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Abstract

Deep neural networks (DNNs) are well-known to be vulnerable to adversarial
attacks, where malicious human-imperceptible perturbations are included in the
input to the deep network to fool it into making a wrong classification. Recent
studies have demonstrated that neural Ordinary Differential Equations (ODEs) are
intrinsically more robust against adversarial attacks compared to vanilla DNNs.
In this work, we propose a stable neural ODE with Lyapunov-stable equilibrium
points for defending against adversarial attacks (SODEF). By ensuring that the
equilibrium points of the ODE solution used as part of SODEF is Lyapunov-stable,
the ODE solution for an input with a small perturbation converges to the same
solution as the unperturbed input. We provide theoretical results that give insights
into the stability of SODEF as well as the choice of regularizers to ensure its
stability. Our analysis suggests that our proposed regularizers force the extracted
feature points to be within a neighborhood of the Lyapunov-stable equilibrium
points of the ODE. SODEF is compatible with many defense methods and can be
applied to any neural network’s final regressor layer to enhance its stability against
adversarial attacks.

1 Introduction

Although deep learning has found successful applications in many tasks such as image classification
[1, 2], speech recognition [3], and natural language processing [4], the vulnerability of deep learning
to adversarial attacks (e.g., see [5]) has limited its real-world applications due to performance and
safety concerns in critical applications. Inputs corrupted with human-imperceptible perturbations can
easily fool many vanilla deep neural networks (DNNs) into mis-classifying them and thus significantly
impact their performance.

Recent studies [6–8] have applied neural Ordinary Differential Equations (ODEs) [9] to defend
against adversarial attacks. Some works like [6] have revealed interesting intrinsic properties of
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ODEs that make them more stable than conventional convolutional neural networks (CNNs). The
paper [6] proposes a time-invariant steady neural ODE (TisODE) using the property that the integral
curves from a ODE solution starting from different initial points (inputs) do not intersect and always
preserve uniqueness in the solution function space. However, this does not guarantee that small
perturbations of the initial point lead to small perturbations of the integral curve output at a later time
T . The authors thus proposed a regularizer to limit the evolution of the curves by forcing the integrand
to be close to zero. However, neither the non-intersecting property nor the steady-state constraint
used in TisODE can guarantee robustness against input perturbations since these constraints do not
ensure that the inputs are within a neighborhood of Lyapunov-stable equilibrium points. An example
is an ODE that serves as an identity mapping is not robust to input perturbations but satisfies all the
constraints proposed in [6].

In this paper, our objective is to design a neural ODE such that the features extracted are within a
neighborhood of the Lyapunov-stable equilibrium points of the ODE. We first develop a diversity
promoting technique applied in the final fully connected (FC) layer to improve the ODE’s stability
and analyze the reasons why. We then propose a stable neural ODE with Lyapunov-stable equilibrium
points to eliminate the effects of perturbations in the input. From linear control theory [10], a linear
time-invariant system dz(t)/ dt = Az(t), where A is a constant matrix, is exponentially stable if
all eigenvalues of A have negative real parts. Specifically, we propose to force the Jacobian matrix
of the ODE used in the neural ODE to have eigenvalues with negative real parts. Instead of directly
imposing constraints on the eigenvalues of the matrix, which lead to high computational complexity
when the Jacobian matrix is large, we instead add constraints to the matrix elements to implicitly
force the real parts of its eigenvalues to be negative.

Our main contributions are summarized as follows:

1. Based on the concept of Lyapunov-stable equilibrium points, we propose a simple yet
effective technique to improve the robustness of neural ODE networks by fixing the final FC
layer to be a matrix whose rows have unit norm and such that the maximum cosine similarity
between any two rows is minimized. Such a FC layer can be constructed off-line.

2. We propose a stable neural ODE for deFending against adversarial attacks (SODEF) to
suppress the input perturbations. We derive an optimization formulation for SODEF to force
the extracted feature points to be within a neighborhood of the Lyapunov-stable equilibrium
points of the SODEF ODE. We provide sufficient conditions for learning a robust feature
representation under SODEF.

3. We test SODEF on several widely used datasets MNIST [11], CIFAR-10 and CIFAR-100
[12] under well-known adversarial attacks. We demonstrate that SODEF is robust against
adversarial white-box attacks with improvement in classification accuracy of adversarial
examples under PGD attack [13] of up to 44.02%, 52.54% and 18.91% percentage points
compared to another current state-of-the-art neural ODE network TisODE [6] on MNIST,
CIFAR-10 and CIFAR-100, respectively. Similar improvements in classification accuracy of
adversarial examples of up to 43.69%, 52.38% and 18.99% percentage points compared to
ODE net [9] are also obtained.

