
A Related Work on Compression Techniques in Distributed Optimization
and Learning

In order to alleviate the communication bottleneck in large-scale distributed computing systems, a
complementary direction to reducing communication rounds is to compress the information being
exchanged. Broadly speaking, compression either involves quantization [33, 50, 27, 26, 28–31, 15,
32] to reduce the precision of transmitted information, or biased sparsification [24, 25, 35, 34, 51,
52, 49, 53] to transmit only a few components of a vector with the largest magnitudes. In terms
of quantization, while some of the earlier work focused on quantizing gradients [27, 26, 28], the
convergence guarantees of these methods were subsequently improved in [29] where the authors
proposed DIANA - a new algorithm based on quantizing differences of gradients. The DIANA technique
was further generalized in [31] to account for a variety of compressors. An accelerated variant of
DIANA was also proposed recently in [30]. Notably, unlike our work, neither DIANA nor its variants
[31, 30] consider the effect of local steps.

As far as gradient sparsification is concerned, although empirical studies [24, 25] have revealed the
benefits of aggressive sparsification techniques, theoretical guarantees for such methods, especially in
a distributed setting, are few and far between. In our work, we study one such sparsification technique
- the TOP-k operator - by exploiting the error-feedback mechanism. Notably, the error-feedback idea
that we use was first introduced in [33] to study 1-bit SGD. Follow-up work has explored this idea
for studying SignSGD in [51], and sparse SGD in [35, 34, 52] - all for single-worker settings. Very
recently, [49] and [53] provide theoretical results on biased sparsification for a master-worker type
distributed architecture; however, their analysis does not account for the effect of local steps.

15

B Proof of Propositions 1 and 2

The analysis in this section follows the techniques introduced in [8].

Proof of Proposition 1: FedProx

We consider a deterministic version of FedProx where clients perform H local iterations according
to the update rule in equation (2). Let

g
(t)
i,` , ∇fi(x(t)

i,`) + β(x
(t)
i,` − x̄t), q

(t)
i ,

H−1∑
`=0

g
(t)
i,` , and q(t) ,

1

m

∑
i∈S

q
(t)
i .

Then, Lemma 1 provides a recursive relationship in terms of g(t)
i,` .

Lemma 1. For each i ∈ S, the following holds for all ` ∈ {0, · · · , H − 1}:

g
(t)
i,`+1 = [I − η(Ai + βI)]g

(t)
i,` . (15)

Proof. By definition of g(t)
i,` , we have

g
(t)
i,` = (Ai + βI)x

(t)
i,` −Aici − βx̄t. (16)

Hence, we may write

x
(t)
i,` = (Ai + βI)−1

[
g

(t)
i,` +Aici + βx̄t

]
, (17)

where (Ai + βI) is positive-definite since Ai is positive-definite and β ≥ 0. Plugging equation (17)
into the local update rule, we get

x
(t)
i,`+1 = x

(t)
i,` − ηg

(t)
i,`

=
[
(Ai + βI)−1 − ηI

]
g

(t)
i,` + (Ai + βI)−1

(
Aici + βx̄t

)
. (18)

Combining equations (16) and (18), we get

g
(t)
i,`+1 = (Ai + βI)x

(t)
i,`+1 −Aici − βx̄t

= [I − η(Ai + βI)]g
(t)
i,` .

For each client i ∈ S, define the client distortion matrix

Qi =

H−1∑
`=0

[I − η(Ai + βI)]`, (19)

and the client surrogate function

f̃i(x) =
1

2
‖(QiAi)1/2(x− ci)‖2. (20)

The global surrogate function f̃(x) is hence defined as

f̃(x) =
1

m

∑
i∈S

f̃i(x) =
1

m

∑
i∈S

1

2
‖(QiAi)1/2(x− ci)‖2. (21)

We now provide the proof of Proposition 1.

16

Proof. From Lemma 1, we have

g
(t)
i,` = [I − η(Ai + βI)]`g

(t)
i,0

= [I − η(Ai + βI)]`∇fi(x̄t). (22)

Hence, we may write

q
(t)
i =

H−1∑
`=0

g
(t)
i,`

=

H−1∑
`=0

[I − η(Ai + βI)]`∇fi(x̄t)

= Qi∇fi(x̄t)
= ∇f̃i(x̄t). (23)

Moreover, by definition,

q(t) =
1

m

∑
i∈S

q
(t)
i

=
1

m

∑
i∈S
∇f̃i(x̄t)

= ∇f̃(x̄t), (24)

where the second equality follows from equation (23), and the last one follows from the definition
of the global surrogate function. As per equation (2), the global iterates in FedProx are updated as
follows

x̄t+1 = x̄t − ηq(t)

= x̄t − η∇f̃(x̄t). (25)

Equation (25) is equivalent to performing one step of GD on the surrogate function f̃(x) with a
starting point x̄t. It follows that T communication rounds of FedProx are equivalent to performing
T steps of parallel GD with m workers on the global surrogate function f̃(x).

In what follows, we analyze some properties of the client surrogate functions f̃i(x).

Lemma 2. For η <
1

L+ β
, the client surrogate function f̃i(x) shares the same unique minimizer as

the true local function fi(x), that is, x̃∗i = x∗i = ci, ∀i ∈ S, where x̃∗i is the minimizer of f̃∗i (x).

Proof. Let (λi, vi) be a tuple of eigenvalue λi, and corresponding eigenvector vi, of Ai, where Ai is
symmetric positive-definite. Then, (1− η(λi + β), vi) is a tuple of eigenvalue and corresponding

eigenvector of D , [I − η(Ai + β)]. For 0 < η ≤ 1

L+ β
<

1

Li + β
, ∀i ∈ S, we have 0 <

1 − η(λi + β) < 1, and hence, D is a symmetric positive-definite matrix. For any integer ` ≥ 1,
([1−η(λi+β)]`, vi) is a tuple of eigenvalue and corresponding eigenvector ofD` , [I−η(Ai+β)]`,

and hence, D` is also a symmetric positive-definite matrix since 0 < η <
1

Li + β
. From equation

(19), we have Qi =
H−1∑̀

=0

[I − η(Ai + β)]` =
H−1∑̀

=0

D`. Hence, (
H−1∑̀

=0

[1− η(λi + β)]`, vi) is a tuple of

eigenvalue and corresponding eigenvector ofQi and, consequently,Qi is a symmetric positive-definite
matrix. Based on the above results, since both Ai and Qi are symmetric positive-definite matrices

that are simultaneously diagonalizable, it follows that they commute. Hence, for 0 < η <
1

L+ β
, the

product QiAi is a symmetric positive-definite matrix and the client surrogate function f̃i(x) admits a
unique minimizer x̃∗i = x∗i = ci.

17

Proof of Proposition 2: FedNova

The proof of Proposition 2 follows roughly the same steps as the proof of Proposition 1. In particular,
we consider a deterministic version of FedNova where client i performs τi local iterations according

to the update rules provided in equation (4). Let g(t)
i,` , ∇fi(x(t)

i,`), q(t)
i ,

τi−1∑̀
=0

αig
(t)
i,` , and q(t) ,

1

m

∑
i∈S

q
(t)
i . Then, Lemma 3 provides a recursive relationship in terms of g(t)

i,` .

Lemma 3. For every i ∈ S, we have for all ` ∈ {0, · · · , τi − 1}:

g
(t)
i,`+1 = [I − ηAi]g(t)

i,` . (26)

For each client i ∈ S, define the client distortion matrix

Qi =

τi−1∑
`=0

[I − ηAi]`αi. (27)

Let the client and global surrogate functions, namely f̃i(x) and f̃(x), be defined as before. Then, the
proof of Proposition 2 follows directly from Lemma 3. Finally, Lemma 4 provides additional insight
on the client surrogate functions f̃i(x). Once again, the proof is omitted as it closely follows the steps
of the proof of Lemma 2.

Lemma 4. For η <
1

L
, the client surrogate function f̃i(x) shares the same unique minimizer as the

true local function fi(x), that is, x̃∗i = x∗i = ci, ∀i ∈ S.

It should be noted that while fi(x) and f̃i(x) share the same minimizer, the minimizer of the surrogate
global function may be far off from the true minimizer x∗.

18

C Useful Results and Facts

In this section, we will compile some results that will prove to be useful later in our analysis. We
start by assembling some well-known facts about convex and smooth functions [54, 55].

• (Smoothness): Suppose f(x) is L-smooth. Then, by definition, the following inequalities
hold for any two points x, y ∈ Rd:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, and (28)

f(y)− f(x) ≤ 〈y − x,∇f(x)〉+
L

2
‖y − x‖2. (29)

• (Smoothness): Suppose f(x) is L-smooth, and x∗ ∈ argminx∈Rd f(x). Then, we can
upper-bound the magnitude of the gradient at any given point y ∈ Rd in terms of the
objective sub-optimality at y, as follows:

‖∇f(y)‖2 ≤ 2L(f(y)− f(x∗)). (30)

• (Smoothness and Convexity): Suppose f(x) is L-smooth and convex. Then, the following
holds for any two points x, y ∈ Rd:

〈∇f(y)−∇f(x), y − x〉 ≥ 1

L
‖∇f(y)−∇f(x)‖2. (31)

• (Strong convexity): Suppose f(x) is µ-strongly convex. Then, by definition, the following
inequality holds for any two points x, y ∈ Rd:

f(y)− f(x) ≥ 〈y − x,∇f(x)〉+
µ

2
‖y − x‖2. (32)

Using the above inequality, one can easily conclude that

〈∇f(y)−∇f(x), y − x〉 ≥ µ‖y − x‖2. (33)

• (Strong convexity): Suppose f(x) is µ-strongly convex, and x∗ = argminx∈Rd f(x).
Then, we can lower-bound the magnitude of the gradient at any given point y ∈ Rd in terms
of the objective sub-optimality at y, as follows:

‖∇f(y)‖2 ≥ 2µ(f(y)− f(x∗)). (34)

In addition to the above results, we will have occasion to make use of the following facts.

