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A Implementation Details

We present the implementation details for the VAE and Glow, used in Section 5. First, the structure

of the Glow is presented in Table 1, where the “Level” refers to the number of scales that split the

dimension of the latent space defined in the multi-scale architecture (Dinh et al., 2016), the “Depth

per level” refers to the number of flow layers that are repeated on each scale, “In-channels × hidden

units” refers to the number of input channels and the number of hidden units of the neural network

that defines the parameters of the flow layers, and the “Coupling” refers to the type of the coupling

layers. For the training, we used the Adam optimizer with learning rate of 0.001 and batch size of

64 for both datasets.

Next, Table 2 presents the structure for the VAE, which is the same as that used in Xiao et al.

(2020). In Table 2, “nc” denotes the number of input channels, “nf” denotes the number of output

channels with respect to the first convolutional neural network of the encoder, and “nz” denotes the

dimension of the latent variable z. Batch normalization layer (BN) and activation layer by ReLU

function (ReLU) were added after each convolutional layer. We specified the hyperparameters as nc
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Table 1: Structure for Glow

Dataset Level (L) Depth per level (K) In-channels × hidden units Coupling

FMNIST 3 16 1 × 512 Affine
CIFAR-10 3 16 3 × 512 Affine
CIFAR-100 3 16 3 × 512 Affine

= 1, nf =32, and nz =100 for the FMNIST dataset; nc = 3, nf =32, and nz =100 for the CIFAR-10

and CIFAR-100 datasets. For training the VAE, we used the Adam optimizer with a learning rate

of 0.0005, weight decay of 0.00003, and batch size of 64 for both datasets.

Table 2: Structure for VAE

Encoder Decoder

Input x Input z reshape to nz × 1 × 1
4 × 4 Convnf Stride 2, BN ReLU 4 × 4 Deconv4×nf Stride 1, BN, ReLU
4 × 4 Conv2×nf Stride 2, BN, ReLU 4 × 4 Deconv2×nf Stride 2, BN, ReLU
4 × 4 Conv4×nf Stride 2, BN, ReLU 4 × 4 Deconvnf Stride 2, BN, ReLU
4 × 4 Conv2×nz Stride 1 4 × 4 Conv256×nc Stride 2

B Additional Experimental Results

B.1 Results of VAEs trained on CIFAR-10 and CIFAR-100 : AUPR and FPR80

We measured the performance of the LMPBT trained on CIFAR-10 and CIFAR-100 using the

AUPR and FPR80, and compared it with those of the competing methods, LLR, IC, and LR in

Tables 3-6, where ↑ represents that a higher value is better and ↓ represents that a lower value is

better. As shown in the tables, the LMPBT consistently outperformed the other competing methods

across different metrics and different datasets.
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Table 3: AUPR↑ of OOD detection methods on various test datasets using VAEs trained on CIFAR-
10

Test dataset LMPBT LLR IC LR

Noise 1 1 0.318 0.940
Constant 1 0.470 0.960 0.974
FMNIST 0.994 0.489 0.985 0.991

SVHN 0.941 0.337 0.922 0.841
MNIST 0.997 0.665 0.996 0.991
CelebA 0.791 0.511 0.665 0.724

Table 4: AUPR↑ of OOD detection methods on various test datasets using VAEs trained on CIFAR-
100

Test dataset LMPBT LLR IC LR

Noise 1 0.976 1 0.996
Constant 1 0.965 1 0.980
FMNIST 0.928 0.911 0.910 0.844

SVHN 0.960 0.911 0.910 0.844
MNIST 0.996 0.854 0.998 0.948
CelebA 0.794 0.505 0.680 0.714

Table 5: FPR80↓ of OOD detection methods on various test datasets using VAEs trained on CIFAR-
10

Test dataset LMPBT LLR IC LR

Noise 0 0 0.99 0.02
Constant 0 0.65 0 0.03
FMNIST 0.01 0.85 0.02 0.02

SVHN 0.04 0.91 0.05 0.18
MNIST 0.01 0.99 0.02 0.02
CelebA 0.53 0.60 0.76 0.59

B.2 Results of Glow trained on CIFAR-10 and CIFAR-100 : AUROC, AUPR

and FPR80

We measured the performance of the LMPBT trained on CIFAR-10 and CIFAR-100 using the