The rest of this paper is organized as follows. We provide essential preliminaries on neural ODE
and its stability analysis in Section 2. In Section 3, we present SODEF model architecture and its
training method. We show how to maximize the distance between stable equilibrium points of neural
ODEs. We propose an optimization and present theoretical results on its stability properties. We
summarize experimental results in Section 4 and conclude the paper in Section 5. The proofs for
all lemmas and theorems proposed in this paper are given in the supplementary material. We also
refer interested readers to the supplementary material for a more detailed account of related works
[14–16, 6] and some popular adversarial attacks [17, 13] that are used to verify the robustness of our
proposed SODEF. In the paper, we use lowercase boldface characters like z to denote vectors in Rn,
capital boldface characters like A to denote matrices in Rn×n, and normal characters like z to denote
scalars except that the notation (x, y) are normal characters reserved to denote the input and label
pairs. A vector z ∈ Rn is represented as (z(1), z(2), . . . , z(n)). The (i, j)-th element of a matrix A is
Aij or [A]ij . The Jacobian matrix of a function f : Rn 7→ Rn evaluated at z is denoted as ∇f(z).
The set of functions Rn 7→ Rn with continuous first derivatives is denoted as C1(Rn,Rn).
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2 Preliminaries: Neural ODE and Stability

In a neural ODE layer, the relation between the layer input z(0) and output z(T ) is described as the
following differential equation:

dz(t)

dt
= fθ(z(t), t) (1)

where fθ : Rn × [0,∞) 7→ Rn denotes the non-linear trainable layers that are parameterized by
weights θ and z : [0,∞) 7→ Rn represents the n-dimensional state of the neural ODE. Neural ODEs
are the continuous analog of residual networks where the hidden layers of residual networks can
be regarded as discrete-time difference equations z(t + 1) = z(t) + fθ(z(t), t). In this work, for
simplicity, we only consider the time-invariant (autonomous) case fθ(z(t), t) = fθ(z(t)), where
the dynamical system does not explicitly depend on t. For such non-linear dynamical systems, the
following theorem shows that under mild conditions, its behaviour can be studied via linearization
near special points called hyperbolic equilibrium points.
Theorem 1 (Hartman–Grobman Theorem [18]). Consider a system evolving in time with state

z(t) ∈ Rn that satisfies the differential equation
dz(t)

dt
= f(z(t)) for some f ∈ C1(Rn,Rn),

f(z) = (f (1)(z), . . . , f (n)(z)). Suppose the map has a hyperbolic equilibrium state z∗ ∈ Rn, i.e.,
f(z∗) = 0 and the Jacobian matrix ∇f = [∂f (i)/∂z(j)]ni,j=1 of f evaluated at z = z∗ has no
eigenvalue with real part equal to zero. Then there exists a neighbourhood Nz∗ of the equilibrium
point z∗ and a homeomorphism g : Nz∗ 7→ Rn, such that g(z∗) = 0 and in the neighbourhood Nz∗ ,

the flow of
dz(t)

dt
= f(z(t)) is topologically conjugate by the continuous map z̄(t) = g(z(t)) to the

flow of its linearization
dz̄(t)

dt
= ∇f(z∗) · z̄(t).

The theorem states that when the Jacobian matrix at the zeros of f has no eigenvalue with zero real
part, the behaviour of the original dynamical system can be studied using the simpler linearization of
the system around those zeros. We next review some definitions and theorems from linear control
theory [10].

Definition 1 (Lyapunov Stability [10]). The linear time-invariant system
dz̄(t)

dt
= Az̄(t) with

constant matrix A is marginally stable or stable in the sense of Lyapunov if every finite initial state
z̄(0) excites a bounded response. It is asymptotically stable if every finite initial state excites a
bounded response, which, in addition, approaches 0 as t→∞.

Theorem 2 (Lyapunov Stability Theorem [10]). a) The equation
dz̄(t)

dt
= Az̄(t)) is marginally

stable if and only if all eigenvalues of A have zero or negative real parts and those with zero real parts

are simple roots of the minimal polynomial of A. b) The equation
dz̄(t)

dt
= Az̄(t) is asymptotically

stable if and only if all eigenvalues of A have negative real parts.