• Given any two vectors x, y ∈ Rd, the following holds for any γ > 0:

‖x+ y‖2 ≤ (1 + γ)‖x‖2 +

(
1 +

1

γ

)
‖y‖2. (35)

• Given m vectors x1, . . . , xm ∈ Rd, the following is a simple application of Jensen’s
inequality: ∥∥∥∥ m∑

i=1

xi

∥∥∥∥2

≤ m
m∑
i=1

‖xi‖2. (36)

19

D Analysis under Objective Heterogeneity: FedLin resolves the
Speed-Accuracy Conflict

In this section, we start by presenting a convergence analysis for FedLin that focuses solely on the
aspect of heterogeneity in the clients’ local objective functions. We do so to set up the basic proof
structure that we will later build on for analyzing more involved settings. With this in mind, we
will assume throughout this section that all clients perform the same number of local updates, i.e.,
τi = H,∀i ∈ S . Additionally, we will assume that there is no gradient sparsification, i.e., δc = δs = 1.
Based on the second assumption, observe that ρi,t = 0, et = 0,∀i ∈ S,∀t ∈ {1, . . . , T}. Thus, the
local update rule for each client in line 5 of FedLin simplifies to

x
(t)
i,`+1 = x

(t)
i,` − ηi(∇fi(x

(t)
i,`)−∇fi(x̄t) +∇f(x̄t)). (37)

Let us denote by κ = L/µ the condition number of an L-smooth and µ-strongly convex function.

Theorem 9. (Heterogeneous Setting) Suppose each fi(x) is L-smooth and µ-strongly convex. More-
over, suppose τi = H,∀i ∈ S, and δc = δs = 1. Then, with ηi = η = 1

6LH ,∀i ∈ S, FedLin
guarantees:

f(x̄T+1)− f(x∗) ≤
(

1− 1

6κ

)T
(f(x̄1)− f(x∗)). (38)

When all clients optimize the same loss function, we have the following result.

Proposition 3. (Homogeneous setting) Suppose all client objective functions are identical, i.e.,
fi(x) = f(x),∀x ∈ Rd,∀i ∈ S, and f(x) is L-smooth and µ-strongly convex. Moreover, suppose
τi = H,∀i ∈ S, and δc = δs = 1. Then, with ηi = η = 1

L ,∀i ∈ S, FedLin guarantees:

f(x̄T+1)− f(x∗) ≤
(

1− 1

κ

)TH
(f(x̄1)− f(x∗)). (39)

We first provide the proof of Proposition 3.

Proof. (Proposition 3) The proof follows from two simple observations. First, note that since
∇fi(x) = ∇f(x),∀x ∈ Rd, the local update rule of each client i ∈ S reduces to x

(t)
i,`+1 =

x
(t)
i,` − η∇f(x

(t)
i,`). Second, based on the steps of FedLin, observe that the local iterates of the clients

remain synchronized within each communication round, i.e., for any t ∈ {1, . . . , T}, and any two
clients i, j ∈ S, it holds that x(t)

i,` = x
(t)
j,`,∀` ∈ {0, . . . ,H − 1}. Thus, FedLin boils down to m

parallel and identical implementations of gradient descent on the global loss function f(x), with TH
iterations performed by each client over T rounds. The claim of the proposition then follows from
standard results of centralized gradient descent applied to strongly convex and smooth deterministic
objectives.

D.1 Proof of Theorem 9

Let us fix a communication round t ∈ {1, . . . , T}. Our goal will be to derive an upper-bound on the
change in the value of the objective function f(·) over round t, i.e., we will be interested in bounding
the quantity f(x̄t+1) − f(x̄t). To lighten the notation, we will drop the superscript t on the local
iterates x(t)

i,` , and simply refer to them as xi,`; it should be understood from context that all such
iterates pertain to round t. Given that δc = δs = 1, and ηi = η,∀i ∈ S , the local update rule in line 5
of FedLin takes the following simplified form:

xi,`+1 = xi,` − η(∇fi(xi,`)−∇fi(x̄t) +∇f(x̄t)). (40)

Based on the above rule, and smoothness of each fi(x), the following lemma provides an upper-bound
on f(x̄t+1)− f(x̄t).

20

Lemma 5. Suppose each fi(x) is L-smooth. Moreover, suppose τi = H,∀i ∈ S, and δc = δs = 1.
Then, FedLin guarantees:

f(x̄t+1)− f(x̄t) ≤ −ηH (1− ηLH) ‖∇f(x̄t)‖2 +

(
ηL

m

m∑
i=1

H−1∑
`=0

‖xi,` − x̄t‖

)
‖∇f(x̄t)‖

+
η2L3H

m

m∑
i=1

H−1∑
`=0

‖xi,` − x̄t‖2.

(41)

Proof. Based on (40) and the fact that xi,0 = x̄t,∀i ∈ S, we have:

xi,H = x̄t − η
H−1∑
`=0

∇fi(xi,`)− ηH(∇f(x̄t)−∇fi(x̄t)),∀i ∈ S. (42)

Thus,

x̄t+1 =
1

m

m∑
i=1

xi,H = x̄t −
η

m

m∑
i=1

H−1∑
`=0

∇fi(xi,`)−
ηH

m

m∑
i=1

(∇f(x̄t)−∇fi(x̄t))

= x̄t −
η

m

m∑
i=1

H−1∑
`=0

∇fi(xi,`),

(43)

where for the second equality, we used the fact that ∇f(y) = 1
m

m∑
i=1

∇fi(y),∀y ∈ Rd. Now since

each fi(·) is L-smooth, it is easy to verify that f(·) is also L-smooth. From (29), we then obtain:

f(x̄t+1)− f(x̄t) ≤ 〈x̄t+1 − x̄t,∇f(x̄t)〉+
L

2
‖x̄t+1 − x̄t‖2

= − η

m

m∑
i=1

H−1∑
`=0

〈∇fi(xi,`),∇f(x̄t)〉+
L

2

∥∥∥∥ ηm
m∑
i=1

H−1∑
`=0

∇fi(xi,`)
∥∥∥∥2

,
(44)

21

where in the last step we used (43). To proceed, we will now separately bound each of the two terms
that appear in (44). For the first term, observe that

− η

m

m∑
i=1

H−1∑
`=0

〈∇fi(xi,`),∇f(x̄t)〉 = −η
〈 1

m

m∑
i=1

H−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t))

+
1

m

m∑
i=1

H−1∑
`=0

∇fi(x̄t),∇f(x̄t)
〉

= −η
〈 1

m

m∑
i=1

H−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t))

+H∇f(x̄t),∇f(x̄t)
〉

= − η

m

〈 m∑
i=1

H−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t)) ,∇f(x̄t)
〉

− ηH‖∇f(x̄t)‖2

(a)

≤ η

m

(∥∥∥∥ m∑
i=1

H−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t))
∥∥∥∥
)
‖∇f(x̄t)‖

− ηH‖∇f(x̄t)‖2

(b)

≤ η

m

(
m∑
i=1

H−1∑
`=0

‖∇fi(xi,`)−∇fi(x̄t)‖

)
‖∇f(x̄t)‖

− ηH‖∇f(x̄t)‖2

(c)

≤ ηL

m

(
m∑
i=1

H−1∑
`=0

‖xi,` − x̄t‖

)
‖∇f(x̄t)‖ − ηH‖∇f(x̄t)‖2.

(45)
In the above steps, (a) follows from the Cauchy-Schwartz inequality, (b) follows from the triangle
inequality, and (c) follows from the fact that each fi(·) is L-smooth (see (28)). Next, we bound the
second term in (44) as follows.

L

2

∥∥∥∥ ηm
m∑
i=1

H−1∑
`=0

∇fi(xi,`)
∥∥∥∥2

=
η2L

2

∥∥∥∥ 1

m

m∑
i=1

H−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t)) +
1

m

m∑
i=1

H−1∑
`=0

∇fi(x̄t)
∥∥∥∥2

=
η2L

2

∥∥∥∥ 1

m

m∑
i=1

H−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t)) +H∇f(x̄t)

∥∥∥∥2

(a)

≤ η2L

∥∥∥∥ 1

m

m∑
i=1

H−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t))
∥∥∥∥2

+ η2H2L‖∇f(x̄t)‖2

(b)

≤ η2L

m

m∑
i=1

∥∥∥∥H−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t))
∥∥∥∥2

+ η2H2L‖∇f(x̄t)‖2

(c)

≤ η2LH

m

m∑
i=1

H−1∑
`=0

‖∇fi(xi,`)−∇fi(x̄t)‖2 + η2H2L‖∇f(x̄t)‖2

(d)

≤ η2L3H

m

m∑
i=1

H−1∑
`=0

‖xi,` − x̄t‖2 + η2H2L‖∇f(x̄t)‖2.

(46)
In the above steps, (a) follows from (35) with γ = 1, (b) and (c) both follow from (36), and (d)
is a consequence of the L-smoothness of fi(·). Combining the bounds in equations (45) and (46)
immediately leads to the claim of the lemma.

22

To simplify the bound in (41), it is apparent that we need to estimate how much the client iterates xi,`
drift off from their value x̄t at the beginning of the communication round, i.e., we want to derive a
bound on the quantity ‖xi,` − x̄t‖. To that end, we will make use of the following lemma.

