥u1(t)s(t))v>1 (t),

And from the decomposition of W1(t) to W
‖
1(t) and W⊥

1 (t), (13) and W1(0) being rank-1 it
follows that:

P⊥W1(t) = W⊥
1 (t) = W⊥

1 (0) = P⊥u1(0)s1(0)v>1 (0),

Hence:

(P⊥u1(t)s(t))v>1 (t) = (P⊥u1(0)s1(0))v>1 (0).

From (12) we see that the orthogonal part of u1(t) does not change during fine-tune:

u̇1(t) = Ẇ1(t) · ∂W1(t)

∂u1(t)
= −XTr(t)sL−1(t)vT1 (t)v1(t)s(t) = −XTr(t)sL(t)

hence:

P⊥u̇1(t) = 0⇒ P⊥u1(t) = P⊥u1(0). (15)

Since v1(t) 6= v1(0), and because non-degenerate singular values always have unique left and right
singular vectors (up to a sign), W⊥

1 (t) = W⊥
1 (0) only if:

s(t) = s1(0) = 0,

by contradiction to the assumption that s1(0) = ‖P⊥W1(0)‖F > 0, or if v1(t) = −v1(0) and
P⊥u1(t) = −P⊥u1(0), which contradicts (15). �

7

In the case where ‖P⊥W1(0)‖F = 0, since P⊥W1(t) = P⊥W1(0), it follows that W1(t) =
P‖W1(t), which is similar to the case in [7], for which the solution is known to be P‖θT . Also,
from (14), this implies P⊥θS = 0, and the expression for the end-to-end solution in Eq.5 in the main
text holds.

The analysis continues for ‖P⊥W1(0)‖F > 0. By using Lemma 2.1 and Lemma 2.3 it follows that:

W⊥
1 (t)W2(t) · · ·WL(t)

(1)
= W⊥

1 (0)W2(t) · · ·WL(t)

(2)
=

P⊥θS

‖θS‖
L−1
L

v>1 (0)W2(t) · · ·WL(t)

(3)
=

P⊥θS

‖θS‖
L−1
L

v>1 (t)W2(t) · · ·WL(t)

=
P⊥θS

‖θS‖
L−1
L

v>1 (t)u2(t)‖β(t)‖
L−1
L

(4)
=

P⊥θS

‖θS‖
L−1
L

v>1 (t)v1(t)‖β(t)‖
L−1
L

=

(
‖β(t)‖
‖θS‖

)L−1
L

P⊥θS . (16)

With (1) due to (13), (2) due to (14), (3) due to Lemma 2.3 and (4) due to Lemma 2.1. From the
requirement of Assumption 3.3 that limt→∞Xβ(t) = y, it follows that:

lim
t→∞

XW1(t) · · ·WL(t) = y

⇒ lim
t→∞

XW
‖
1(t) ·W2(t) · · ·WL(t) = y

⇒ lim
t→∞

W
‖
1(t) ·W2(t) · · ·WL(t) = XT

(
XXT

)−1
y, (17)

Which is the only solution for this equation in the span of X, and due to Assumption 3.1.
Eq.5 in the main text follows from (16) and (17):

lim
t→∞

β(t) = lim
t→∞

W1(t) ·W2(t) · · ·WL(t)

= lim
t→∞

(
W
‖
1(t) + W⊥

1 (t)
)
·W2(t) · · ·WL(t)

= lim
t→∞

W⊥
1 (t) ·W2(t) · · ·WL(t) + W

‖
1(t) ·W2(t) · · ·WL(t)

=

(
‖ limt→∞ β(t)‖

‖θS‖

)L−1
L

P⊥θS + P‖θT . (18)

To prove Eq.6 from the main text, consider the norm of limt→∞ β(t).

‖ lim
t→∞

β(t)‖ =

√√√√(‖ limt→∞ β(t)‖
‖θS‖

) 2(L−1)
L

‖P⊥θS‖2 + ‖P‖θT ‖2

⇒‖ lim
t→∞

β(t)‖2 =

(
‖ limt→∞ β(t)‖

‖θS‖

) 2(L−1)
L

‖P⊥θS‖2 + ‖P‖θT ‖2

⇒‖ lim
t→∞

β(t)‖2 −
(
‖ limt→∞ β(t)‖

‖θS‖

) 2(L−1)
L

‖P⊥θS‖2 − ‖P‖θT ‖2 = 0.

8

At the limit L→∞ we get:

lim
l→∞

‖ lim
t→∞

β(t)‖2 −
(
‖ limt→∞ β(t)‖

‖θS‖

) 2(L−1)
L

‖P⊥θS‖2 − ‖P‖θT ‖2


=‖ lim
l→∞

lim
t→∞

β(t)‖2 −
(
‖ liml→∞ limt→∞ β(t)‖

‖θS‖

)2

‖P⊥θS‖2 − ‖P‖θT ‖2 = 0

⇒‖ liml→∞ limt→∞ β(t)‖2

‖θS‖2
(
‖θS‖2 − ‖P⊥θS‖2

)
= ‖P‖θT ‖2,

Thus:

‖ liml→∞ limt→∞ β(t)‖
‖θS‖

=
‖P‖θT ‖√

‖θS‖2 − ‖P⊥θS‖2
=
‖P‖θT ‖
‖P‖θS‖

.

And it follows that at this limit:

lim
L→∞

lim
t→∞

β(t) =
‖P‖θT ‖
‖P‖θS‖

P⊥θS + P‖θT . (19)

�

From the same lines of proof as in Section 1.1 it follows that
Corollary 2.4. For the conditions in Theorem 5.2 in the main text,

R(lim
L→∞

lim
t→∞

β(t)) =

∥∥∥∥Σ0.5

(
P⊥(θT −

‖P‖θT ‖
‖P‖θS‖

θS)

)∥∥∥∥2

.

2.2 Proofs of Theorems 5.3 and 5.4: How does depth affect the population risk?

Corollary 2.4 above contains dependence on P‖ which is a random variable. We next provide
high-probability risk bounds that can be derived from this result. The bounds are obtained under
slightly different assumptions, either on the target task or on the target distribution, but both highlight
the fact that fine-tuning in the L→∞ case will depend on θ̂S − θ̂T rather than the un-normalized
θS − θT .

Recall the definition of the fine-tuning solution as L→∞:

β , lim
L→∞

lim
t→∞

β(t).

In the first setting we will assume that θT is a scaled version of θS , without any assumptions on D.
Theorem 5.3 from the main text demonstrates a gap between perfect fine-tuning for the L→∞ case
and non-zero fine-tuning error for L = 1.

Proof of Theorem 5.3 (Main Text). First notice:

‖P‖θT ‖
‖P‖θS‖

=
‖P‖αθS‖
‖P‖θS‖

= α
‖P‖θS‖
‖P‖θS‖

= α, (20)

which from Eq.6 in the main text gives the solution

β = αP⊥θS + P‖θT = P⊥θT + P‖θT = θT .

On the other hand, for the L = 1 solution γ it follows from Eq.2 in the main text that∥∥Σ0.5P⊥ (θT − θS)
∥∥2

=

∥∥∥∥Σ0.5P⊥

(
θT −

θT
α

)∥∥∥∥2

=

(
α− 1

α

)2 ∥∥Σ0.5P⊥θT
∥∥2
,

which is greater than zero for all α 6= 1. �

9

In the second setting we assume that D = N (0, 1)d, without any assumptions on θT . Here it shows
that while the population risk of the L = 1 solution depends on ‖θT − θS‖, the population risk
of the infinitely-deep linear solution depends on the normalized

∥∥∥θ̂T − θ̂S∥∥∥ and ‖θT ‖, i.e. on the
alignment of θT and θS and the norm of θT .