In Theorem 1, we say that a hyperbolic equilibrium point is Lyapunov-stable if all eigenvalues of
the Jacobian matrix evaluated at it have negative real parts. From Theorems 1 and 2, we see that
a small perturbation around the Lyapunov-stable equilibrium point z(0) leads to z̃(t) → z(0) as
t→∞, i.e., ∃ δ > 0 such that for all z̃(0) with ‖z(0)− z̃(0)‖2 < δ, we have ‖z̃(t)− z(0)‖2 → 0 as
t→∞, where z̃(t) is the ODE solution for the perturbed input z̃(0). In the context of neural network
adversarial attacks, if the malicious perturbations around the ODE input z(0) is small, then the output
z(T ) for large enough T will not be affected significantly by the perturbation. Consequently, the
succeeding network layers after the neural ODE layer can still perform well without being affected by
the input perturbation. The perturbation weakening phenomenon around Lyapunov-stable equilibrium
points works like a noise filter and acts as a defense against adversarial attacks.

We require the following definition and result in our stability analysis.
Definition 2 (Strictly diagonally dominant [19]). Let A ∈ Cn×n . We say that A is strictly diagonally
dominant if |Aii| >

∑
j 6=i |Aij | for all i = 1, ..., n.

Theorem 3 (Levy–Desplanques theorem [19]). If A ∈ Cn×n is strictly diagonally dominant and if
every main diagonal entry of A is real and negative, then A is non-singular and every eigenvalue of A
has negative real part.
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Fig. 1: SODEF model architecture.

Lemma 1. Given k distinct points zi ∈ Rn and matrices Ai ∈ Rn×n, i = 1, ..., k, there exists a
function f ∈ C1(Rn,Rn) such that f(zi) = 0 and ∇fθ(zi) = Ai.

3 SODEF Architecture

We consider a classification problem with L classes. The proposed SODEF model architecture
is shown in Fig. 1. The input x ∈ X (e.g., an image) is first passed through a feature extractor
hφ : X 7→ Rn to obtain an embedding feature representation z(0). A neural ODE layer fθ follows
as a nonlinear feature mapping to stabilize the feature representation output z(0) from hφ. The final
FC layer V serves as a linear mapping to generate a prediction vector based on the output z(T ) of the
neural ODE layer. The parameters φ,θ and V are parameterized weights for the feature extractor,
neural ODE layer and FC layer, respectively.

We provide motivation and design guidance for the FC layer V in Section 3.1, which attempts to
separate Lyapunov-stable equilibrium points implicitly by maximizing the similarity distance between
feature representations corresponding to the L different classes. Experimental results demonstrate the
advantages of our diversity promoting FC layer in Section 3.1 with comparisons to traditional neural
ODEs without diversity promoting.

However, the embedded features after using diversity promoting are not guaranteed to locate near the
Lyapunov-stable equilibrium points. In Section 3.2, we formulate an optimization problem to force
embedding features to locate near the Lyapunov-stable equilibrium points. We introduce optimization
constraints to force the Jacobian matrix of the ODE in our neural ODE layer to have eigenvalues with
negative real parts at the Lyapunov-stable equilibrium points. Instead of directly imposing constraints
on the eigenvalue of the matrix, which may be computationally complex especially when the matrix
is large, we add constraints to the matrix elements instead.

3.1 Maximizing the Distance between Lyapunov-Stable Equilibrium Points

From Section 2, we observe that points in a small neighbourhood of a Lyapunov-stable equilibrium
point is robust against adversarial perturbations. We call this neighborhood a stable neighborhood.
However Lyapunov-stable equilibrium points for different classes may very well locate near each
other and therefore each stable neighborhood may be very small, leading to poor adversarial defense.
In this section, we propose to add a FC layer after the neural ODE layer given by (1) to avoid this
scenario. The purpose of the FC layer is to map the output of the neural ODE layer to a feature
vector vl if the input x belongs to the class l = 1, . . . , L. We design the FC layer so that the cosine
similarities between different vl’s are minimized.

Lemma 2. Given a set of k unit vectors v1, . . . ,vk in Rn, where n ≥ k, let a(v1, . . . ,vk) =
maxi6=j vᵀ

i vj . Then min a(v1, . . . ,vk) = 1/(1− k), where the minimum is taken over all possible
sets of k unit vectors v1, . . . ,vk.