Lemma 6. Suppose f(x) is L-smooth and convex. Then, for any η ∈ (0, 1) satisfying η ≤ 1
L , and

any two points x, y ∈ Rd, we have

‖y − x− η(∇f(y)−∇f(x))‖ ≤ ‖y − x‖. (47)

If f(x) is µ-strongly convex, then the above inequality is strict, i.e., ∃λ ∈ (0, 1), such that

‖y − x− η(∇f(y)−∇f(x))‖ ≤ λ‖y − x‖. (48)

Proof. Given any two points x, y ∈ Rd, we have

‖y − x− η(∇f(y)−∇f(x))‖2 = ‖y − x‖2 − 2η〈y − x,∇f(y)−∇f(x)〉+ η2‖∇f(y)−∇f(x)‖2

≤ ‖y − x‖2 − η(2− ηL)〈y − x,∇f(y)−∇f(x)〉
≤ ‖y − x‖2,

(49)
where the first inequality follows from (31), and the second from the fact that ηL ≤ 1, and 〈y −
x,∇f(y)−∇f(x)〉 ≥ 0; the latter is a consequence of the convexity of f(·). This establishes (47)
for the convex, smooth case. When f(·) is µ-strongly convex, we can further use (33) to obtain

‖y − x− η(∇f(y)−∇f(x))‖2 ≤ (1− ηµ(2− ηL)) ‖y − x‖2. (50)

Noting that ηL ≤ 1 establishes (48) with λ =
√

1− ηµ.

With the above lemma in hand, we will now show that the drift ‖xi,` − x̄t‖ can be bounded in terms
of ‖∇f(x̄t)‖ - a measure of the sub-optimality at the beginning of the communication round.
Lemma 7. Suppose each fi(x) is L-smooth and µ-strongly convex. Moreover, suppose τi = H,∀i ∈
S, δc = δs = 1, and η ≤ 1

L . Then, FedLin guarantees the following bound for each i ∈ S, and
∀` ∈ {0, . . . ,H − 1}:

‖xi,` − x̄t‖ ≤ ηH‖∇f(x̄t)‖. (51)

Proof. Fix any client i ∈ S. From (40), we have

‖xi,`+1 − x̄t‖ = ‖xi,` − x̄t − η (∇fi(xi,`)−∇fi(x̄t))− η∇f(x̄t)‖
≤ ‖xi,` − x̄t − η (∇fi(xi,`)−∇fi(x̄t)) ‖+ η‖∇f(x̄t)‖
≤ λ‖xi,` − x̄t‖+ η‖∇f(x̄t)‖,

(52)

where λ =
√

1− ηµ < 1. The last inequality follows from Lemma 6 with x = xi,` and y = x̄t.
Rolling out the final inequality in (52) from ` = 0 yields:

‖xi,` − x̄t‖ ≤ λ`‖xi,0 − x̄t‖+

`−1∑
j=0

λj

 η‖∇f(x̄t)‖

(a)
=

`−1∑
j=0

λj

 η‖∇f(x̄t)‖

(b)

≤ η`‖∇f(x̄t)‖
(c)

≤ ηH‖∇f(x̄t)‖.

(53)

For (a), we used the fact that xi,0 = x̄t,∀i ∈ S; for (b), we used the fact that λ < 14; and for (c), we
note that ` ≤ H − 1.

4Note that actually, in step (b), we used the looser bound for the convex setting, namely λ ≤ 1. It seems
unlikely that the tighter bound λ < 1 will buy us anything other than a potential improvement upon the constant
1
6

appearing in the exponent in equation (38).

23

We are now equipped with all the ingredients needed to complete the proof of Theorem 9.

Completing the proof of Theorem 9: Combining the bounds in Lemma’s 5 and 7, we obtain

f(x̄t+1)− f(x̄t) ≤ −ηH (1− ηLH) ‖∇f(x̄t)‖2 +

(
ηL

m

m∑
i=1

H−1∑
`=0

ηH‖∇f(x̄t)‖

)
‖∇f(x̄t)‖

+
η2L3H

m

m∑
i=1

H−1∑
`=0

(ηH‖∇f(x̄t)‖)2

= −ηH (1− ηLH) ‖∇f(x̄t)‖2 + η2LH2‖∇f(x̄t)‖2 + η4L3H4‖∇f(x̄t)‖2

≤ −ηH (1− 3ηLH) ‖∇f(x̄t)‖2,
(54)

where in the last step, we used the fact that the step-size η satisfies ηLH ≤ 1. From (54) and (34),
we obtain

f(x̄t+1)− f(x∗) ≤ (1− 2ηµH (1− 3ηLH)) (f(x̄t)− f(x∗)) . (55)
With η = 1

6LH , the above inequality takes the form

f(x̄t+1)− f(x∗) ≤
(

1− 1

6κ

)
(f(x̄t)− f(x∗)) ,where κ =

L

µ
. (56)

Using the above inequality recursively leads to the claim of the theorem.

24

E Proof of Theorem 5: Lower bound for FedLin

To prove Theorem 5, we will construct an example involving two clients. Let us start by defining the
objective functions of the clients as follows.

f1(x) =
1

2
x′
[
1 0
0 1

]
︸ ︷︷ ︸

A1

x+ b′x; f2(x) =
1

2
x′
[
L 0
0 1

]
︸ ︷︷ ︸

A2

x− b′x,

where b ∈ R2 is any arbitrary vector, and L ≥ 14. Here, we have used the notation x′ to indicate the
transpose of a column vector x. From inspection, it is clear that each of the client objective functions
is 1-strongly convex. Also, f1(x) and f2(x) are both L-smooth.5 The global loss function is then
given by

f(x) =
1

2
(f1(x) + f2(x)) =

1

2
x′
[
L+1

2 0
0 1

]
x.

It is easy to see that the minimum of f(x) is x∗ = [0 0]
′. Let us fix a communication round

t ∈ {1, . . . , T}. Now given that δc = δs = 1, and ηi = η, i ∈ {1, 2}, the local update rule for each
of the clients takes the following form:

xi,`+1 = xi,` − η(∇fi(xi,`)−∇fi(x̄t) +∇f(x̄t)).

Simple calculations then lead to the following recursions:

x1,`+1 = (I− ηA1)x1,` − η
[
L−1

2 0
0 0

]
x̄t,

x2,`+1 = (I− ηA2)x2,` − η
[

1−L
2 0
0 0

]
x̄t.

Given the diagonal structure of A1 and A2, we can easily roll out the above recursions. Accordingly,
for client 1, we obtain

x1,H = (I− ηA1)
H
x̄t − η

H−1∑
j=0

(I− ηA1)
j

[L−1
2 0
0 0

]
x̄t

=

(1− η)
H (L+1

2

)
− L−1

2 0

0 (1− η)
H

 x̄t.
Similarly, for client 2, we have

x2,H = (I− ηA2)
H
x̄t − η

H−1∑
j=0

(I− ηA2)
j

[1−L
2 0
0 0

]
x̄t

=

(1− ηL)
H (L+1

2L

)
− 1−L

2L 0

0 (1− η)
H

 x̄t.
Thus,

x̄t+1 =
1

2
(x1,H + x2,H) =

(

(1− η)
H

+ (1−ηL)H

L

) (
L+1

4

)
− (L−1)2

4L 0

0 (1− η)
H

︸ ︷︷ ︸

M

x̄t. (57)

In the rest of the proof, we will argue that for x̄t to converge to x∗ based on the above recursion, η
must be chosen inversely proportional to H; the lower bound will then naturally follow. Let us start

5Strictly speaking, f1(x) is 1-smooth, but since L > 1, it is also L-smooth.

25

by noting that x̄t+1 = Mx̄t can be viewed as a discrete-time linear time-invariant (LTI) system where
M is the state transition matrix. Since x∗ = [0 0]

′, guaranteeing x̄t converges to x∗ regardless of
the initial condition x̄1 is equivalent to arguing that M is a Schur stable matrix, i.e., all the eigenvalues
of M lie strictly inside the unit circle. It is easy to see that the eigenvalues λ1(η,H,L) and λ2(η,H)
of M are

λ1(η,H,L) =

(
(1− η)

H
+

(1− ηL)
H

L

)(
L+ 1

4

)
− (L− 1)

2

4L
; λ2(η,H) = (1− η)

H
.

In order for M to be Schur stable, λ1(η,H,L) > −1 is a necessary condition. We will now show
that to satisfy this necessary condition, η must scale inversely with H . Observe that

λ1(η,H,L) > −1 =⇒

(
(1− η)

H
+

(1− ηL)
H

L

)(
L+ 1

4

)
− (L− 1)

2

4L
> −1

=⇒ (1− η)
H

(
(L+ 1)

2

4L

)
− (L− 1)

2

4L
> −1

=⇒ (1− η)
H
>
L2 − 6L+ 1

(L+ 1)
2

=⇒ (1− η)
H
>

1

2

=⇒ 1

1 + ηH
>

1

2

=⇒ η <
1

H
.

(58)

For the second implication, we used the fact that L > 1. For the fourth implication, we note that

g(z) =
z2 − 6z + 1

(z + 1)
2

is a monotonically increasing function of its argument for all z > 1. The claim then follows by noting
that g(14) > 1

2 , and L ≥ 14. For the second-last implication, we used the fact that for any z ∈ (0, 1),
and any positive integer r, the following is true

(1− z)r ≤ 1

1 + rz
.

We conclude that η < 1
H is a necessary condition for M to be Schur stable.6 Now let us look at the

implication of this necessary condition on the eigenvalue λ2(η,H) = (1− η)
H . Since λ2(η,H) is

monotonically decreasing in η, the following holds for any η that stabilizes M:7

λ2(η,H) > λ2(ηc, H) =

(
1− 1

H

)H
≥
(

1− 1

2

)2

> exp(−2),∀H ≥ 2,

where ηc = 1
H . Here, we have used the fact that

(
1− 1

z

)z
is a monotonically increasing function in

z for z > 1, and that H ≥ 2. Now suppose FedLin is initialized with x̄1 = [0 β]
′, where β > 0.