AUPR and FPR80, and compared it with those of the competing methods, LLR, IC, and LR in
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Table 6: FPR80↓ of OOD detection methods on various test datasets using VAEs trained on CIFAR-
100

Test dataset LMPBT LLR IC LR

Noise 0 0.02 0.01 0.01
Constant 0 0.89 0 0.05
FMNIST 0.01 0.65 0.02 0.03

SVHN 0.07 0.89 0.09 0.22
MNIST 0.01 0.71 0.03 0.03
CelebA 0.55 0.60 0.78 0.58

Tables 7-12, where ↑ represents that a higher value is better and ↓ represents that a lower value

is better. As shown in the tables, the LMPBT consistently outperformed the other competing

methods across different metrics and different datasets.

Table 7: AUROC↑ of OOD detection methods on various test datasets using Glows trained on
CIFAR-10

Test dataset LMPBT LLR IC LR

Noise 1 0.988 1 0.990
Constant 1 0.970 1 0.974
FMNIST 0.998 0.665 0.996 0.991

SVHN 0.967 0.932 0.928 0.839
MNIST 0.998 0.878 0.998 0.971
CelebA 0.786 0.690 0.743 0.531

Table 8: AUROC↑ of OOD detection methods on various test datasets using Glows trained on
CIFAR-100

Test dataset LMPBT LLR IC LR

Noise 1 1 0.991 0.993
Constant 1 0.942 0.999 0.948
FMNIST 0.997 0.925 0.987 0.970

SVHN 0.941 0.823 0.912 0.820
MNIST 0.997 0.876 0.979 0.995
CelebA 0.731 0.575 0.464 0.598
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Table 9: AUPR↑ of OOD detection methods on various test datasets using Glows trained on CIFAR-
10

Test dataset LMPBT LLR IC LR

Noise 1 1 1.0 0.996
Constant 1 0.973 0.999 0.991
FMNIST 0.998 0.943 0.996 0.988

SVHN 0.963 0.846 0.945 0.857
MNIST 0.998 0.908 0.991 0.996
CelebA 0.743 0.685 0.494 0.671

Table 10: AUPR↑ of OOD detection methods on various test datasets using Glows trained on
CIFAR-100

Test dataset LMPBT LLR IC LR

Noise 1 1 1.0 0.996
Constant 1 0.943 0.999 0.944
FMNIST 0.997 0.943 0.996 0.975

SVHN 0.941 0.846 0.932 0.845
MNIST 0.997 0.891 0.988 0.996
CelebA 0.722 0.671 0.474 0.641

Table 11: FPR80↓ of OOD detection methods on various test datasets using Glows trained on
CIFAR-10

Test dataset LMPBT LLR IC LR

Noise 0 0 0.04 0.02
Constant 0 0.01 0 0.03
FMNIST 0.01 0.08 0.01 0.03

SVHN 0.03 0.28 0.05 0.18
MNIST 0.01 0.20 0.01 0.02
CelebA 0.34 0.64 0.81 0.58

B.3 Results of the models trained on FMNIST: AUROC, AUPR, and FPR80

Similar to the left panel of Figure 2 in the main paper, we visualize the OOD detection ability of the

LMPBT in Figure 1, which shows the log-scaled histogram of the LMPBT scores when FMNIST

was used as an in-distribution dataset and MNIST was used as an OOD dataset. Figures 1(a) and
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Table 12: FPR80↓ of OOD detection methods on various test datasets using Glows trained on
CIFAR-100

Test dataset LMPBT LLR IC LR

Noise 0 0 0.99 0
Constant 0 0.04 0 0.05
FMNIST 0.01 0.10 0.01 0.04

SVHN 0.04 0.31 0.07 0.28
MNIST 0.01 0.23 0.01 0.05
CelebA 0.32 0.68 0.83 0.61

(a) VAE (b) Glow

Figure 1: (a) Histogram of the LMPBT scores obtained with a VAE trained on FMNIST and tested
on FMNIST and MNIST . (b) Histogram of the LMPBT scores obtained with a Glow trained on
FMNIST and tested on FMNIST and MNIST.