Corollary 1. Consider a k × k matrix B = [bij ]
k
i,j=1 with bii = 1 and bij = 1/(1 − k), ∀ i 6= j.

Let the eigen decomposition of B be B = UΣUᵀ. For any n ≥ k and i = 1, . . . , k, let vi
be the i-th column of QΣ1/2Uᵀ, where Q is any n × k matrix such that QᵀQ = Ik. Then,
a(v1, . . . ,vk) = maxi6=j vᵀ

i vj = 1/(1− k).

Corollary 1 suggests a diversity promoting scheme to maximally separate the equilibrium points
of the neural ODE layer. The FC layer is represented by an n × L matrix V = [v1, . . . ,vL],
where n is the dimension of z(T ), the output from the neural ODE layer. If z(T ) is generated
from an input from class l, it is mapped to vl. By minimizing the maximum cosine similarity
a(v1, . . . ,vk) = maxi 6=j vᵀ

i vj between the representations from two different classes, we ensure
that the output of SODEF is robust to perturbations in the input. Corollary 1 provides a way to choose
the FC layer weights V.
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To validate our observations, we conduct experiments to compare the robustness of ODE net [9] and
TisODE [6] with and without our proposed FC layer V, on two standard datasets: MNIST [2] and
CIFAR10 [12] 2. On the MNIST dataset, all models consist of four convolutional layers and one
fully-connected layer. On the CIFAR10 dataset, the networks are similar to those for MNIST except
the down-sampling network is a stack of 2 ResNet blocks. In practice, the neural ODE can be solved
with different numerical solvers such as the Euler method and the Runge-Kutta methods [9]. Here,
we use Runge-Kutta of order 5 in our experiments. Our implementation builds on the open-source
neural ODE codes.3 During training, no Gaussian noise or adversarial examples are augmented into
the training set. We test the performance of our model in defending against white-box attacks FGSM
[17] and PGD [13] . The parameters for different attack methods used in this paper are given in the
supplementary material. From Tables 1 and 2, we observe that for both datasets, our fixed FC layer
improves each network’s defense ability by a significant margin. We visualize the features before the
final FC layer using t-SNE [20] in Figs. 2 and 3. We observe that with the FC layer, the features for
different classes are well separated even under attacks.

Table 1: Classification accuracy (%) on adversarial MNIST examples, where the superscript +

indicates the last FC layer is fixed to be V.

Attack Para. ODE ODE+ TisODE TisODE+

None - 99.6 99.7 99.5 99.7

FGSM ε = 0.3 31.4 52.8 45.9 63.5
PGD ε = 0.3 0.29 0.30 0.4 20.20

Table 2: Classification accuracy (%) on adversarial CIFAR10 examples, where the superscript +

indicates the last FC layer is fixed to be V.

Attack Para. ODE ODE+ TisODE TisODE+

None - 87.0 85.0 87.4 81.8

FGSM ε = 0.1 12.9 47.6 13.1 41.9
PGD ε = 0.1 7.8 14.7 7.4 16.2

Fig. 2: t-SNE visualization results on the features before the final FC layer. The input is the test set of
MNIST. Left: trained with TisODE, middle: TisODE using a randomly chosen orthogonal matrix as
the final FC, right: TisODE using proposed V as the final FC.

3.2 Objective Formulation and Stability

In this subsection, we formulate an optimization framework for SODEF to force output features to
locate within the stable neighborhood of Lyapunov-stable equilibrium points. We make the following
assumption.
Assumption 1. The input x takes values in a compact metric spaceX and has probability distribution
µ. The feature extractor hφ is injective and continuous.

2Our experiments are run on a GeForce RTX 2080 Ti GPU.
3https://github.com/rtqichen/torchdiffeq
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Fig. 3: t-SNE visualization results on the features before the final FC layer. The input is the adversarial
examples of the test set of MNIST generated using FGSM method at ε = 0.3. Left: trained with
TisODE, middle: TisODE using a randomly chosen orthogonal matrix as the final FC, right: TisODE
using proposed V as the final FC.

The above assumption is satisfied if the input x (e.g., an image) resides in a bounded and closed set
of a Euclidean space. We denote the pushforward measure (still a probability distribution) of µ under
the continuous feature extractor mapping hφ as νφ = µ ◦h−1φ , where ◦ denotes function composition.
The conditional probability distribution for the embedding of each class l ∈ {1, ..., L} has compact
support El ⊂ Rn since El is closed and hφ(X) is bounded in Rn. In Section 3.1, the FC layer V
tries to maximize the distance between El, l = 1, . . . , L. In this section for analysis purposes, we
also assume the following.