Based on (57), for any T ≥ 1, we then have

x̄T+1 =

[
0

λT2 β

]
≥ exp(−2T)

[
0
β

]
= exp(−2T)x̄1 =⇒ ‖x̄T+1 − x∗‖2 ≥ exp (−4T)‖x̄1 − x∗‖2.

Moreover, substituting the value of x̄T+1 above in the expression for f(x), we obtain

f(x̄T+1) =
1

2
λ2T

2 β2 = λ2T
2 f(x̄1) ≥ exp(−4T)f(x̄1) (59)

=⇒ f(x̄T+1)− f(x∗) ≥ exp(−4T)(f(x̄1)− f(x∗)), (60)

6Notice that when H = 1, this necessary condition translates to the trivial condition η < 1.
7That a stabilizing η exists follows from Theorem 9. In particular, η = 1

6LH
will render M Schur stable.

However, our main goal is to show that even if there do exist values of η larger than 1
6LH

that guarantee
convergence of x̄t to x∗, such step-size values must obey η < 1

H
, which in turn leads to the H-independent

lower bound in equation (10).

26

since f(x∗) = 0. We have thus established the desired lower bounds. Finally, note that all our
arguments above hold for any L ≥ 14, any H ≥ 2, and any T ≥ 1. This concludes the proof.

Remark 2. Note that the quantity b in the objective functions of the clients does not feature anywhere
in the above analysis. As such, one possible choice of b is simply b = [0 0]

′. For this choice of b,
it is clear from inspection that both f1(x) and f2(x) have the same minimum, namely x∗ = [0 0].
Our analysis thus reveals that even when the client local objectives share the same minimum, the
lower bound in equation (10) continues to hold.

Remark 3. Let us look more closely at the role played by L in the above example. From inspection,
larger the value of L, the less smooth the overall function f(x), and more the objective heterogeneity.
Specifically, increasing L increases the heterogeneity between the client local objectives by increasing
‖∇f1(x) − ∇f2(x)‖. In terms of the impact of L on the dynamics of x̄t, we note that T2 in the
expression for λ1(η,H,L) below becomes larger as we increase L.

λ1(η,H,L) =

(
(1− η)

H
+

(1− ηL)
H

L

)(
L+ 1

4

)
︸ ︷︷ ︸

T1

− (L− 1)
2

4L︸ ︷︷ ︸
T2

To keep λ1(η,H,L) > −1, and thereby ensure stability of the recursion (57), we then need the
coefficient of (L+ 1)/4 in T1 above to be adequately large, despite potentially large values of H:
this is precisely what necessitates η to scale inversely with H . To summarize, in the above example,
large L leads to less smoothness, more objective heterogeneity, and small step-size.

27

F Proofs pertaining to Systems Heterogeneity in Section 4

As in Appendix D, we will focus on a fixed communication round t ∈ {1, . . . , T}; all our subsequent
arguments will apply identically to each such round. Given that δc = δs = 1, the local update rule
that will be of relevance to us for the majority of this section is

xi,`+1 = xi,` − ηi(∇fi(xi,`)−∇fi(x̄t) +∇f(x̄t)), (61)

where we have dropped the superscript of t on the local iterates xi,` to simplify notation. Based on
the discussion in Section 4, recall that the client step-sizes are chosen as follows:

ηi =
η̄

τi
,∀i ∈ S,

where η̄ ∈ (0, 1) is a flexible design parameter that we will specify based on the context.

F.1 Proof of Theorem 1: Analysis for Strongly Convex loss functions

The proof of Theorem 1 largely mirrors that of Theorem 9. We start with the following analogue of
Lemma 5.

Lemma 8. Suppose each fi(x) is L-smooth. Moreover, suppose τi ≥ 1,∀i ∈ S, δc = δs = 1, and
ηi = η̄

τi
,∀i ∈ S, where η̄ ∈ (0, 1). Then, FedLin guarantees:

f(x̄t+1)− f(x̄t) ≤ −η̄ (1− η̄L) ‖∇f(x̄t)‖2 +

(
L

m

m∑
i=1

ηi

τi−1∑
`=0

‖xi,` − x̄t‖

)
‖∇f(x̄t)‖

+
η̄L3

m

m∑
i=1

ηi

τi−1∑
`=0

‖xi,` − x̄t‖2.

(62)

Proof. Using (61) and the fact that xi,0 = x̄t,∀i ∈ S, we have:

xi,τi = x̄t − ηi
τi−1∑
`=0

∇fi(xi,`)− ηiτi(∇f(x̄t)−∇fi(x̄t))

= x̄t − ηi
τi−1∑
`=0

∇fi(xi,`)− η̄(∇f(x̄t)−∇fi(x̄t)),∀i ∈ S,

(63)

where we used ηiτi = η̄ in the second step. Averaging the above iterates across clients, we obtain:

x̄t+1 =
1

m

m∑
i=1

xi,τi = x̄t −
1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`)−
η̄

m

m∑
i=1

(∇f(x̄t)−∇fi(x̄t))

= x̄t −
1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`),

(64)

where for the second equality, we used the fact that∇f(y) = 1
m

m∑
i=1

∇fi(y),∀y ∈ Rd. Based on the

L-smoothness of f(·) and (64), we then have

f(x̄t+1)− f(x̄t) ≤ 〈x̄t+1 − x̄t,∇f(x̄t)〉+
L

2
‖x̄t+1 − x̄t‖2

= −
〈 1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`),∇f(x̄t)
〉

+
L

2

∥∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`)
∥∥∥∥2

.
(65)

28

Just as in the proof of Theorem 9, we now proceed to separately bound each of the two terms above,
starting with the first term, as follows.

−
〈 1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`),∇f(x̄t)
〉

= −
〈 1

m

m∑
i=1

ηi

τi−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t))

+
1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(x̄t),∇f(x̄t)
〉

= −
〈 1

m

m∑
i=1

ηi

τi−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t))

+
1

m

m∑
i=1

ηiτi︸︷︷︸
η̄

∇fi(x̄t),∇f(x̄t)
〉

= −
〈 1

m

m∑
i=1

ηi

τi−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t)) ,∇f(x̄t)
〉

− η̄‖∇f(x̄t)‖2

(a)

≤ 1

m

(∥∥∥∥ m∑
i=1

ηi

τi−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t))
∥∥∥∥
)
‖∇f(x̄t)‖

− η̄‖∇f(x̄t)‖2

(b)

≤ 1

m

(
m∑
i=1

ηi

τi−1∑
`=0

‖∇fi(xi,`)−∇fi(x̄t)‖

)
‖∇f(x̄t)‖

− η̄‖∇f(x̄t)‖2

(c)

≤ L

m

(
m∑
i=1

ηi

τi−1∑
`=0

‖xi,` − x̄t‖

)
‖∇f(x̄t)‖ − η̄‖∇f(x̄t)‖2,

(66)
where (a) follows from the Cauchy-Schwartz inequality, (b) follows from the triangle inequality, and
(c) follows from the L-smoothness of each fi(·). For the second term in (65), observe that

L

2

∥∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`)
∥∥∥∥2

=
L

2

∥∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t)) +
1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(x̄t)
∥∥∥∥2

=
L

2

∥∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t)) + η̄∇f(x̄t)

∥∥∥∥2

(a)

≤ L

∥∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t))
∥∥∥∥2

+ η̄2L‖∇f(x̄t)‖2

(b)

≤ L

m

m∑
i=1

ηi
2

∥∥∥∥τi−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t))
∥∥∥∥2

+ η̄2L‖∇f(x̄t)‖2

(c)

≤ L

m

m∑
i=1

ηi
2τi

τi−1∑
`=0

‖∇fi(xi,`)−∇fi(x̄t)‖2 + η̄2L‖∇f(x̄t)‖2

(d)

≤ η̄L3

m

m∑
i=1

ηi

τi−1∑
`=0

‖xi,` − x̄t‖2 + η̄2L‖∇f(x̄t)‖2.

(67)
For (a), we used (35) with γ = 1; for (b) and (c), we used Jensen’s inequality (36); and for (d), we
used ηiτi = η̄, and the L-smoothness of fi(·). Plugging in the bounds (66) and (67) in (65), and
simplifying, we obtain (62).

29

Remark 4. Note that the proof of Lemma 8 made no use of convexity. Thus, the same analysis will
carry over when we will later study the non-convex setting.

For both the strongly convex and convex settings, the following lemma provides a bound on the drift
at client i.
Lemma 9. Suppose each fi(x) is L-smooth and convex. Moreover, suppose τi ≥ 1,∀i ∈ S,
δc = δs = 1, and ηi ≤ 1

L ,∀i ∈ S. Then, FedLin guarantees the following bound for each i ∈ S,
and ∀` ∈ {0, . . . , τi − 1}:

‖xi,` − x̄t‖ ≤ ηiτi‖∇f(x̄t)‖. (68)

Proof. Based on (61), for any client i ∈ S, we have

‖xi,`+1 − x̄t‖ = ‖xi,` − x̄t − ηi (∇fi(xi,`)−∇fi(x̄t))− ηi∇f(x̄t)‖
≤ ‖xi,` − x̄t − ηi (∇fi(xi,`)−∇fi(x̄t)) ‖+ ηi‖∇f(x̄t)‖
≤ ‖xi,` − x̄t‖+ ηi‖∇f(x̄t)‖,

(69)

where in the last step, we used the bound (47) from Lemma 6 that applies to both the convex and
strongly convex settings. From (69), and the fact that xi,0 = x̄t,∀i ∈ S, we immediately obtain

‖xi,` − x̄t‖ ≤ ‖xi,0 − x̄t‖+ ηi`‖∇f(x̄t)‖
≤ ηiτi‖∇f(x̄t)‖,

(70)

which is the desired conclusion.