1(b) present the results obtained with a VAE and a Glow, respectively. As depicted in Figure 1,

both VAE and Glow assigned significantly higher LMPBT scores to the OOD samples. It is notable

that the OOD samples were more clearly distinguished from the in-distribution samples in this

FMNIST experiments than the CIFAR-10 experiments in Figure 2 (left) in the main paper.

We also compared the ROC curve of using the LMPBT with those of using the LR, IC, and

LLR in OOD detection using a VAE and a Glow trained on FMNIST and tested on FMNIST and

MNIST. As shown in Figure 2, the LMPBT (green line) perfectly detected OOD samples for both

cases of the VAE and Glow. In contrast, the IC (red purple line) and LR (orange line) showed

unreliable performance when Glow was used as shown in Figure 2(b).

We measured the performance of the LMPBT using the AUROC, AUPR, and FPR80, and
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(a) VAE (b) Glow

Figure 2: Comparison of ROC curves of using the LMPBT, LLR, IC, and LR for OOD detection
using (a) a VAE and (b) a Glow trained on FMNIST training dataset and tested on FMNIST test
dataset and MNIST test dataset.

compared it with those of the competing methods, LLR, IC, and, LR in Table 13 to Table 18.

We can see that the LMPBT showed almost perfect performance on both VAE and Glow in terms

of all three different metrics on all the test datasets. In contrast, the competing methods showed

unreliable performance in certain cases, similar to the CIFAR-10 experiments. For example, the

LLR showed inferior performance (AUROC: 0.688) when tested on Constant dataset using VAE.

Similarly, the IC showed inferior performance (AUROC: 0.455) when tested on Noise dataset using

VAE, and the LR showed inferior performance (AUROC: 0.629) when tested on MNIST dataset

using Glow.

Table 13: AUROC↑ of OOD detection methods on various test datasets using VAEs trained on
FMNIST

Test dataset LMPBT LLR IC LR

MNIST 1 0.858 0.951 0.942
SVHN 1 0.698 0.999 0.999

CIFAR-10 1 0.950 0.936 0.995
Noise 1 1 0.455 0.988

Constant 1 0.688 1 0.996
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Table 14: AUROC↑ of OOD detection methods on various test datasets using Glows trained on
FMNIST

Test dataset LMPBT LLR IC LR

MNIST 0.998 0.975 0.747 0.629
SVHN 1 1 0.992 0.993

CIFAR-10 1 1 0.991 0.993
Noise 1 1 1 1

Constant 1 1 0.996 0.995

Table 15: AUPR↑ of OOD detection methods on various test datasets using VAEs trained on
FMNIST

Test dataset LMPBT LLR IC LR

MNIST 1 0.860 0.964 0.952
SVHN 1 0.566 0.999 0.999

CIFAR-10 0.998 0.906 0.942 0.995
Noise 1 1 0.662 0.992

Constant 1 0.553 1 0.995

Table 16: AUPR↑ of OOD detection methods on various test datasets using Glows trained on
FMNIST

Test dataset LMPBT LLR IC LR

MNIST 0.994 0.942 0.849 0.758
SVHN 1 1 0.995 0.996

CIFAR-10 1 1 0.993 0.995
Noise 1 1 1 1

Constant 1 1 0.997 0.997

Table 17: FPR80↓ of OOD detection methods on various test datasets using VAEs trained on
FMNIST

Test dataset LMPBT LLR IC LR

MNIST 0 0.210 0.081 0.096
SVHN 0 0.892 0 0.000

CIFAR-10 0 0.014 0.120 0.003
Noise 0 0 0.580 0.017

Constant 0 0.986 0 0.000
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Table 18: FPR80↓ of OOD detection methods on various test datasets using Glows trained on
FMNIST

Test dataset LMPBT LLR IC LR

MNIST 0 0.011 0.304 0.462
SVHN 0 0 0.009 0.006

CIFAR-10 0 0 0.010 0.006
Noise 0 0 0 0

Constant 0 0 0.007 0.004
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