Assumption 2. We have El
⋂
El′ = ∅ if l 6= l′, i.e., the supports of each class are pairwise disjoint.

Our objective function is formulated as follows, which is explained in detail in the sequel:

min
θ,φ

Eµ`(Vᵀ(z(T )), yi) (2)

s. t. Eνφ‖fθ(z(0))‖2 < ε, fθ ∈ C1(Rn,Rn), (3)

Eνφ [∇fθ(z(0))]ii < 0, ∀ i = 1, . . . , n, (4)

Eνφ
[
|[∇fθ(z(0))]ii| −

∑
j 6=i

|[∇fθ(z(0))]ij |
]
> 0, ∀ i = 1, . . . , n, (5)

z(0) = hφ(x), and z(T ) is the output of (1) with input z(0). (6)

Here, ` is a loss function and ε > 0 is a positive constant. The constraints (3) to (5) force z(0) to
be near the Lyapunov-stable equilibrium points with strictly diagonally dominant derivatives. We
limit the fθ to be in C1(Rn,Rn) to satisfy the condition in Theorem 1. From [21], we also know that
standard multi-layer feed forward networks with as few as a single hidden layer and arbitrary bounded
and non-constant activation function are universal approximators for C1(Rn,Rn) functions with
respect to some performance criteria provided only that sufficiently many hidden units are available.

As a comparison, TisODE [6] only includes a constraint similar to (3), which in general provides
no guarantee to force z(0) near the Lyapunov-stable equilibrium points. In the extreme case with
parameters θ = 0 for fθ such that fθ = 0, the ODE degenerates to an identity mapping. No
z(0) ∈ Rn can now be a Lyapunov-stable equilibrium point, and no stability can therefore be
guaranteed to defend against adversarial attacks even though the ODE curves still possess the non-
intersecting property and steady-state constraint, which were cited as reasons for the stability of
TisODE.

Instead of directly optimizing the above objective function, in our implementation, we optimize the
following empirical Lagrangian with a training set {(xk, yk) : k = 1, ..., N}:

min
θ,φ

1

N

N−1∑
k=0

(
`
(
Vᵀzk(T ), yk

)
+ α1‖fθ

(
zk(0)

)
‖2 + α2g1

( n∑
i=1

[∇fθ(zk(0))]ii

)

+ α3g2

( n∑
i=1

(−|[∇fθ(zk(0))]ii|+
∑
j 6=i

|[∇fθ(zk(0))]ij |)
) (7)

s. t. zk(0) = hφ(xk), and zk(T ) is the output of (1) with input zk(0), ∀ k = 1, . . . , N (8)
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where α1, α2 and α3 are hyperparameter weights, g1 and g2 are chosen monotonically increasing
functions bounded below to eliminate the unbounded impact of the two regularizers that can otherwise
dominate the loss. In this paper, we set g1(·) = g2(·) = exp(·). We call these two latter terms the
SODEF regularizers.

Suppose for each class l = 1, . . . , L, the embedding feature set El = {z(l)1 , . . . , z
(l)
k } is finite. For

each i = 1, . . . , k, let Ai ∈ Rn×n be strictly diagonally dominant matrix with every main diagonal
entry be negative such that the eigenvalues for Ai all have negative real part. From Theorem 3, each
Ai is non-singular and every eigenvalue of Ai has negative real part. Therefore, from Theorem 2 and
Lemma 1, there exists a function fθ such that all z

(l)
i are Lyapunov-stable equilibrium points with

corresponding first derivative∇fθ(z
(l)
i ) = Ai. This shows that if there exist only finite representation

points for each class, we can find a function fθ such that all inputs to the neural ODE layer are
Lyapunov-stable equilibrium points for fθ and

(a) Eνφ‖fθ(z(0))‖2 = 0,

(b) Eνφ [∇fθ(z(0))]ii < 0, ∀ i = 1, . . . , n,

(c) Eνφ
[
|[∇fθ(z(0))]ii| −

∑
j 6=i|[∇fθ(z(0))]ij |

]
> 0, ∀ i = 1, . . . , n.