Theorem 5.4 (Main Text). Assume that the conditions of Theorem 5.2 hold, and let X ∼ N (0, 1)d.
Suppose n ≤ d, then there exists a constant c > 0 such that for an ε > 0 it holds that with probability
at least 1− 4 exp(−cε2n)− 4 exp

(
−cε2(d− n)

)
the population risk for the L→∞ end-to-end β

is bounded:

R(β) ≤ d− n
d

(1 + ε)2 ‖θT ‖2
∥∥∥θ̂T − θ̂S∥∥∥2

+
d− n
d

ζ(‖θT ‖)2, (21)

for ζ(‖θT ‖) ≈ ε ‖θT ‖. For the L = 1 linear regression solution γ this risk is bounded by

R(γ) ≤ d− n
d

(1 + ε)2 ‖θT − θS‖2 .

Proof of Theorem 5.5 (Main Text). We start by analyzing R(β):

R(β) =

∥∥∥∥∥Σ0.5P⊥

(
θT −

∥∥P‖θT∥∥∥∥P‖θS∥∥θS
)∥∥∥∥∥

2

(1)
=

∥∥∥∥∥I0.5P⊥

(
θT −

∥∥P‖θT∥∥∥∥P‖θS∥∥θS
)∥∥∥∥∥

2

=

∥∥∥∥∥P⊥
(
θT −

‖P⊥θT ‖∥∥P‖θS∥∥ θS
)∥∥∥∥∥

2

,

where (1) is due to Σ = I from the definition of the distribution of X. We then bound the RHS with:∥∥∥∥∥P⊥
(
θT −

∥∥P‖θT∥∥∥∥P‖θS∥∥θS
)∥∥∥∥∥

2

≤

∥∥∥∥∥P⊥
(
θT −

∥∥P‖θT∥∥∥∥P‖θS∥∥θS
)
−P⊥

(
‖θT ‖ (θ̂T − θ̂S)

)
+ P⊥

(
‖θT ‖ (θ̂T − θ̂S)

)∥∥∥∥∥
2

≤

∥∥∥∥∥P⊥
(
θT −

∥∥P‖θT∥∥∥∥P‖θS∥∥θS
)
−P⊥

(
‖θT ‖ (θ̂T − θ̂S)

)∥∥∥∥∥
2

+
∥∥∥P⊥ (‖θT ‖ (θ̂T − θ̂S)

)∥∥∥2

.

We see that we can bound the expression on the left:∥∥∥∥∥P⊥
(
θT −

∥∥P‖θT∥∥∥∥P‖θS∥∥θS
)
−P⊥

(
‖θT ‖ (θ̂T − θ̂S)

)∥∥∥∥∥
2

=

∥∥∥∥∥P⊥
(
θT −

∥∥P‖θT∥∥∥∥P‖θS∥∥θS − θT + ‖θT ‖ θ̂S

)∥∥∥∥∥
2

=

∥∥∥∥∥P⊥
(
‖θT ‖
‖θS‖

θS −
∥∥P‖θT∥∥∥∥P‖θS∥∥θS

)∥∥∥∥∥
2

≤

∥∥∥∥∥P⊥θS
(
‖θT ‖
‖θS‖

−
∥∥P‖θT∥∥∥∥P‖θS∥∥

)∥∥∥∥∥
2

≤ ‖P⊥θS‖2
∥∥∥∥∥‖θT ‖‖θS‖

−
∥∥P‖θT∥∥∥∥P‖θS∥∥

∥∥∥∥∥
2

10

Let P‖ be the projection matrix onto the row space of X, then from [8], P‖ is a projection onto
a random n-dimensional subspace uniformly distributed in the Grassmannian Gd,n, and P⊥ is a
projection onto a random d− n-dimensional subspace uniformly distributed in the Grassmannian
Gd,d−n.

According to Lemma 5.3.2 in [9], with probability at least 1− 4 exp(−cε2n)

1− ε
1 + ε

‖θT ‖
‖θS‖

≤
‖P‖θT ‖
‖P‖θS‖

≤ 1 + ε

1− ε
‖θT ‖
‖θS‖

,

which bounds: ∥∥∥∥∥‖θT ‖‖θS‖
−
∥∥P‖θT∥∥∥∥P‖θS∥∥

∥∥∥∥∥
2

≤
∥∥∥∥‖θT ‖‖θS‖

− 1 + ε

1− ε
‖θT ‖
‖θS‖

∥∥∥∥2

=

(
‖θT ‖
‖θS‖

)2
4ε2

(1− ε)2
.

Again, by applying Lemma 5.3.2 from [9], with probability at least 1 − 4 exp
(
−cε2(d− n)

)
−

2 exp
(
−cε2(d− n)

)
:

‖P⊥θS‖2 ≤ (1 + ε)2 d− n
d
‖θS‖2 ,∥∥∥P⊥ ‖θT ‖(θ̂T − θ̂S)∥∥∥2

≤ (1 + ε)2 d− n
d

∥∥∥‖θT ‖(θ̂T − θ̂S)∥∥∥2

.

Thus the following bound is obtained:

R(β) ≤

∥∥∥∥∥P⊥
(
θT −

∥∥P‖θT∥∥∥∥P‖θS∥∥θS
)
−P⊥

(
‖θT ‖ (θ̂T − θ̂S)

)∥∥∥∥∥
2

+
∥∥∥P⊥ (‖θT ‖ (θ̂T − θ̂S)

)∥∥∥2

≤ (1 + ε)2 d− n
d

∥∥∥‖θT ‖ (θ̂T − θ̂S)
∥∥∥2

+
4ε2(1 + ε)2

(1− ε)2

d− n
d
‖θS‖2

‖θT ‖2

‖θS‖2

= (1 + ε)2 d− n
d

∥∥∥‖θT ‖ (θ̂T − θ̂S)
∥∥∥2

+
4ε2(1 + ε)2

(1− ε)2

d− n
d
‖θT ‖2 .

Define ζ(‖θT ‖) = 2ε(1+ε)
(1−ε) ‖θT ‖, which concludes the proof for the infinite depth case.

Now for the upper bound of the population risk of the L = 1 solution γ. Look at Eq.2, and from P⊥
being a random projection, it follows that with probability at least 1− 2 exp

(
−cε2(d− n)

)
:

R(γ) ≤
∥∥Σ0.5P⊥ (θT − θS)

∥∥2

= ‖IP⊥ (θT − θS)‖2

≤ (1 + ε)2 d− n
d
‖θT − θS‖2 .

�

2.3 Proof of Theorem 5.5: The effect of fixing layers during fine-tuning

Proof. Since we assume that the weights before pretraining are 0-balanced, it follows from Lemma 2.1
and Lemma 2.2 that all layers W1(t), . . .Wk(t) are rank-1. From Assumption 3.2 it follows that at
the end of pretraining β(0) = θS , and from (11) it follows that u1(0) = θ̂S .

Consider the setting where the first k layers are fixed. It follows that

Wi(t) = Wi(0) ∀t ≥ 0, 0 ≤ i ≤ k.

11

Then from Lemma 2.1 it follows that for t ≥ 0 and for any x ∈ Rd:

x>W1(t) · · ·Wk(t) = x>W1(0) · · ·Wk(0) = x>u1(0)

k∏
i=1

siv
>
k (0)

= x> ‖θS‖
k/L
u1(0) ‖θS‖

k/L
v>k (0)

= x>θS ‖θS‖
k−L/L

v>k (0) = ‖θS‖
k−L/L 〈x,θS〉v>k (0).