Completing the proof of Theorem 1: To complete the proof of Theorem 1, let us substitute the
bound on the drift term from Lemma 9 in equation (62). This yields:

f(x̄t+1)− f(x̄t) ≤ −η̄ (1− η̄L) ‖∇f(x̄t)‖2 +

(
L

m

m∑
i=1

ηi

τi−1∑
`=0

ηiτi‖∇f(x̄t)‖

)
‖∇f(x̄t)‖

+
η̄L3

m

m∑
i=1

ηi

τi−1∑
`=0

(ηiτi‖∇f(x̄t)‖)2

= −η̄ (1− η̄L) ‖∇f(x̄t)‖2 +
L

m

m∑
i=1

(ηiτi)
2‖∇f(x̄t)‖2

+
η̄L3

m

m∑
i=1

(ηiτi)
3‖∇f(x̄t)‖2

= −η̄ (1− η̄L) ‖∇f(x̄t)‖2 + η̄2L‖∇f(x̄t)‖2 + η̄4L3‖∇f(x̄t)‖2

≤ −η̄ (1− 3η̄L) ‖∇f(x̄t)‖2,

(71)

where in the third step, we used ηiτi = η̄, and for the last inequality, we set the flexible parameter η̄
to satisfy η̄L ≤ 1. In particular, setting η̄ = 1

6L , and using the fact that f(·) is µ-strongly convex, we
immediately obtain

f(x̄t+1)− f(x∗) ≤
(

1− 1

6κ

)
(f(x̄t)− f(x∗)) ,where κ =

L

µ
. (72)

Finally, note that η̄ = 1
6L implies that the step-size for client i is ηi = 1

6Lτi
, which satisfies the

requirement ηiL ≤ 1 for Lemma 9 to hold, and is precisely the choice of step-size in the statement of
the theorem. This completes the proof of Theorem 1.

F.2 Proof of Theorem 2: Analysis for Convex loss functions

In order to prove Theorem 2, we will use a slightly different approach than that in Theorem 1. Instead
of focusing on the quantity f(x̄t+1)− f(x̄t), we will be interested in bounding the distance to the
optimal point x∗ at the end of the t-th communication round, namely ‖x̄t+1 − x∗‖2. The following
lemma is the starting point of our analysis.

30

Lemma 10. Suppose each fi(x) is L-smooth and convex. Moreover, suppose τi ≥ 1,∀i ∈ S,
δc = δs = 1, and ηi = η̄

τi
,∀i ∈ S, where η̄ ∈ (0, 1). Then, FedLin guarantees:

‖x̄t+1 − x∗‖2 ≤ ‖x̄t − x∗‖2 − 2η̄ (f(x̄t)− f(x∗)) +
L(1 + 2η̄L)

m

m∑
i=1

ηi

τi−1∑
`=0

‖xi,` − x̄t‖2

+ 2η̄2‖∇f(x̄t)‖2.

(73)

Proof. From (64), recall that

x̄t+1 = x̄t −
1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`). (74)

Thus, we have

‖x̄t+1 − x∗‖2 = ‖x̄t − x∗‖2 −
2

m
〈x̄t − x∗,

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`)〉+

∥∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`)
∥∥∥∥2

.

(75)
To proceed, let us first bound the cross-term as follows.

− 2

m
〈x̄t − x∗,

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`)〉 = − 2

m

m∑
i=1

ηi

τi−1∑
`=0

(
〈x̄t − xi,`,∇fi(xi,`)〉

+ 〈xi,` − x∗,∇fi(xi,`)〉
)

(a)

≤ − 2

m

m∑
i=1

ηi

τi−1∑
`=0

(
fi(x̄t)− fi(xi,`)−

L

2
‖xi,` − x̄t‖2+

〈xi,` − x∗,∇fi(xi,`)〉
)

(b)

≤ − 2

m

m∑
i=1

ηi

τi−1∑
`=0

(
fi(x̄t)− fi(xi,`) + fi(xi,`)− fi(x∗)

)

+
L

m

m∑
i=1

ηi

τi−1∑
`=0

‖xi,` − x̄t‖2

= − 2

m

m∑
i=1

ηiτi (fi(x̄t)− fi(x∗)) +
L

m

m∑
i=1

ηi

τi−1∑
`=0

‖xi,` − x̄t‖2

= −2η̄ (f(x̄t)− f(x∗)) +
L

m

m∑
i=1

ηi

τi−1∑
`=0

‖xi,` − x̄t‖2.

(76)
In the above steps, for (a) we used the fact that fi(·) is L-smooth; see equation (29). For (b), we used
the fact that 〈xi,` − x∗,∇fi(xi,`)〉 ≥ fi(xi,`) − fi(x∗) - a consequence of the convexity of fi(·).
Finally, to arrive at the last step, we used ηiτi = η̄.

Now observe that while deriving the bound in Eq. (67) of Lemma 8, we only used the fact that each
fi(·) is L-smooth. Thus, the same bound applies in our current setting. In particular, we have∥∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`)
∥∥∥∥2

≤ 2η̄L2

m

m∑
i=1

ηi

τi−1∑
`=0

‖xi,` − x̄t‖2 + 2η̄2‖∇f(x̄t)‖2. (77)

Combining the above bound with that in (76) immediately leads to (73).

Completing the proof of Theorem 2: Suppose ηiL ≤ 1. Then, based on Lemma 9, recall that

‖xi,` − x̄t‖ ≤ ηiτi‖∇f(x̄t)‖,∀i ∈ S,∀` ∈ {0, . . . τi − 1}. (78)

31

Substituting the above bound on the drift term in (73) yields:

‖x̄t+1 − x∗‖2 ≤ ‖x̄t − x∗‖2 − 2η̄ (f(x̄t)− f(x∗)) +
L(1 + 2η̄L)

m

m∑
i=1

ηi

τi−1∑
`=0

(ηiτi)
2‖∇f(x̄t)‖2

+ 2η̄2‖∇f(x̄t)‖2

(a)

≤ ‖x̄t − x∗‖2 − 2η̄ (f(x̄t)− f(x∗)) +
3L

m

m∑
i=1

(ηiτi)
3‖∇f(x̄t)‖2 + 2η̄2‖∇f(x̄t)‖2

(b)
= ‖x̄t − x∗‖2 − 2η̄ (f(x̄t)− f(x∗)) + 3η̄3L‖∇f(x̄t)‖2 + 2η̄2‖∇f(x̄t)‖2

(c)

≤ ‖x̄t − x∗‖2 − 2η̄ (f(x̄t)− f(x∗)) + 5η̄2‖∇f(x̄t)‖2

(d)

≤ ‖x̄t − x∗‖2 − 2η̄ (1− 5η̄L) (f(x̄t)− f(x∗)) .
(79)

In the above steps, for (a), we set η̄ to satisfy η̄L ≤ 1; for (b), we used ηiτi = η̄; for (c), we once
again used η̄L ≤ 1; and finally, for (d), we used the fact that f(·) is L-smooth; refer to equation (30).
Now rearranging terms in (79), we obtain

2η̄ (1− 5η̄L) (f(x̄t)− f(x∗)) ≤ ‖x̄t − x∗‖2 − ‖x̄t+1 − x∗‖2. (80)

Now let η̄ = 1
10L , implying ηi = 1

10Lτi
,∀i ∈ S. Clearly, the conditions ηiL ≤ 1 and η̄L ≤ 1 are

then satisfied, and we have

f(x̄t)− f(x∗) ≤ 10L
(
‖x̄t − x∗‖2 − ‖x̄t+1 − x∗‖2

)
. (81)

Summing the above inequality from t = 1 to t = T leads to a telescoping sum on the R.H.S., and we
obtain

f

(
1

T

T∑
t=1

x̄t

)
−f(x∗)

(a)

≤ 1

T

T∑
t=1

(
f(x̄t)−f(x∗)

)
≤ 10L

T

(
‖x̄1 − x∗‖2 − ‖x̄T+1 − x∗‖2

)
, (82)

where (a) follows from the convexity of f(·). This completes the proof of Theorem 2.

F.3 Proof of Theorem 3: Analysis for Non-convex loss functions

To analyze the non-convex setting, the first key observation that we make is that the claim in Lemma 8
relies only on smoothness of the client loss functions fi(·), and requires no assumptions of convexity.
Thus, the bound in (62) applies to the non-convex setting as well. However, the bound on the drift
term ‖xi,` − x̄t‖ that we derived in Lemma 9 did make use of convexity of each fi(·), and hence, is
no longer applicable. We thus need a way to bound ‖xi,` − x̄t‖ without making any assumptions of
convexity; this is precisely the subject of the following lemma.