If the input space X has infinite cardinality, then an injective and continuous feature extractor hφ
results in a νφ with non-finite support, i.e., at least one El, l = 1, . . . , L, is infinite. It is not obvious
whether we can obtain a fθ where every point in E =

⋃
lEl is a stable equilibrium point. The

following result gives a negative answer if νφ is a continuous measure (i.e., absolutely continuous
with respect to (w.r.t.) Lebesgue measure) on some subset.
Lemma 3. If the restriction of νφ to some open set E′ ⊂ E is a continuous measure, there is no
continuous function fθ such that for νφ-almost surely all z ∈ E, fθ(z) = 0 and all the eigenvalues
of ∇fθ(z) have negative real parts. In other words, there is no continuous function fθ such that
almost surely all z in E are Lyapunov-stable equilibrium points.

Lemma 3 indicates that it is too much to hope for all points in E to be Lyapunov-stable equilibrium
points. In the following, we relax this requirement and show that under mild conditions, for all
ε > 0, we can find a continuous function fθ with finitely many stable equilibrium points such
that conditions (b) and (c) above hold and condition (a) is replaced by Eνφ‖fθ(z(0))‖2 < ε. This
motivates the optimization constraints in (3) to (5).
Theorem 4. Suppose Assumptions 1 and 2. If νφ is not a continuous uniform measure on El for
each l = 1, . . . , L, then the following holds: 1) The function space satisfying the constraints in (3)
to (5) is non-empty for all ε > 0. 2) If additionally the restriction of νφ to any open set O ⊂ El is not
a continuous uniform measure, there exist functions in this space such that each support El contains
at least one Lyapunov-stable equilibrium point.

4 Experiments

In this section, we evaluate the robustness of SODEF under adversarial attacks with different attack
parameters. We conduct experiments to compare the robustness of ODE net [9] and TisODE
net [6] on three standard datasets: MNIST [2], CIFAR10 and CIFAR100 [3]. Since SODEF is
compatible with many defense methods, it can be applied to any neural network’s final regressor
layer to enhance its stability against adversarial attacks. Our experiment codes are provided in
https://github.com/KANGQIYU/SODEF.

4.1 Setup

We use open-source pre-trained models that achieve the top accuracy on each dataset as the feature
extractor hφ. Specifically for simple MNIST task, we use the ResNet18 model provided in Pytorch.
We use the model provided by [22], which obtains nearly 88% clean accuracy on CIFAR100 using
EfficientNet [23] and the model provided by [24], which has nearly 95% clean accuracy on CIFAR10.
In the neural ODE layer, fθ consists of 2 FC layers. During the trainings of SODEF (except in the
experiment included in Section 4.2), we train the neural network with the fixed FC introduced in Sec-
tion 3.1. In the first 30 epochs, we fixed fθ to let the feature extractor hφ learn a feature representation
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with only the cross-entropy loss `, and in the remaining 120 epochs, we release hφ to further train
fθ using (7) with α1 = 1 and α2 = α3 = 0.05. For CIFAR10 and CIFAR100, the pixel values are
normalized by (x− µ)/σ where µ = [0.4914, 0.4822, 0.4465] and σ = [0.2023, 0.1994, 0.2010] 4.
To show that our SODEF is compatible with many defense methods and can be applied to any neural
network’s final regression layer, we conduct an experiment where we use a recently proposed robust
network TRADES [25] as the feature extractor in our SODEF. The pretrained model is provided here
5, and we choose the model with architecture "WRN-34-10" to conduct our experiments. Besides the
two vanilla white-box attacks FGSM and PGD as metioned in Section 3.1, we also include a strong
ensemble attack AutoAttack [26], which sequentially performs attack using all of the following four
individual attacks: three white-box attacks APGDCE, APGDT

DLR and FABT[27], and one black-box
Square attack [28]. We refer the reader to the the supplementary material for more details of the
attacks used in this paper, where, in additional, more experiments are included.

4.2 Compatibility of SODEF

Adversarial training (AT) is one of the most effective strategies for defending adversarial attacks.
TRADES [25] is one of the adversarial training defense methods with combinations of tricks of
warmup, early stopping, weight decay, batch size and other hyper parameter settings. In this
experiment we fix the pretained TRADES model (except the final FC layer (size 640x10)) as our
feature extractor hφ. We then append our (trainable) SODEF with integration time T = 5 to the
output of the feature extractor. To evaluate model robustness, we use AutoAttack and attack the
models using both the L2 norm (ε = 0.5) and L∞ norm (ε = 8/255). The results are shown in
Table 3. We clearly observe that our SODEF can enhance TRADES’s robustness under all the four
individual attacks and the strongest ensemble AutoAttack. For the strong L2 AutoAttack, our SODEF
have improved the model robustness from 59.42% to 67.75%. Our experiment show that SODEF
can be applied to many defense models’ regression layer to enhance their stability against attacks.