Let’s define

b(t) ,Wk+1(t) · · ·WL(t),

then for any constant c1(t) , 〈vk, b(t)〉 it follows :

x>β(t) = x>W1(t) · · ·Wk(t) ·Wk+1(t) · · ·WL(t)

= ‖θS‖
k−L/L 〈x,θS〉v>k (0)b(t)

= c1(t) ‖θS‖
k−L/L 〈x,θS〉.

By setting c(t) = c1(t) ‖θS‖
k−L/L we conclude the proof. �

12

3 Proofs for the shallow ReLU section

This section shows that fine-tuning from a shallow ReLU model pretrained on θS has sample
complexity depending on ‖θT − θS‖, compared to training from a random initialization which
depends on ‖θT ‖.
We would like to adapt the results from [10] to the case of fine-tuning in the NTK regime, where we
can take better advantage of the fact that the bound in Theorem 4.1 in [10] fundamentally depends on
‖ỹ‖, thus enabling us to bound the distance of each weight from t = 0 by using ỹ instead of y for
our case, where u(0) is known.

The proof scheme is as follows:

1. First we show that ‖H(t)−H∞‖ = O(1√
m

), thus ensuring we are indeed in the NTK
regime for m bounded from bellow as in Theorem 6.1 from the main text.

2. Then, we can use an adaption of Theorem 4.1 from [10] to bound the distance of each weight
‖wr(t)−wr(0)‖ ∀r ∈ [m].

3. Since W(0) is fixed, we can use the Rademacher bound in Theorem 5.1 from [10] with
W(0) instead of W(init) to obtain a bound that depends on ỹ>H∞ỹ instead of y>H∞y.

4. For ỹ = X(θT − θS), we can use Corollary 6.2 from [10] with β = (θT − θS) to obtain
the generalization error using the Rademacher bound above.

3.1 Staying in the NTK regime

Start with the first item: showing that ‖H(t)−H∞‖ = O(1√
m

). This is done by bounding the
distance each wr∀r ∈ [m] travels during both the pretraining and fine-tuning optimization, which
is achievable by using Theorem 4.1 from [11] ”as is” for the pretraining part, and adapting it to the
fine-tuning part.

Assumptions For brevity, we assume for the pretraining data that |xSi | ≤ 1, |ySi | ≤ 1 for all
i ∈ [nS]. Also assume the following for all results:

Assumption 3.1. We assume that W(init), i.e. the weights at t = init, were i.i.d. initialized
wr ∼ N (0, I), ar ∼ unif [{−1, 1}] for r ∈ [m].

Also assume for X,Xs:

Assumption 3.2. Define matrix H∞ ∈ Rn×n with

H∞ij = Ew∼N(0,I)

[
x>i xjI

{
w>xi ≥ 0,w>xj ≥ 0

}]
.

We assume λ0 , λmin (H∞) > 0, and λ0S , λmin (H∞S) > 0 for HS being the NTK gram matrix
of the pretraining data XS .

The assumption that λ0 > 0 is justified by combining Assumption 3.1 and Theorem 3.1 from [11].
The assumption that λ0S > 0, which is actually the assumption for Theorem 3.4, holds for most
real-data data-sets and w.h.p for most real-life distributions, as discussed in [11].

Assumption 3.3. We assume that m = Ω
(

n6
s

λ4
0s
κ2δ3

)
, κ = O

(
εδ√
nS

+ εδ√
n

)
and ηT = O

(
λ0

n2

)
,

ηS = O
(
λ0S

n2
S

)
.

We now restate a few results from [11] which are applied directly for the part of pretraining:

Theorem 3.4 (Theorem 3.1 from [11]). If for any i 6= j, xi ∦ xj , then λ0 > 0.

Theorem 3.5 (Theorem 3.3 from [11] for pretraining). Assume Assumption 3.1, Assumption 3.2
and Assumption 3.3 hold, then with probability at least 1− δ over the random initialization at time
t = init, we have:

1

2
‖ys − u(init)‖ = O (nS/δ) .

13

Lemma 3.6 (Lemma C.1 from [10]). Assume Assumption 3.1, Assumption 3.2 and Assumption 3.3
hold, then there exists C > 0 such that with probability at least 1− δ over the random initialization
at time t = init we have

‖wr(0)−wr(init)‖2 ≤
4
√
ns ‖ys − u(init)‖√

mλ0S

∀r ∈ [m].

Plugging Theorem 3.5 into Lemma 3.6 we get:
Corollary 3.7. Assume Assumption 3.1, Assumption 3.2 and Assumption 3.3 hold, then there exists
C > 0 s.t. with probability at least 1− 2δ over the random initialization at time t = init we have

‖wr(0)−wr(init)‖2 ≤
CnS√
mδλ0S

∀r ∈ [m].

Lemma 3.8 (Lemma 3.2 from [11]). If w1, . . . ,wm at t = init are i.i.d. generated fromN (0, I), then
with probability at least 1− δ, the following holds. For any set of weight vectors w1, . . . ,wm ∈ Rd
that satisfy for any r ∈ [m], ‖wr(init)−wr‖2 ≤

cδκλ0

n2 for some small positive constants c, then the
matrix H ∈ Rn×n defined by

Hij =
1

m
x>i xj

m∑
r=1

I
{
w>r xi ≥ 0,w>r xj ≥ 0

}
satisfies ‖H−H(init)‖2 <

λ0

4 and λmin (H) > λ0

2 .

We state the following lemmas that is used in the analysis:
Lemma 3.9 (Similar to Lemma C.2 from [10]). Assume Assumption 3.1 holds. For some R > 0 we
define:

Ar,i ,
{
|x>i wr(init)| ≤ R

}
, (22)

then with probability at least 1− δ on the initialization of W(init) we get:

E[I{Ar,i}] ≤
2R√
2πκ

,

and:
n∑
i=1

m∑
r=1

I{Ar,i} = O

(
mnR

κδ

)
.

where the expectation is with respect to W(init).

Proof. Since wr(init) has the same distribution as N (0, κ2) we have

E[I{Ar,i}] ≤ E[I
{
|x>i wr(init)| ≤ R

}
]

= Pr
z∼N (0,κ2)

[|z| ≤ R] =

∫ R

−R

1√
2πκ

e−x
2/2κ2

dx

≤ 2R√
2πκ

.

Then we know E [
∑n
i=1

∑m
r=1 I{Ar,i}] ≤ 2mnR√

2πκ
. Due to Markov, with probability at least 1− δ we

have:
n∑
i=1

m∑
r=1

I{Ar,i} = O

(
mnR

κδ

)
.

�

We now state our equivalent for Theorem 4.1 from [11] :

14

Theorem 3.10 (Adaption of Theorem 4.1 from [11]). Suppose Assumption 3.1 and Assumption 3.2
hold and for all i ∈ [n], ‖xi‖2 = 1 and |yi| ≤ C for some constant C. if we set the number of hidden
nodes

m = Ω

(
n5 ‖ỹ‖2
λ4

0δ
2

+
n6
s

λ4
0s
κ2δ3

)
,

and we set the step sizes ηT = O
(
λ0

n2

)
, ηS = O

(
λ0S

n2
S

)
then with probability at least 1− 2δ over the

random initialization we have for t = 0, 1, 2, . . .

‖y − u(t)‖22 ≤
(

1− ηλ0

2

)t
‖ỹ‖22 ; (23)

‖wr(t)−wr(0)‖ ≤ 4
√
n ‖ỹ‖√
mλ0

, ∀r ∈ [m].

Proof of Theorem 3.10. We follow the exact proof as in [11], with the exception of using Lemma 3.9
instead of Lemma 4.1, and Lemma 3.8 instead of Lemma 3.2.