Lemma 11. Suppose each fi(x) is L-smooth. Moreover, suppose τi ≥ 1,∀i ∈ S, δc = δs = 1,
and ηi ≤ 1

Lτi
,∀i ∈ S. Then, FedLin guarantees the following bound for each i ∈ S, and

∀` ∈ {0, . . . , τi − 1}:
‖xi,` − x̄t‖ ≤ 3ηiτi‖∇f(x̄t)‖. (83)

Proof. From (61), we have

‖xi,`+1 − x̄t‖ = ‖xi,` − x̄t − ηi (∇fi(xi,`)−∇fi(x̄t))− ηi∇f(x̄t)‖
≤ ‖xi,` − x̄t‖+ ηi‖∇fi(xi,`)−∇fi(x̄t)‖+ ηi‖∇f(x̄t)‖
(a)

≤ (1 + ηiL) ‖xi,` − x̄t‖+ ηi‖∇f(x̄t)‖
(b)

≤
(

1 +
1

τi

)
‖xi,` − x̄t‖+ ηi‖∇f(x̄t)‖,

(84)

32

where (a) follows from theL-smoothness of fi(·), and (b) follows by noting ηi ≤ 1
Lτi

. Let αi = 1+ 1
τi

.
We then have

‖xi,` − x̄t‖ ≤ α`i ‖xi,0 − x̄t‖︸ ︷︷ ︸
=0

+

`−1∑
j=0

αji

 ηi‖∇f(x̄t)‖

=

`−1∑
j=0

αji

 ηi‖∇f(x̄t)‖

=

(
α`i − 1

αi − 1

)
ηi‖∇f(x̄t)‖

≤ ηiτi
(

1 +
1

τi

)`
‖∇f(x̄t)‖

≤ ηiτi
(

1 +
1

τi

)τi
‖∇f(x̄t)‖

≤ exp (1)ηiτi‖∇f(x̄t)‖ ≤ 3ηiτi‖∇f(x̄t)‖,

(85)

which is the desired conclusion.

Remark 5. In comparison with Lemma 9 where we derived bounds on the drift for the strongly
convex and convex settings, the requirement on the step-size for bounding the drift in Lemma 11 is
more stringent: whereas ηi ≤ 1

L sufficed for Lemma 9 to hold, we need ηi ≤ 1
Lτi

for the non-convex
setting in Lemma 11. Also, the bound in Lemma 11 is worse than that in Lemma 9 by a factor of 3.

Completing the proof of Theorem 3: By substituting the bound on the drift from Lemma 11 in
equation (62), we obtain

f(x̄t+1)− f(x̄t) ≤ −η̄ (1− η̄L) ‖∇f(x̄t)‖2 +

(
L

m

m∑
i=1

ηi

τi−1∑
`=0

3ηiτi‖∇f(x̄t)‖

)
‖∇f(x̄t)‖

+
η̄L3

m

m∑
i=1

ηi

τi−1∑
`=0

(3ηiτi‖∇f(x̄t)‖)2

= −η̄ (1− η̄L) ‖∇f(x̄t)‖2 +
3L

m

m∑
i=1

(ηiτi)
2‖∇f(x̄t)‖2

+
9η̄L3

m

m∑
i=1

(ηiτi)
3‖∇f(x̄t)‖2

= −η̄ (1− η̄L) ‖∇f(x̄t)‖2 + 3η̄2L‖∇f(x̄t)‖2 + 9η̄4L3‖∇f(x̄t)‖2

≤ −η̄ (1− 13η̄L) ‖∇f(x̄t)‖2,
(86)

where we used ηiτi = η̄ and η̄L ≤ 1 in the above steps. Now suppose η̄ = 1
26L , implying

ηi = 1
26Lτi

< 1
Lτi

. Observe that this choice of η̄ fulfils the step-size requirements for Lemma 11 to
hold. Plugging η̄ = 1

26L in (86) yields

‖∇f(x̄t)‖2 ≤ 52L
(
f(x̄t)− f(x̄t+1)

)
. (87)

Summing the above inequality from t = 1 to t = T , we obtain as desired

min
t∈[T]

‖∇f(x̄t)‖2 ≤
1

T

T∑
t=1

‖∇f(x̄t)‖2 ≤
52L

T

(
f(x̄1)− f(x̄T+1)

)
. (88)

33

F.4 Proof of Theorem 4: Analysis for Strongly Convex loss functions with Noise

In this section, we focus on analyzing the performance of FedLin under a general stochastic oracle
model, subject to arbitrary objective and systems heterogeneity. For each i ∈ S and x ∈ Rd, let qi(x)
be an unbiased estimate of the gradient ∇fi(x) with variance bounded above by σ2. Our goal is to
then analyze the following noisy update rule for FedLin:

x
(t)
i,`+1 = x

(t)
i,` − ηi(qi(x

(t)
i,`)− qi(x̄t) + q(x̄t)), (89)

where q(x) , 1/m
∑
i∈S qi(x),∀x ∈ Rd. For our subsequent analysis, we will use F (t)

i,` to denote
the filtration that captures all the randomness up to the `-th local step of client i in round t. We will
also use F (t) to represent the filtration capturing all the randomness up to the end of round t − 1.
With a slight abuse of notation, F (t)

i,−1 is to be interpreted as F (t),∀i ∈ C.

We begin our analysis of Theorem 4 with the following lemma.
Lemma 12. Suppose each fi(x) is L-smooth. Moreover, suppose τi ≥ 1, ∀i ∈ S, δc = δs = 1 and

ηi =
η̄

τi
, ∀i ∈ S, where η̄ ∈ (0, 1). Under the stochastic oracle model defined in Section 4, FedLin

guarantees:

E
[
‖x̄t+1 − x∗‖2

]
≤ E

[
‖x̄t − x∗‖2

]
− 2η̄E

[
f(x̄t)− f(x∗)

]
+ 4η̄2E

[
‖∇f(x̄t)‖2

]
+
L(1 + 6η̄L)

m

m∑
i=1

ηi

τi−1∑
`=0

E
[
‖x̄t − xi,`‖2

]
+ 16η̄2σ2.

(90)

Proof. From the noisy local update rule of FedLin in Eq. (89), we have:

x̄t+1 = x̄t −
1

m

m∑
i=1

ηi

τi−1∑
`=0

[
qi(xi,`)− qi(x̄t) + q(x̄t)

]
= x̄t −

1

m

m∑
i=1

ηi

τi−1∑
`=0

qi(xi,`).

(91)

Hence, we obtain

‖x̄t+1 − x∗‖2 = ‖x̄t − x∗‖2 +
∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

qi(xi,`)
∥∥∥2

︸ ︷︷ ︸
A1

−2
〈
x̄t − x∗,

1

m

m∑
i=1

ηi

τi−1∑
`=0

qi(xi,`)
〉

︸ ︷︷ ︸
A2

.

(92)

We begin by bounding the term A1 in (92) as follows:

A1 =
∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

qi(xi,`)
∥∥∥2

=
∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

(qi(xi,`)− qi(x̄t) + qi(x̄t))
∥∥∥2

=
∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

(qi(xi,`)− qi(x̄t)) + η̄q(x̄t)
∥∥∥2

≤ 2
∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

(qi(xi,`)− qi(x̄t))
∥∥∥2

︸ ︷︷ ︸
T1

+ 2η̄2‖q(x̄t)‖2︸ ︷︷ ︸
T2

.

(93)

34

The term T1 in (93) can be upper bounded as follows:

T1 = 2
∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

(
qi(xi,`)− qi(x̄t)

)∥∥∥2

≤ 2

m

m∑
i=1

η2
i τi

τi−1∑
`=0

‖qi(xi,`)− qi(x̄t)‖2

=
2η̄

m

m∑
i=1

ηi

τi−1∑
`=0

‖qi(xi,`)− qi(x̄t)‖2

=
2η̄

m

m∑
i=1

ηi

τi−1∑
`=0

‖qi(xi,`)−∇fi(xi,`) +∇fi(xi,`)−∇fi(x̄t) +∇fi(x̄t)− qi(x̄t)‖2

(b)

≤ 6η̄

m

m∑
i=1

ηi

τi−1∑
`=0

(
‖qi(xi,`)−∇fi(xi,`)‖2 + ‖∇fi(xi,`)−∇fi(x̄t)‖2 + ‖∇fi(x̄t)− qi(x̄t)‖2

)
,

(94)
where steps (a) and (b) follow from an application of equation (36). Taking expectation on both sides
of equation (94), we obtain:

E[T1] ≤ 6η̄

m

m∑
i=1

ηi

τi−1∑
`=0

(
E
[
E
[
‖qi(xi,`)−∇fi(xi,`)‖2|F (t)

i,`−1

]]
+ E

[
‖∇fi(xi,`)−∇fi(x̄t)‖2

]
+ E

[
E
[
‖∇fi(x̄t)− qi(x̄t)‖2|F (t)

]])
(a)

≤ 6η̄

m

m∑
i=1

ηi

τi−1∑
`=0

(
2σ2 + L2E

[
‖xi,` − x̄t‖2

])
≤ 12η̄2σ2 +

6η̄L2

m

m∑
i=1

ηi

τi−1∑
`=0

E
[
‖xi,` − x̄t‖2

]
.

(95)
For (a), we used the following facts: (i) x(t)

i,` is F (t)
i,`−1-adapted; (ii) x̄t is F (t)-adapted; (iii) the

variance of the noise model is bounded above by σ2, and (iv) L-smoothness of the loss functions.

Next, the term T2 in (93) can be upper bounded as follows:

T2 = 2η̄2‖q(x̄t)‖2

= 2η̄2‖q(x̄t)−∇f(x̄t) +∇f(x̄t)‖2

= 2η̄2
∥∥∥ 1

m

m∑
i=1

(qi(x̄t)−∇fi(x̄t)) +∇f(x̄t)
∥∥∥2

≤ 4η̄2
∥∥∥ 1

m

m∑
i=1

(qi(x̄t)−∇fi(x̄t))
∥∥∥2

+ 4η̄2‖∇f(x̄t)‖2

(a)

≤ 4η̄2

m

m∑
i=1

‖qi(x̄t)−∇fi(x̄t)‖2 + 4η̄2‖∇f(x̄t)‖2,

(96)

where step (a) follows from an application of equation (36). Taking expectation on both sides of
equation (96), and using the bounded-variance property, we obtain:

E[T2] ≤ 4η̄2

(
σ2 + E

[
‖∇f(x̄t)‖2

])
. (97)

35

We now proceed to bound the expectation of the term A2 in (92) as follows:

E[A2] = E
[
− 2
〈
x̄t − x∗,

1

m

m∑
i=1

ηi

τi−1∑
`=0

qi(xi,`)
〉]

=
−2

m

m∑
i=1

ηi

τi−1∑
`=0

E
[
〈x̄t − x∗, qi(xi,`)〉

]
=
−2

m

m∑
i=1

ηi

τi−1∑
`=0

E
[
E
[
〈x̄t − x∗, qi(xi,`)〉|F (t)

i,`−1

]]
(a)
=
−2

m

m∑
i=1

ηi

τi−1∑
`=0

E
[
〈x̄t − x∗,∇fi(xi,`)〉

]
(b)

≤ −2

m

m∑
i=1

ηi

τi−1∑
`=0

E
[
fi(x̄t)− fi(x∗)−

L

2
‖xi,` − x∗‖2

]
= −2η̄E

[
f(x̄t)− f(x∗)

]
+
L

m

m∑
i=1

ηi

τi−1∑
`=0

E
[
‖xi,` − x̄t‖2

]
.