Table 3: Classification accuracy (%) using TRADES (w/ and w/o SODEF) under AutoAttack on
adversarial CIFAR10 examples with L2 norm (ε = 0.5) and L∞ norm (ε = 8/255).

Attack / ModelTRADES L∞TRADES+SODEF L∞TRADES L2TRADES+SODEF L2

Clean 85.48 85.18 85.48 85.18
APGDCE 56.08 70.90 61.74 74.35
APGDT

DLR 53.70 64.15 59.22 68.55
FABT 54.18 82.92 60.31 83.15
Square 59.12 62.21 72.65 76.02

AutoAttack 53.69 57.76 59.42 67.75

4.3 Influence of Integration Time T

From the discussion after Theorems 1 and 2, we know if the malicious perturbations around the ODE
input Lyapunov-stable equilibrium point z(0) is small, then the output z(T ) for large enough T will
not be affected significantly by the perturbation: ‖z̃(t)− z(0)‖2 → 0 as t→∞. Consequently, the
succeeding network layers after the neural ODE layer can still perform well without being affected by
the input perturbation. In this section, we test the influence of the SODEF integration time T using
CIFAR100. We use the model EfficientNet provided by [23] as hφ (Note, unlike Section 4.2, hφ is
trainable in this experiments). We use AutoAttack with L2 norm (ε = 0.5). We observe that for all
the four individual attacks and the strongest ensemble AutoAttack, SODEF performs generally better
for large integration time T . We also test larger integration time T > 10, but do not see any obvious
improvements.

4.4 Performance Comparison Under AutoAttack

For a comparison, we provide the results of applying AutoAttack to other baseline models mentioned
in the paper. We set the same integration time for ODE, TisODE and SODEF. We observe that for the

4To test AutoAttack, we have strictly followed the instruction in https://github.com/RobustBench/
robustbench to attack the original images before any normalization or resizing.

5https://github.com/P2333/Bag-of-Tricks-for-AT
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Table 4: Classification accuracy (%) under AutoAttack on adversarial CIFAR100 examples with L2

norm, ε = 0.5 and different integration time T for SODEF.
Attack / T 1 3 5 6 7 8 9 10

Clean 88.00 88.12 88.15 88.00 87.92 88.00 88.05 88.10
APGDCE 17.20 21.33 21.05 23.67 69.67 85.33 87.10 86.88
APGDT

DLR 21.02 21.00 22.00 26.00 63.30 86.90 86.20 86.54
FABT 86.33 85.10 86.36 87.70 87.67 86.55 86.22 85.93
Square 84.67 86.22 87.05 87.20 86.90 86.33 87.05 86.75

AutoAttack 2.00 3.53 4.87 4.33 30.66 78.80 78.97 79.10

strongest AutoAttack, our SODEF outperforms the other baseline models by a significant margin. In
this case, SODEF achieves 79.10% accuracy while other models only get less than 3% accuracy.

Table 5: Classification accuracy (%) under AutoAttack on adversarial CIFAR100 examples with L2

norm, ε = 0.5 and T = 10.
Attack / Model No ODE ODE TisODE SODEF

Clean 88.00 87.90 88.00 88.10
APGDCE 23.30 6.75 14.32 86.88
APGDT

DLR 7.33 22.00 24.20 86.54
FABT 79.30 78.67 77.16 85.93
Square 84.52 85.67 86.32 86.75

AutoAttack 0.00 1.33 4.06 79.10

4.5 Performance Under PGD and FGSM Attacks

White-box adversaries have knowledge of the classifier models, including training data, model
architectures and parameters. We test the performance of our model in defending against the white-
box attacks, PGD and FGSM. We set T = 5 as the integration time for the neural ODE layer. The
parameters for different attack methods used are given in the supplementary material. The subsequent
experiments use these settings by default, unless otherwise stated.