The lower bound for m is derived from the requirement on the constant R that bounds the distance of
wr(t) from the random initialization at t = init. Notice that:

‖wr(t)−wr(init)‖ ≤ ‖wr(0)−wr(init)‖+ ‖wr(t)−wr(0)‖ , ∀r ∈ [m],

where the bound for the left expression on the R.H.S is given by with probability 1−δ by Corollary 3.7.

The bound for the right expression on the R.H.S is given as a corollary of (23):

‖wr(t)−wr(0)‖ ≤ η
t−1∑
s=0

∥∥∥∥∂L (X,Θ(s))

∂wr(s)

∥∥∥∥ ≤ η t∑
s=0

√
n ‖y − u(s)‖√

m

≤ η
t∑

s=0

√
n
(
1− nλ0

2

)s/2
√
m

‖y − u(s)‖

≤ η
∞∑
s=0

√
n
(
1− nλ0

2

)s/2
√
m

‖y − u(s)‖ =
4
√
n ‖ỹ‖√
mλ0

.

Hence we require R = CnS√
mδλ0S

+ 4
√
n‖ỹ‖√
mλ0

. From this requirement we derive the lower bound for

m. �

Using Corollary 3.7 and Theorem 3.10 we obtain a the following corollary:
Corollary 3.11. Assume Assumption 3.1, Assumption 3.2 and Assumption 3.3 hold, exists C > 0 s.t.
with probability at least 1− 2δ over the random initialization at time t = init we have

‖wr(t)−wr(init)‖2 ≤ ‖wr(0)−wr(init)‖2 + ‖wr(t)−wr(0)‖2

≤ CnS√
mδλ0S

+
4
√
n ‖ỹ‖√
mλ0

∀r ∈ [m].

Restate Lemma C.2 and Lemma C.3 from [10]:
Lemma 3.12 (Adaption of Lemma C.2 from [10]). Under the same setting as Theorem 3.10, with
probability at least 1− 8δ over the random initialization, for all t ≥ 0 we have:

‖H(0)−H(init)‖F = O

(
n2nS√

mδ3/2λ0Sκ

)
,

‖H(t)−H(init)‖F = O

(
n2nS√

mδ3/2λ0Sκ
+

n5/2 ‖ỹ‖√
mλ0κδ

)
,

‖Z(t)− Z(0)‖F = O

(√
nnS√

mδ3/2κλ0S

+
n3/2 ‖ỹ‖√
mλ0κδ

)
,

for Z(t) , 1
m

∑n
i=1

∑m
r=1 I

{
w>r (t)xi > 0

}
.

15

Proof. For the first and seconds equality we use the exact proof of Lemma C.2 from [10], replacing
the value of R with CnS√

mδλ0S

and CnS√
mδλ0S

+ 4
√
n‖ỹ‖√
mλ0

respectively (by using Corollary 3.7 and

Corollary 3.11 to bound the norm of the distance of each weight from initialization). The third
equality also follows the same lines, with the difference being in:

E
[
‖Z(t)− Z(0)‖2F

]
≤ 1

m

n∑
i=1

m∑
r=1

E
[
I{Ar,i}+ I{‖wr(t)−wr(0)‖ > 4

√
n ‖ỹ‖√
mλ0

}
]

≤ 1

m
·mn · 2R√

2πκ
+
n

m
δ.

The last pass is justified due to the bound on ‖wr(t)−wr(0)‖ for all r ∈ [m] with probability 1− δ
from Theorem 3.10. The wanted result is obtained, again, by plugging the R.H.S of Corollary 3.11
instead of R. �

Lemma 3.13 (Lemma C.3 from [10]). with probability at least 1− δ, we have ‖H(init)−H∞‖ =

O

(
n
√

log n
δ√

m

)
.

Using the results above, the wanted results of this section follows:

Corollary 3.14. Under the same setting as Theorem 3.10, with probability at least 1− 9δ over the
random initialization we have have

‖H(t)−H∞‖ = O

(
n2nS√

mδ3/2λ0Sκ
+

n5/2 ‖ỹ‖√
mλ0κδ

)
,

‖H(0)−H∞‖ = O

(
n2nS√

mδ3/2λ0Sκ

)
.

Proof. This corollary is direct by bounding ‖H(t)−H∞‖ ≤ ‖H(init)−H∞‖+‖H(t)−H(init)‖
and using Lemma 3.13 and Lemma 3.12 to bound the R.H.S for the general t > 0 case and for
t = 0. �

3.2 Bound the distance from initialization

Write the eigen-decomposition

H∞ =

n∑
i=1

λiviv
>
i ,

where v1, . . . ,vn ∈ Rn are orthonormal eigenvectors of H∞ and λ1, . . . , λn are corresponding
eigenvalues. also define

Ii,r(t) , I
{
w>r (t)xi ≥ 0

}
.

Theorem 3.15 (Adaption of Theorem 4.1 from [10]). Assume Assumption 3.2, and suppose m =

Ω
(
n5‖ỹ‖42
ε2κ2δ2λ4

0
+

n4n2
s‖ỹ‖

2
2

ε2λ2
0s
λ2
0κ

2δ3

)
. Then with probability at least 1 − δ over the random initialization

before pretraining (t = init), for all t = 0, 1, 2, . . . we have:

‖y − u(t)‖2 =

√√√√ n∑
i=1

(1− ηλi)2t
(
v>i ỹ

)2 ± ε. (24)

We first note the important difference between this result and the original theorem is in the treatment
of u(0), the predictions of the model at t = 0. While the original theorem shows that these predictions
could be treated as negligible noise (for large enough m), we instead use them as part of the bound to
the convergence of the training loss.

16

Proof. The core of our proof is to show that when m is sufficiently large, the sequence {u(t)}∞t=0

stays close to another sequence {ũ(t)}∞t=0 which has a linear update rule:

ũ(0) = u(0),

ũ(t+ 1) = ũ(t)− ηH∞ (ũ(t)− y) . (25)

From (25) we have

ũ(t+ 1)− y = (I− ηH∞) (ũ(t)− y) ,

which implies

ũ(t)− y = (I− ηH∞)t (ũ(0)− y) = −(I− ηH∞)tỹ.

Note that (I− ηH∞)t has eigen-decomposition

(I− ηH∞)t =

n∑
i=1

(1− ηλi)tviv>i

and that ỹ can be decomposed as

ỹ =

n∑
i=1

(v>i ỹ)vi.

Then we have

ũ(t)− y = −
n∑
i=1

(1− ηλi)t(v>i ỹ)vi,

which implies

‖ũ(t)− y‖22 =

n∑
i=1

(1− ηλi)2t(v>i ỹ)2. (26)

To prove that the two sequences stay close, we follow the exact proof of Theorem 4.1 in Appendix C
of [10]. We start by observing the difference between the predictions at two successive steps:

ui(t+ 1)− ui(t) =
1√
m

m∑
r=1

ar
[
σ
(
wr(t+ 1)>xi

)
− σ

(
wr(t)

>xi
)]
. (27)

For each i ∈ [n], divide the m neurons into two parts: the neurons that can change their activation
pattern of data-point xi during optimization and those which can’t. Since |xi| ≤ 1, a neuron cannot
change its activation pattern with respect to xi if |x>i wr(init)| > R and |wr(t)−wr(init)| ≤ R for
the value of R in Corollary 3.11. Define the indices of the neurons in this group (i.e. cannot change
their activation pattern...) as as S̄i, and the indices of the complementary group as Si.