(98)

For step (a), we used the unbiasedness property of the noise model, and for step (b), we employed
the same reasoning as that used to arrive at equation (76).

Taking expectation on both sides of equation (92), and combining the bounds in equations (95), (97)
and (98) establishes the claim of Lemma 12.

For L-smooth and µ-strongly convex loss functions, the following lemma provides a bound on the
drift at client i.
Lemma 13. Suppose each fi(x) is L-smooth and µ-strongly convex. Moreover, suppose τi ≥ 1,

∀i ∈ S, δc = δs = 1 and ηi =
η̄

τi
, ∀i ∈ S, where η̄ ∈ (0, 1). Under the stochastic oracle model

defined in Section 4, FedLin guarantees the following bound for each i ∈ S , and ∀` ∈ {0, . . . , τi−1}:

E
[
‖xi,` − x̄t‖2

]
≤ 6η̄2E

[
‖∇f(x̄t)‖2

]
+ 27ηiη̄σ

2. (99)

Proof. From the noisy local update rule of Fedlin in Eq. (89), we have:
xi,`+1 = xi,` − ηi

(
qi(xi,`)− qi(x̄t) + q(x̄t)

)
= xi,` − ηi

(
qi(xi,`)−∇fi(xi,`) +∇fi(xi,`)−∇fi(x̄t)

+∇fi(x̄t)− qi(x̄t) + q(x̄t)
)
.

(100)

Hence, we have:
xi,`+1 − x̄t = (xi,` − x̄t)− ηi

(
∇fi(xi,`)−∇fi(x̄t) +∇f(x̄t)︸ ︷︷ ︸

V

)
− ηi

(
qi(xi,`)−∇fi(xi,`) +∇fi(x̄t)− qi(x̄t) + q(x̄t)−∇f(x̄t)︸ ︷︷ ︸

W

) (101)

Consequently, we may write:
‖xi,`+1 − x̄t‖2 = ‖(xi,` − x̄t − ηiV)− ηiW‖2

= ‖(xi,` − x̄t − ηiV)‖2 + η2
i ‖W‖2 − 2〈xi,` − x̄t − ηiV, ηiW〉.

(102)

Taking expectation on both sides of equation (102), we have:
E
[
‖xi,`+1 − x̄t‖2

]
= E

[
‖(xi,` − x̄t − ηiV)‖2

]
+ η2

i E
[
‖W‖2

]
− 2E

[
E
[
〈xi,` − x̄t − ηiV, ηiW〉|F (t)

i,`−1

]]
(a)
= E

[
‖xi,` − x̄t − ηiV‖2

]︸ ︷︷ ︸
A1

+η2
i E
[
‖W‖2

]︸ ︷︷ ︸
A2

.

(103)

36

For (a), we used the following facts: (i) xi,`, x̄t, and V , are all adapted to F (t)
i,`−1, and (ii)

E
[
W|F (t)

i,`−1

]
= 0 based on fact (i) and the unbiasedness property of the noise model.

We now proceed to bound the term A1 in equation (103) as follows:

E
[
‖(xi,` − x̄t − ηiV)‖2

]
= E

[
‖xi,` − x̄t − ηi(∇fi(xi,`)−∇fi(x̄t))− ηi∇f(x̄t)‖2

]
≤ (1 +

1

γ
)E
[
‖xi,` − x̄t‖2

]
+ (1 + γ)η2

i E
[
‖∇f(x̄t)‖2

]
.

(104)

The above inequality follows from the application of equation (35) and Lemma 6.

To bound the term A2 in equation (103), we proceed as follows:

‖W‖2 = ‖qi(xi,`)−∇fi(xi,`) +∇fi(x̄t)− qi(x̄t) + q(x̄t)−∇f(x̄t)‖2

≤ 3‖qi(xi,`)−∇fi(xi,`)‖2 + 3‖∇fi(x̄t)− qi(x̄t)‖2

+ 3‖q(x̄t)−∇f(x̄t)‖2

≤ 3‖qi(xi,`)−∇fi(xi,`)‖2 + 3‖∇fi(x̄t)− qi(x̄t)‖2

+
3

m

m∑
i=1

‖qi(x̄t)−∇fi(x̄t)‖2.

(105)

Taking expectation on both sides of Eq. (105) and using the bounded-variance property, we obtain:

E
[
‖W‖2

]
≤ 3(3σ2) = 9σ2. (106)

Combining equations (104) and (106), equation (103) becomes:

E
[
‖xi,`+1 − x̄t‖2

]
≤ (1 +

1

γ
)E
[
‖xi,` − x̄t‖2

]
+ (1 + γ)η2

i E
[
‖∇f(x̄t)‖2

]
+ 9η2

i σ
2. (107)

Iterating equation (107) and using xi,0 = x̄t, we obtain:

E
[
‖xi,` − x̄t‖2

]
≤

[
(1 + γ)η2

i E
[
‖∇f(x̄t)‖2

]
+ 9η2

i σ
2

](
`−1∑
j=0

(
1 +

1

γ

)j)

≤ 6η̄2E
[
‖∇f(x̄t)‖2

]
+ 27ηiη̄σ

2,

(108)

where we set γ = τi, and used ηiτi = η̄.

Completing the proof of Theorem 4: By substituting the bound on the drift from Lemma 13 in
equation (90), and for 12η̄L ≤ 1, we obtain:

E
[
‖x̄t+1 − x∗‖2

]
≤ E

[
‖x̄t − x∗‖2

]
− 2η̄E

[
f(x̄t)− f(x∗)

]
+ 4η̄2E

[
‖∇f(x̄t)‖2

]
+ 2L

(
6η̄3E

[
‖∇f(x̄t)‖2

]
+ 27η̄3σ2

)
+ 16η̄2σ2

≤ E
[
‖x̄t − x∗‖2

]
− 2η̄E

[
f(x̄t)− f(x∗)

]
+ 6η̄2E

[
‖∇f(x̄t)‖2

]
+ 25η̄2σ2

(a)

≤ E
[
‖x̄t − x∗‖2

]
− E

[
2η̄(1− 6η̄L)(f(x̄t)− f(x∗))

]
+ 25η̄2σ2

(b)

≤ (1− η̄µ

2
)E
[
‖x̄t − x∗‖2

]
+ 25η̄2σ2.

(109)
In the above steps, (a) and (b) follow from the L-smoothness and µ-strong convexity of the loss
functions, respectively. This completes the proof of Theorem 4.

37

G Proof of Theorem 6: Gradient Sparsification at Server with no
Error-Feedback

In our subsequent analysis, we will make use of three basic properties of a TOP-k operator that are
summarized in the following lemma.

Lemma 14. Let Cδ : Rd → Rd denote the TOP-k operator, where δ = d/k, and k ∈ {1, . . . , d}.
Then, given any vector x ∈ Rd, the following three properties hold.

• Property 1: 〈Cδ(x), x〉 = ‖Cδ(x)‖2.

• Property 2: ‖Cδ(x)‖2 ≥ 1
δ ‖x‖

2.

• Property 3: ‖x− Cδ(x)‖2 ≤
(
1− 1

δ

)
‖x‖2.

All three properties stated above follow almost directly from the definition of the TOP-k operator.
For a formal proof, see [49]. We start with the following lemma.

Lemma 15. Suppose each fi(x) is L-smooth. Moreover, suppose τi ≥ 1,∀i ∈ S, δc = 1, and
ηi = η̄

τi
,∀i ∈ S, where η̄ ∈ (0, 1). Then, the variant of FedLin described in the statement of

Theorem 6 guarantees:

f(x̄t+1)− f(x̄t) ≤ −η̄ (1− η̄L) ‖gt‖2 +

(
L

m

m∑
i=1

ηi

τi−1∑
`=0

‖xi,` − x̄t‖

)
‖∇f(x̄t)‖

+
η̄L3

m

m∑
i=1

ηi

τi−1∑
`=0

‖xi,` − x̄t‖2.

(110)

Proof. For the setting under consideration, the local update rule at client i takes the form

xi,`+1 = xi,` − ηi(∇fi(xi,`)−∇fi(x̄t) + gt), (111)

where

gt = Cδs

(
1

m

m∑
i=1

∇fi(x̄t)

)
= Cδs (∇f(x̄t)) . (112)

Using xi,0 = x̄t,∀i ∈ S, we then have:

xi,τi = x̄t − ηi
τi−1∑
`=0

∇fi(xi,`)− ηiτi(gt −∇fi(x̄t))

= x̄t − ηi
τi−1∑
`=0

∇fi(xi,`)− η̄(gt −∇fi(x̄t)),∀i ∈ S,

(113)

where we used ηiτi = η̄ in the second step. Thus,

x̄t+1 =
1

m

m∑
i=1

xi,τi = x̄t −
1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`)−
η̄

m

m∑
i=1

(gt −∇fi(x̄t))

= x̄t −
1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`)− η̄ (gt −∇f(x̄t)) .