Table 6: Classification accuracy (%) on adversarial MNIST examples.
Attack Para. no ode ODE TisODE SODEF

None - 99.45 99.42 99.43 99.44
FGSM ε = 0.3 10.03 29.6 36.70 63.36
PGD ε = 0.3 0.31 1.56 1.82 45.25

The classification results on MNIST are shown in Table 6. We observe that while maintaining the
state-of-the-art accuracy on normal images, SODEF improves the adversarial robustness as compared
to the other two methods. For the most effective attack in this experiment, i.e., PGD attack, SODEF
shows a 45.25% − 1.56% = 43.69% improvement over ODE and a 45.25% − 1.23% = 44.02%
improvement over TisODE.

Table 7: Classification accuracy (%) on adversarial CIFAR10 examples.
Attack Para. no ode ODE TisODE SODEF

None - 95.2 94.9 95.1 95.0
FGSM ε = 0.1 47.31 45.23 43.28 68.05
PGD ε = 0.1 3.09 3.21 3.80 55.59

For CIFAR-10, we see from Table 7 that SODEF maintains high accuracy on normal examples and
makes the best predictions under adversarial attacks. In particular, SODEF achieves an absolute
percentage point improvement over ODE net up to 52.38% and over TisODE up to 52.54% for PGD
attack.

For CIFAR-100, the results in the supplementary material shows that the most effective attack
causes the classification accuracy to drop relatively by 74.6% = 88.0−22.35

88.0 for SODEF and by
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97.3% = 88.3−2.39
88.3 for vanilla EfficientNet, which is pre-trained on ImageNet to obtain a top clean

accuracy. Neither ODE net nor TisODE net can improve the classification accuracy under PGD attack
by a big margin, e.g. TisODE net only improves the classification accuracy from 2.39% to 3.44%,
while SODEF still shows clear defense capability in this scenario.

4.6 Ablation Studies

The impact of the ODE with and without the SODEF regularizers in (7) has been presented in the
above comparisons between SODEF and ODE. In this section, we show the necessity of diversity
promoting using the FC introduced in Section 3.1 and conduct transferability study.

4.6.1 Impact of Diversity Promotion

Table 8: Classification accuracy (%) on adversarial MNIST examples, where the superscript −
indicates the last FC layer is not fixed to be V and is set to be a trainable layer.

Attack Para. SODEF SODEF−

None - 95.0 95.1

FGSM ε = 0.1 63.36 51.6

PGD ε = 0.1 45.25 34.9

Table 8 shows the difference of the defense performance when fixing the final FC be V or setting
it to a trainable linear layer. It can be seen that having diversity control improves the robustness.
One possible reason for this phenomenon given in Section 3 is that diversity promotion with a fixed
designed FC attempts to make the embedding feature support El of each class l disjoint to each other
and therefore the Lyapunov-stable equilibrium points for each El are well separated.

4.6.2 Transferability Study

Transferability study is carried out on CIFAR-10, where the adversarial examples are generated
using FGSM and PGD attacks using ResNet18 without any ODEs. The classification accuracy drops
from 68.05% to 59% for FGSM with ε = 0.3, and from 55.59% to 34% for PGD with ε = 0.1.
One possible reason for this phenomenon is that ODEs have obfuscated gradient masking effect as
discussed in [15], and a transfer attack may deteriorate the defense effect. However, as we observe
from Table 7, even with a transfer attack on SODEF, it still performs better than other ODEs without
transfer attacks.

5 Conclusion

In this paper, we have developed a new neural ODE network, SODEF, to suppress input perturbations.
SODEF is compatible with any existing neural networks and can thus be appended to the state-of-the-
art networks to increase their robustness to adversarial attacks. We demonstrated empirically and
theoretically that the robustness of SODEF mainly derives from its stability and proposed a training
method that imposes constraints to ensure all eigenvalues of the Jacobian matrix of the neural ODE
layer have negative real parts. When each classification class converges to its own equilibrium points,
we showed that the last FC layer can be designed in such a way that the distance between the stable
equilibrium points is maximized, which further improves the network’s robustness. The effectiveness
of SODEF has been verified under several popular while-box attacks.
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Broader Impact

Our work, which contributes to more robust DNNs, is supposed to mitigate the threat of adversarial
attacks. However, on the hand, the reliable deployment of DNNs in automation of tasks will
potentially bring mass-scale unemployment and social unrest. As DNNs become more robust and
more tasks, especially those whose failures will bring high risks to human lives or large property
losses under adversarial attacks, fall into the automatic task category, massive jobs could disappear.
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