From Lemma 3.9 we know that with probability 1− δ, for R =
(

nS√
mδλ0S

+
√
n‖ỹ‖√
mλ0

)
|S̄i| ≤ O

(
mn

κδ

(
nS√
mδλ0S

+

√
n ‖ỹ‖√
mλ0

))
. (28)

Following the same steps as in [10] and notice that (27) can be treated as:

u(t+ 1)− u(t) = −ηH(t) (u(t)− y) + ε(t), (29)

where:

εi(t) ,
1√
m

∑
r∈S̄i

[
σ
(
wr(t+ 1)>xi

)
− σ

(
wr(t)

>xi
)]

+
η

m

n∑
j=1

(uj(t)− yj)x>j xi
∑
r∈S̄i

Ir,i(t)Ir,j(t).

17

Next use (28) to bound ‖ε(t)‖:

‖ε(t)‖2 ≤ ‖ε(t)‖1 ≤
n∑
i=1

2η
√
n|S̄i|
m

‖u(t)− y‖2

= O

(√
mn3/2

κδ3/2

(√
δ ‖ỹ‖2
λ0

+
ns√
nλ0s

))
2η
√
n

m
‖u(t)− y‖2

= O

(
ηn2

√
mκδ3/2

(√
δ ‖ỹ‖2
λ0

+
ns√
nλ0s

))
‖u(t)− y‖2 .

Notice from Corollary 3.14 that H(t) stays close to H∞. Then it is possible to rewrite Equation (29)
as

u(t+ 1)− u(t) = −ηH∞ (u(k)− y) + ζ(t), (30)
where ζ(t) = −η (H∞ −H(t)) (u(k)− y) + ε(t). Using Corollary 3.14 it follows that

‖ζ(t)‖2 ≤ η ‖H
∞ −H(t)‖2 ‖u(t)− y‖2 + ‖ε(t)‖2

= O

(
ηn5/2 ‖ỹ‖2√
mκδλ0

+
ηn2ns√
mλ0sκδ

3/2

)
‖u(t)− y‖2

+O

(
ηn2

√
mκδ3/2

(√
δ ‖ỹ‖2
λ0

+
ns√
nλ0s

))
‖u(t)− y‖2

= O

(
ηn5/2 ‖ỹ‖2√
mκδλ0

+
ηn2ns√
mλ0sκδ

3/2

)
‖u(t)− y‖2 . (31)

Apply (30) recursively and get:

u(t)− y = − (I− ηH∞)
t
ỹ +

t−1∑
s=0

(I− ηH∞)
t
ζ(t− 1− s). (32)

For the left term in (32) we’ve shown in (26) that:

∥∥−(I− ηH∞)t(ỹ)
∥∥

2
=

√√√√ n∑
i=1

(1− ηλi)2t(v>i ỹ)2.

The right term in (32) can be bounded using (31):∥∥∥∥∥
t−1∑
s=0

(I− ηH∞)sζ(t− 1− s)

∥∥∥∥∥
2

≤
t−1∑
s=0

‖I− ηH∞‖s2 ‖ζ(t− 1− s)‖2

≤
t−1∑
s=0

(1− ηλ0)sO

(
ηn5/2 ‖ỹ‖2√
mκδλ0

+
ηn2ns√
mλ0sκδ

3/2

)
‖u(t− 1− s)− y‖2

≤
t−1∑
s=0

(1− ηλ0)sO

(
ηn5/2 ‖ỹ‖2√
mκδλ0

+
ηn2ns√
mλ0sκδ

3/2

)(
1− ηλ0

4

)t−1−s

‖ỹ‖2

≤ t
(

1− ηλ0

4

)t−1

O

(
ηn5/2 ‖ỹ‖22√
mκδλ0

+
ηn2ns ‖ỹ‖2√
mλ0sκδ

3/2

)
.

Combining all of the above it follows:

‖u(t)− y‖2 =

√√√√ n∑
i=1

(1− ηλi)2t(v>i ỹ)2 ±O

(
t

(
1− ηλ0

4

)t−1
(
ηn5/2 ‖ỹ‖22√
mκδλ0

+
ηn2ns ‖ỹ‖2√
mλ0sκδ

3/2

))

=

√√√√ n∑
i=1

(1− ηλi)2t(v>i ỹ)2 ±O

(
n5/2 ‖ỹ‖22√
mκδλ2

0

+
n2ns ‖ỹ‖2√
mλ0sλ0κδ3/2

)
.

18

where we used max
t≥0

{
t(1− ηλ0/4)t−1

}
= O(1/(ηλ0)). From the choices of κ and m, the above

error term is at most ε. This completes the proof of Theorem 3.15. �

3.3 Deriving a population risk bound

Before proving Theorem 6.1 from the main text, we start by stating and proving some Lemmas:

Lemma 3.16. Suppose m ≥ κ−2 poly
(
‖ỹ‖2 , n, ns, λ

−1
0 , λ−1

0s
, δ−1

)
and η = O

(
λ0

n2

)
. Then with

probability at least 1− δ over the random initialization at t = init, we have for all t ≥ 0:

• ‖wr(t)−wr(0)‖2 = O
(√

n‖ỹ‖2√
mλ0

)
(∀r ∈ [m]), and

• ‖W(t)−W(0)‖F ≤
√

ỹ> (H∞)
−1

ỹ +
poly

(
‖ỹ‖2,n,ns,

1
λ0
, 1
λ0s

, 1δ

)
m1/4κ1/2 .

Proof. The bound on the movement of each wr is proven in Theorem 3.10. The second bound

is achieved by coupling the trajectory of {W(t)}∞k=0 with another simpler trajectory
{

W̃(t)
}∞
k=0

defined as:

W̃(0) = W(0),

vec
(
W̃(t+ 1)

)
= vec

(
W̃(t)

)
(33)

− ηZ(0)
(
Z(0)>vec

(
W̃(t)

)
− y

)
.

First we give a proof of
∥∥∥W̃(∞)− W̃(0)

∥∥∥
F

=
√

ỹ>H(0)−1ỹ as an illustration for the proof

of Lemma 3.16. Define v(t) = Z(0)>vec
(
W̃(t)

)
∈ Rn. Then from (33) we have v(0) =

Z(0)>vec (W(0)) and v(k+ 1) = v(t)− ηH(0)(v(t)−y), yielding v(t)−y = −(I− ηH(0))tỹ.
Plugging this back to (33) we get vec

(
W̃(t+ 1)

)
− vec

(
W̃(t)

)
= ηZ(0)(I − ηH(0))tỹ. Then

taking a sum over k = 0, 1, . . . we have

vec
(
W̃(∞)

)
− vec

(
W̃(0)

)
=

∞∑
k=0

ηZ(0)(I− ηH(0))kỹ

= Z(0)H(0)−1ỹ.

The desired result thus follows:∥∥∥W̃(∞)− W̃(0)
∥∥∥2

F
= ỹ>H(0)−1Z(0)>Z(0)H(0)−1ỹ

= ỹ>H(0)−1ỹ.

Now we bound the difference between the trajectories. Recall the update rule for W:

vec (W(t+ 1)) = vec (W(t))− ηZ(t)(u(t)− y). (34)

Follow the same steps from Lemma 5.3 from [10], using the results from Theorem 3.15 when needed
to obtain the proof for this lemma. According to the proof of Theorem 3.15 we can write

u(t)− y = −(I− ηH∞)tỹ + e(t), (35)

where

‖e(t)‖ = O

(
t

(
1− ηλ0

4

)t−1

·

(
ηn5/2 ‖ỹ‖22√
mκδλ0

+
ηn2ns ‖ỹ‖2√
mλ0sκδ

3/2

))
. (36)

19

Plugging (35) into (34) and taking a sum over t = 0, 1, . . . , T − 1, we get:

vec (W(T))− vec (W(0))

=

T−1∑
t=0

(vec (W(t+ 1))− vec (W(t)))

= −
T−1∑
t=0

ηZ(t)(u(t)− y)

=

T−1∑
t=0

ηZ(t)
(
(I− ηH∞)tỹ − e(t)

)
=

T−1∑
t=0

ηZ(t)(I− ηH∞)tỹ −
T−1∑
t=0

ηZ(t)e(t)

=

T−1∑
t=0

ηZ(0)(I− ηH∞)tỹ +

T−1∑
t=0

η(Z(t)− Z(0))(I− ηH∞)tỹ −
T−1∑
t=0

ηZ(t)e(t). (37)

The second and the third terms in (37) are considered perturbations, and we can upper bound their
norms easily. For the second term, from Lemma 3.8 we get:∥∥∥∥∥

T−1∑
t=0

η(Z(t)− Z(0))(I− ηH∞)ty

∥∥∥∥∥
2

≤
T−1∑
t=0

η ·O

(√
n3/2 ‖ỹ‖2√
mκδλ0

+
nns√

mκλ0sδ
3/2

)
‖I− ηH∞‖t2 ‖ỹ‖2

≤O

(
η

√
n3/2 ‖ỹ‖2√
mκδλ0

+
nns√

mκλ0sδ
3/2

)
T−1∑
t=0

(1− ηλ0)t ‖ỹ‖2

=O

√n3/2 ‖ỹ‖32√
mκδλ3

0

+
nns ‖ỹ‖22√
mκλ0sλ

2
0δ

3/2

 . (38)

For the third term we get:∥∥∥∥∥
T−1∑
t=0

ηZ(t)e(t)

∥∥∥∥∥
2

≤
T−1∑
t=0

η
√
n ·O

(
t

(
1− ηλ0

4

)t−1

·

(
ηn5/2 ‖ỹ‖22√
mκδλ0

+
ηn2ns ‖ỹ‖2√
mλ0sκδ

3/2

))

=O

((
η2n3 ‖ỹ‖22√
mκδλ0

+
η2n5/2ns ‖ỹ‖2√
mλ0sκδ

3/2

)
T−1∑
t=0

t

(
1− ηλ0

4

)t−1
)

=O

((
η2n3 ‖ỹ‖22√
mκδλ0

+
η2n5/2ns ‖ỹ‖2√
mλ0sκδ

3/2

)
· 1

ηλ0

)

=O

(
ηn3 ‖ỹ‖22√
mκδλ2

0

+
ηn5/2ns ‖ỹ‖2√
mλ0sλ0κδ3/2

)
. (39)

Define K = η
∑T−1
t=0 (I− ηH∞)t. using ‖H(0)−H∞‖F = O

(
n2ns√

mλ0sκδ
3/2

)
(Corollary 3.14) we

have

20

∥∥∥∥∥
T−1∑
t=0

ηZ(0)(I− ηH∞)tỹ

∥∥∥∥∥
2

2

(40)

= ‖Z(0)Kỹ‖22 (41)

= ỹ>KZ(0)>Z(0)Kỹ (42)

= ỹ>KH(0)Kỹ (43)

≤ ỹ>KH∞Kỹ + ‖H(0)−H∞‖2 ‖K‖
2
2 ‖ỹ‖

2
2 (44)

≤ ỹ>KH∞Kỹ +O

(
n2ns√

mλ0sκδ
3/2

)
·

(
η

T−1∑
t=0

(I− ηλ0)t

)2

‖ỹ‖22 (45)

= ỹ>KH∞Kỹ +O

(
n2ns ‖ỹ‖22√
mλ0sλ

2
0κδ

3/2

)
. (46)

Let the eigen-decomposition of H∞ be H∞ =
∑n
i=1 λiviv

>
i . Since K is a polynomial of H∞, it

has the same set of eigenvectors as H∞, and we have

K =

n∑
i=1

η

T−1∑
t=0

(1− ηλi)tviv>i =

n∑
i=1

1− (1− ηλi)T

λi
viv
>
i .

It follows that

KH∞K =

n∑
i=1

(
1− (1− ηλi)T

λi

)2

λiviv
>
i �

n∑
i=1

1

λi
viv
>
i = (H∞)

−1
.

Plugging this into (40), we get∥∥∥∥∥
T−1∑
t=0

ηZ(0)(I− ηH∞)tỹ2

∥∥∥∥∥ ≤
√√√√ỹ>(H∞)−1ỹ +O

(
n2ns ‖ỹ‖22√
mλ0sλ

2
0κδ

3/2

)
(47)

≤
√

ỹ>(H∞)−1ỹ +O

√ n2ns ‖ỹ‖22√
mλ0sλ

2
0κδ

3/2

 . (48)

Finally, plugging the three bounds (38), (39) and (47) into (37), we have

‖W(T)−W(0)‖F
= ‖vec (W(T))− vec (W(0))‖2

≤
√

ỹ>(H∞)−1ỹ +O

√ n2ns ‖ỹ‖22√
mλ0sλ

2
0κδ

3/2

+O

√n3/2 ‖ỹ‖32√
mκδλ3

0

+
nns ‖ỹ‖22√
mκλ0sλ

2
0δ

3/2


+O

(
ηn3 ‖ỹ‖22√
mκδλ2

0

+
ηn5/2ns ‖ỹ‖2√
mλ0sλ0κδ3/2

)

=
√

ỹ>(H∞)−1ỹ +
poly

(
‖ỹ‖2 , n, ns,

1
λ0
, 1
λ0s

, 1
δ

)
m1/4κ1/2

.

This finishes the proof of Lemma 3.16. �

Lemma 3.17. GivenR > 0, with probability at least 1−δ over the random initialization (W(init),a),
simultaneously for every B > 0, the following function class

FW(0),a
R,B = {fW : ‖wr −wr(0)‖2 ≤ R (∀r ∈ [m]),

‖W −W(0)‖F ≤ B}

21

has empirical Rademacher complexity bounded as:

RS
(
FW(0),a
R,B

)
=

1

n
Eε∈{±1}n

 sup
f∈FW(0),a

R,B

n∑
i=1

εif(xi)


≤ B√

n
+

2R(R+ Cns√
mδλ0S

)
√
m

κ
+R

√
2 log

2

δ
.

Proof. We need to upper bound

RS
(
FW(0),a
R,B

)
=

1

n
Eε∼{±1}n

 sup
f∈FW(0),a

R,B

n∑
i=1

εif(xi)



=
1

n
Eε∼{±1}n

 sup
W:‖W−W(0)‖2,∞≤R
‖W−W(0)‖F≤B

n∑
i=1

εi

m∑
r=1

1√
m
arσ(w>r xi)

 ,
where ‖W −W(0)‖2,∞ = max

r∈[m]
‖wr −wr(0)‖2.

Similar to the proof of Lemma 3.9, we define events:

Ãr,i ,
{∣∣wr(0)>xi

∣∣ ≤ R} , i ∈ [n], r ∈ [m].

Since we only look at W such that ‖wr −wr(0)‖2 ≤ R for all r ∈ [m], if I{Ãr,i} = 0 we must
have I{w>r xi > 0} = I{wr(0)xi ≥ 0} = Ir,i(0). Thus we have:

I
{
¬Ãr,i

}
σ
(
w>r xi

)
= I

{
¬Ãr,i

}
Ir,i(0)w>r xi,

It follows that:

n∑
i=1

εi

m∑
r=1

arσ
(
w>r xi

)
−

n∑
i=1

εi

m∑
r=1

arIr,i(0)w>r xi

=

m∑
r=1

n∑
i=1

(
I
{
Ãr,i

}
+ I
{
¬Ãr,i

})
εiar

(
σ
(
w>r xi

)
− Ir,i(0)w>r xi

)
=

m∑
r=1

n∑
i=1

I
{
Ãr,i

}
εiar

(
σ
(
w>r xi

)
− Ir,i(0)w>r xi

)
=

m∑
r=1

n∑
i=1

I
{
Ãr,i

}
εiar

(
σ
(
w>r xi

)
− Ir,i(0)wr(0)>xi − Ir,i(0)(wr −wr(0))>xi

)
=

m∑
r=1

n∑
i=1

I
{
Ãr,i

}
εiar

(
σ
(
w>r xi

)
− σ

(
wr(0)>xi

)
− Ir,i(0)(wr −wr(0))>xi

)
≤

m∑
r=1

n∑
i=1

I
{
Ãr,i

}
· 2R.

22

Thus we can bound the Rademacher complexity as:

RS
(
FW(0),a
R,B

)
=

1

n
Eε∼{±1}n

 sup
W:‖W−W(0)‖2,∞≤R
‖W−W(0)‖F≤B

n∑
i=1

εi

m∑
r=1

ar√
m
σ
(
w>r x

)
≤ 1

n
Eε∼{±1}n

 sup
W:‖W−W(0)‖2,∞≤R
‖W−W(0)‖F≤B

n∑
i=1

εi

m∑
r=1

ar√
m
Ir,i(0)w>r xi

+
2R

n
√
m

m∑
r=1

n∑
i=1

I
{
Ãr,i

}

≤ 1

n
Eε∼{±1}n

[
sup

W:‖W−W(0)‖F≤B

n∑
i=1

εi

m∑
r=1

ar√
m
Ir,i(0)w>r xi

]
+

2R

n
√
m

m∑
r=1

n∑
i=1

I
{
Ãr,i

}
=

1

n
Eε∼{±1}n

[
sup

W:‖W−W(0)‖F≤B
vec (W)

>
Z(0)ε

]
+

2R

n
√
m

m∑
r=1

n∑
i=1

I
{
Ãr,i

}
=

1

n
Eε∼{±1}n

[
sup

W:‖W−W(0)‖F≤B
vec (W −W(0))

>
Z(0)ε

]
+

2R

n
√
m

m∑
r=1

n∑
i=1

I
{
Ãr,i

}
≤ 1

n
Eε∼{±1}n [B · ‖Z(0)ε‖2] +

2R

n
√
m

m∑
r=1

n∑
i=1

I
{
Ãr,i

}
≤ B

n

√
Eε∼{±1}n

[
‖Z(0)ε‖22

]
+

2R

n
√
m

m∑
r=1

n∑
i=1

I
{
Ãr,i

}
=
B

n
‖Z(0)‖F +

2R

n
√
m

m∑
r=1

n∑
i=1

I
{
Ãr,i

}
.

Next we bound ‖Z(0)‖F and
∑m
r=1

∑n
i=1 I

{
Ãr,i

}
.

For ‖Z(0)‖F , notice that

‖Z(0)‖2F =
1

m

m∑
r=1

(
n∑
i=1

Ir,i(0)

)
≤ n.

Now observe the following lemma:

Lemma 3.18. With probability 1− δ, if
∣∣wr(init)>xi

∣∣ > R+ Cns√
mδλ0S

then I{Ãr,i} = 0.

Proof. From Corollary 3.7 exists C > 0 s.t. with probability 1 − δ, for all r ∈ [m] :
‖wr(0)−wr(init)‖ ≤ Cns√

mδλ0S

. From the triangle inequality:

∣∣wr(0)>xi
∣∣ ≥ ∥∥wr(0)>xi

∥∥
=
∥∥∥wr(init)>xi − (wr(init)−wr(0))

>
xi

∥∥∥
≥
∥∥wr(init)>xi

∥∥− ∥∥∥(wr(init)−wr(0))
>

xi

∥∥∥ .
Since ‖x‖ = 1, and with the same probability above:∥∥∥(wr(init)−wr(0))

>
xi

∥∥∥ ≤ Cns√
mδλ0S

,

23

thus ∣∣wr(0)>xi
∣∣ ≥ ∥∥wr(init)>xi

∥∥− ∥∥∥(wr(init)−wr(0))
>

xi

∥∥∥
≥
∥∥wr(init)>xi

∥∥− Cns√
mδλ0S

> R+
Cns√
mδλ0S

− Cns√
mδλ0S

= R.

�

For
∑m
r=1

∑n
i=1 I

{
Ãr,i

}
, from Lemma 3.18 we notice that

m∑
r=1

n∑
i=1

I
{
Ãr,i

}
≤

m∑
r=1

n∑
i=1

I {Ar,i} ,

for Ar,i being defined as in Lemma 3.9. Since all m neurons are independent at t = init and from

Lemma 3.9 and Corollary 3.7 we know E [
∑n
i=1 I {Ar,i}] ≤

√
2n(R+ Cns√

mδλ0S

)
√
πκ

. Then by Hoeffding’s
inequality, with probability at least 1− δ/2 we have

m∑
r=1

n∑
i=1

I
{
Ãr,i

}
≤

m∑
r=1

n∑
i=1

I {Ar,i} ≤ mn

√2(R+ Cns√
mδλ0S

)
√
πκ

+

√
log 2

δ

2m

 .

Therefore, with probability at least 1− δ, the Rademacher complexity is bounded as:

RS
(
FW(0),a
R,B

)
≤ B

n

(√
n
)

+
2R

n
√
m
mn

√2(R+ Cns√
mδλ0S

)
√
πκ

+

√
log 2

δ

2m


=

B√
n

+
2
√

2R(R+ Cns√
mδλ0S

)
√
m

√
πκ

+R

√
2 log

2

δ
,

completing the proof of Lemma 3.17. (Note that the high probability events used in the proof do not
depend on the value of B, so the above bound holds simultaneously for every B.) �

3.4 Proof of Theorem 6.1 (Main Text)

Proof of Theorem 6.1 (Main Text). First of all, from Assumption 3.1 we have λmin(H∞) ≥ λ0. The
rest of the proof is conditioned on this happening. We follow exactly the same steps as in [10] with
minor changes.

From Theorem 3.10, Lemma 3.16 and Lemma 3.17, we know that for any sample S, with probability
at least 1− δ/3 over the random initialization, the followings hold simultaneously:

(i) Optimization succeeds (Theorem 3.10):

1

2
‖ỹ − u(t)‖ ≤

(
1− ηλ0

2

)t
· ‖ỹ‖2 ≤

1

2
.

This implies an upper bound on the training error L(X; Θ(t)) = 1
n

∑n
i=1 `(fW(t)(xi), yi) =

1
n

∑n
i=1 `(ui(t), yi):

L(X; Θ(t)) =
1

n

n∑
i=1

[`(ui(t), yi)− `(yi, yi)] ≤
1

n

n∑
i=1

|ui(t)− yi|

≤ 1√
n
‖u(t)− y‖2 =

√
2 1

2 ‖ỹ − u(t)‖
n

≤ 1√
n
.

24

(ii) ‖wr(t)−wr(0)‖2 ≤ R (∀r ∈ [m]) and ‖W(t)−W(0)‖F ≤ B, where R = O
(√

n‖ỹ‖2√
mλ0

)
and B =

√
ỹ> (H∞)

−1
ỹ +

poly
(
‖ỹ‖2,n,ns,

1
λ0
, 1
λ0s

, 1δ

)
m1/4κ1/2 . Note that B ≤ O

(√
n
λ0

)
.

(iii) Let Bi = i (i = 1, 2, . . .). Simultaneously for all i, the function class FW(0),a
R,Bi

has Rademacher
complexity bounded as

RS
(
FW(0),a
R,Bi

)
≤ Bi√

n
+

2R(R+ Cns√
mδλ0S

)
√
m

κ
+R

√
2 log

10

δ
.

Let i∗ be the smallest integer such that B ≤ Bi∗ . Then we have i∗ ≤ O
(√

n
λ0

)
and Bi∗ ≤ B + 1.

From above we know fW(t) ∈ F
W(0),a
R,Bi∗

, and

RS
(
FW(0),a
R,Bi∗

)
≤ B + 1√

n
+

2R(R+ Cns√
mδλ0S

)
√
m

κ
+R

√
2 log

10

δ

=

√
ỹ> (H∞)

−1
ỹ

√
n

+
1√
n

+
poly

(
‖ỹ‖2 , n, ns,

1
λ0
, 1
λ0s

, 1
δ

)
m1/4κ1/2

+
2R(R+ Cns√

mδλ0S

)
√
m

κ
+R

√
2 log

10

δ

≤

√
ỹ> (H∞)

−1
ỹ

n
+

1√
n

+
poly

(
‖ỹ‖2 , n, ns,

1
λ0
, 1
λ0s

, 1
δ

)
m1/4κ1/2

≤

√
ỹ> (H∞)

−1
ỹ

n
+

2√
n
.

Next, from the theory of Rademacher complexity and a union bound over a finite set of different i’s,
for any random initialization (W(init),a), with probability at least 1− δ/3 over the sample S, we
have

sup
f∈FW(0),a

R,Bi

{R(f)− L(f)} ≤ 2RS
(
FW(0),a
R,Bi

)
+O

√ log n
λ0δ

n

 , ∀i ∈
{

1, 2, . . . , O

(√
n

λ0

)}
.

Finally, taking a union bound, we know that with probability at least 1− 2
3δ over the sample S and

the random initialization (W(init),a), the followings are all satisfied (for some i∗):

L(X,Θ(t)) ≤ 1√
n
,

f (·,Θ(t)) ∈ FW(0),a
R,Bi∗

,

RS
(
FW(0),a
R,Bi∗

)
≤

√
ỹ> (H∞)

−1
ỹ

n
+

2√
n
,

sup
f∈FW(0),a

R,Bi∗

{R(f)− L(f)} ≤ 2RS
(
FW(0),a
R,Bi∗

)
+O

√ log n
λ0δ

n

 .

These together can imply:

R(Θ(t)) ≤ 1√
n

+ 2RS
(
FW(0),a
R,Bi∗

)
+O

√ log n
λ0δ

n


≤ 1√

n
+ 2

√ ỹ> (H∞)
−1

ỹ

n
+

2√
n

+O

√ log n
λ0δ

n


= 2

√
ỹ> (H∞)

−1
ỹ

n
+O

√ log n
λ0δ

n

 .

This completes the proof. �

25

3.5 Linear teachers: Proof of corollary 6.3

We now consider the case where

gS(x) = x>θS , gT (x) = x>θT ,

which is the case in Corollary 6.3.

We will start with stating the random initialization population risk bound for this case, which we will
compare our result to:
Corollary 3.19 (Population risk bound for random initialization from [10]). Assume that the random
initialized model with weights Θ(t) was trained according to Theorem 5.1 from [10] and that
y = XθT , then with probability 1− δ

R(Θ(t)) ≤
3
√

2 ‖θT ‖2√
n

+O

√ log n
λ0δ

n

 . (49)

This corollary is a direct result of plugging y = XθT into Corollary 6.2 from [10], and plugging the
result into Theorem 5.1 from [10].

As discussed in Section 6.1, we will assume that f (X; Θ(0)) = XθS . Since our model is non-linear,
this assumption is not trivial, and requires some clarification. For infinite width, Lemma 1 from
[12] tells us that nS = 2d can suffice to achieve this, if the samples are chosen according to some
conditions. For the case of finite width m, like is assumed in Theorem 6.1, no such equivalent exist.
However, we can use Corollary 3.19 for the pretraining, and achieve an ε bound on the pretraining
population risk, for sufficiently large nS = Ω

(
‖θS‖2
ε2

)
. Then, approximate relaxations can be derived

when we assume the two functions are ε close (i.e. f (x,Θ(0)) = x>θS + ε).

We now restate our two corollaries from the main text:
Corollary 6.2 (Main Text). Suppose that gS(X) , X>θS , gT (X) , X>θT , and assume Assump-
tion 3.2 holds. Then,

√
ỹ>(H∞)−1ỹ ≤ 3 ‖θT − θS‖2 .

This is a direct corollary of Theorem 6.1 from [10] on ỹ defined above.
Corollary 6.3 (Main Text). Under the conditions of Theorem 6.1 and Corollary 6.2, it holds that

R(Θ(t)) ≤
6 ‖θT − θS‖2√

n
+O

√ log n
λ0δ

n

 .

Comparing this to Corollary 3.19 gives us the exact condition for when it is better to use fine-tuning
instead of random initialization, which is

‖θT − θS‖ <
‖θT ‖√

2
.

We will now provide a proof for this results:

Proof of Corollary 6.3. In order to achieve this bound, we use the assumption on f (X; Θ(0)), which
gives us:

ỹ = XθT −XθS = X(θT − θS).

Hence, we can treat ỹ as if it was created by a linear label generation function θT − θS . Hence, by
using Theorem 6.1 from [10] we can bound√

ỹ(H∞)−1ỹ ≤ 3 ‖θT − θS‖ .
Plugging this into Theorem 6.1 concludes the proof. �

Code In the code used for the experiments we used Pytorch [13], Numpy [14], SciPy [15], and
Matplotlib [16].

26

References
[1] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias

in terms of optimization geometry. In International Conference on Machine Learning, pages
1832–1841. PMLR, 2018.

[2] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in
linear regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070,
2020.

[3] Jingfeng Wu, Difan Zou, Vladimir Braverman, and Quanquan Gu. Direction matters: On
the implicit bias of stochastic gradient descent with moderate learning rate. In International
Conference on Learning Representations, 2021.

[4] Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturbation. iii.
SIAM Journal on Numerical Analysis, 7(1):1–46, 1970.

[5] Vladimir Koltchinskii and Karim Lounici. Concentration inequalities and moment bounds for
sample covariance operators. Bernoulli, 23(1):110–133, 2017.

[6] Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In International Conference on Machine Learning, pages
244–253. PMLR, 2018.

[7] Chulhee Yun, Shankar Krishnan, and Hossein Mobahi. A unifying view on implicit bias in
training linear neural networks. In International Conference on Learning Representations,
2020.

[8] jlewk (https://mathoverflow.net/users/141760/jlewk). Difference between identity and a random
projection. MathOverflow. URL:https://mathoverflow.net/q/393720 (version: 2021-05-25).

[9] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

[10] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pages 322–332. PMLR, 2019.

[11] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2018.

[12] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. How neural networks extrapolate: From feedforward to graph neural networks. arXiv
preprint arXiv:2009.11848, 2020.

[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[14] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Vir-
tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, September 2020.

27

[15] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

[16] John D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science Engineering,
9(3):90–95, 2007.

28

	Proofs for linear regression
	Proof of Theorem 4.1
	Proof of Theorem 4.2: Upper bound of the population risk for linear regression

	Proofs for deep linear networks
	Proof of Theorem 5.2: The inductive bias of deep linear network fine-tuning
	Proofs of Theorems 5.3 and 5.4: How does depth affect the population risk?
	Proof of Theorem 5.5: The effect of fixing layers during fine-tuning

	Proofs for the shallow ReLU section
	Staying in the NTK regime
	Bound the distance from initialization
	Deriving a population risk bound
	Proof of Theorem 6.1 (Main Text)
	Linear teachers: Proof of corollary 6.3