(114)

Compared to (64), note that we have an additional error term η̄(gt − ∇f(x̄t)) that shows up as a
consequence of gradient sparsification at the server. Nonetheless, we proceed exactly as before, and

38

bound f(x̄t+1)− f(x̄t) as follows:

f(x̄t+1)− f(x̄t) ≤ 〈x̄t+1 − x̄t,∇f(x̄t)〉+
L

2
‖x̄t+1 − x̄t‖2

=
〈
− 1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`) + η̄(∇f(x̄t)− gt),∇f(x̄t)
〉

+
L

2

∥∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`) + η̄ (gt −∇f(x̄t))

∥∥∥∥2

(a)
= −

〈 1

m

m∑
i=1

ηi

τi−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t)),∇f(x̄t)
〉
− η̄
〈
gt,∇f(x̄t)

〉
+
L

2

∥∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t)) + η̄gt

∥∥∥∥2

(b)
= −

〈 1

m

m∑
i=1

ηi

τi−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t)),∇f(x̄t)
〉
− η̄‖gt‖2

+
L

2

∥∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t)) + η̄gt

∥∥∥∥2

(c)

≤ −η̄ (1− η̄L) ‖gt‖2−
〈 1

m

m∑
i=1

ηi

τi−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t)),∇f(x̄t)
〉

︸ ︷︷ ︸
T1

+ L

∥∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

(∇fi(xi,`)−∇fi(x̄t))
∥∥∥∥2

︸ ︷︷ ︸
T2

(d)

≤ −η̄ (1− η̄L) ‖gt‖2 +

(
L

m

m∑
i=1

ηi

τi−1∑
`=0

‖xi,` − x̄t‖

)
‖∇f(x̄t)‖

+
η̄L3

m

m∑
i=1

ηi

τi−1∑
`=0

‖xi,` − x̄t‖2.

(115)
In the above steps, for arriving at (a), we made the following observation:

η̄∇f(x̄t) =
1

m

m∑
i=1

η̄∇fi(x̄t) =
1

m

m∑
i=1

ηiτi∇fi(x̄t) =
1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(x̄t). (116)

For (b), observe that
〈
gt,∇f(x̄t)

〉
=
〈
Cδs (∇f(x̄t)) ,∇f(x̄t)

〉
= ‖gt‖2, where the second equality

follows from Property 1 of the TOP-k operator in Lemma 14. For (c), we used (35) with γ = 1. For
(d), we followed the arguments used to arrive at (66) and (67) to bound T1 and T2, respectively.

39

Completing the proof of Theorem 6: To complete the proof of Theorem 6, we start by noting that
if the step-size at client i satisfies ηi ≤ 1

L , then arguments identical to those used for proving Lemma
9 can be used to conclude that

‖xi,` − x̄t‖ ≤ ηiτi‖gt‖. (117)
Substituting the above bound in (110) yields:

f(x̄t+1)− f(x̄t) ≤ −η̄ (1− η̄L) ‖gt‖2 +

(
L

m

m∑
i=1

ηi

τi−1∑
`=0

ηiτi‖gt‖

)
‖∇f(x̄t)‖

+
η̄L3

m

m∑
i=1

ηi

τi−1∑
`=0

(ηiτi‖gt‖)2

= −η̄ (1− η̄L) ‖gt‖2 +
L

m

m∑
i=1

(ηiτi)
2‖gt‖‖∇f(x̄t)‖+

η̄L3

m

m∑
i=1

(ηiτi)
3‖gt‖2

(a)

≤ −η̄ (1− η̄L) ‖gt‖2 +

√
δsL

m

m∑
i=1

(ηiτi)
2‖gt‖2 +

η̄L3

m

m∑
i=1

(ηiτi)
3‖gt‖2

(b)

≤ −η̄
(

1−
(

2 +
√
δs

)
η̄L
)
‖gt‖2

(c)

≤ − η̄

δs

(
1−

(
2 +

√
δs

)
η̄L
)
‖∇f(x̄t)‖2

(d)

≤ −2η̄µ

δs

(
1−

(
2 +

√
δs

)
η̄L
)

(f(x̄t)− f(x∗)) .

(118)
In the above steps, for (a), we used Property 2 of the TOP-k operator in Lemma 14 to conclude that
‖∇f(x̄t)‖ ≤

√
δs‖Cδs(∇f(x̄t))‖ =

√
δs‖gt‖. For (b), we used ηiτi = η̄ and η̄L ≤ 1. For (c), we

once again used the second property of the TOP-k operator, and for (d), we used the fact that f(·) is
µ-strongly convex (refer to (34)). Setting η̄ = 1

2(2+
√
δs)L

and rearranging terms then leads to

f(x̄t+1)− f(x∗) ≤

(
1− 1

2δs
(
2 +
√
δs
)
κ

)
(f(x̄t)− f(x∗)),where κ =

L

µ
. (119)

Using the above inequality recursively, we obtain the desired conclusion.

40

H Proof of Theorem 8: Gradient Sparsification at Clients

The proof of Theorem 8 is somewhat more involved than Theorem 6. Let us begin by compiling the
governing equations for the setting under consideration.

xi,`+1 = xi,` − ηi(∇fi(xi,`)−∇fi(x̄t) + gt)

hi,t = Cδc (ρi,t−1 +∇fi(x̄t))
ρi,t = ρi,t−1 +∇fi(x̄t)− hi,t.

(120)

The first and the third equations hold for every communication round t ∈ {1, . . . , T}, whereas the
second equation holds ∀t ∈ {2, . . . , T}. Moreover, we have hi,1 = ∇fi(x̄1), and ρi,0 = ρi,1 =
0,∀i ∈ S, i.e., the initial gradient compression errors are 0 at each client. Since there is no further
gradient sparsification at the server, we have gt = 1

m

∑m
i=1 hi,t. It then follows that

ρt = ρt−1 +∇f(x̄t)− gt, (121)

where ρt , 1
m

∑m
i=1 ρi,t. To simplify the analysis, let us define a virtual sequence {x̃t} as follows:8

x̃t , x̄t − η̄ρt−1, (122)

where η̄ = ηiτi,∀i ∈ S. Now observe that

x̃t+1 = x̄t+1 − η̄ρt

= x̄t −
1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`)− η̄ (gt −∇f(x̄t))− η̄ (ρt−1 +∇f(x̄t)− gt)

= x̃t −
1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`).

(123)

The second equality follows from (114) and (121), and the third follows from the definition of x̃t
in (122). Interestingly, note that the recursion for x̃t that we just derived in (123) resembles that for
x̄t in (64) where there was no effect of gradient sparsification. This simplified recursion reveals the
utility of the virtual sequence.

Proof idea: In order to argue that x̄t converges to x∗, it clearly suffices to argue that the virtual
sequence x̃t converges to x∗, and x̄t converges to x̃t. To achieve this, we will employ the following
Lyapunov function in our analysis:

ψt , ‖x̃t − x∗‖2 + η̄2Vt−1,where Vt ,
1

m

m∑
i=1

‖ρi,t‖2. (124)

The choice of the above Lyapunov function is specific to our setting, and accounts for the effects of
systems heterogeneity and gradient sparsification. In the following lemma, we bound the first part of
the Lyapunov function, namely the distance of the virtual iterate x̃t from the optimal point x∗.
Lemma 16. Suppose each fi(x) is L-smooth and µ-strongly convex, and suppose Assumption 1
holds. Moreover, suppose τi ≥ 1,∀i ∈ S, and δs = 1. Let the step-size for client i be chosen as
ηi = η̄

τi
, where η̄ ∈ (0, 1) satisfies η̄ ≤ 1

2LC . Then, FedLin guarantees:

‖x̃t+1 − x∗‖2 ≤ ‖x̃t − x∗‖2 − 2η̄(f(x̃t)− f(x∗)) + 14η̄2‖∇f(x̃t)‖2 + 24η̄3LVt−1 + 12η̄3LD.
(125)

Proof. From (123), we obtain

‖x̃t+1 − x∗‖2 = ‖x̃t − x∗‖2 −
2

m
〈x̃t − x∗,

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`)〉+

∥∥∥∥ 1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`)
∥∥∥∥2

.

(126)
8We note that virtual sequences and perturbed iterates are commonly used to simplify proofs in the context

of analyzing compression schemes [52, 49], and asynchronous methods [56].

41

To bound the second and third terms in the above equation, we can follow exactly the same steps as
those in Lemma 10. In particular, Lemma 10 relied on L-smoothness and convexity of each fi(·) -
each of these properties apply to our current setting. Referring to (73), we thus have

‖x̃t+1 − x∗‖2 ≤ ‖x̃t − x∗‖2 − 2η̄ (f(x̃t)− f(x∗)) +
L(1 + 2η̄L)

m

m∑
i=1

ηi

τi−1∑
`=0

‖xi,` − x̃t‖2

+ 2η̄2‖∇f(x̃t)‖2. (127)

To bound the term ‖x̃t − xi,`‖2, start by observing that

‖x̃t − xi,`‖2 = ‖x̃t − x̄t + x̄t − xi,`‖2

≤ 2‖x̃t − x̄t‖2 + 2‖x̄t − xi,`‖2

= 2η̄2‖ρt−1‖2 + 2‖x̄t − xi,`‖2,

(128)

where the last equality follows from (122). Since η̄ ≤ 1
L , following the same arguments as in Lemma

9, we have ‖x̄t − xi,`‖ ≤ ηiτi‖gt‖ = η̄‖gt‖. Thus,

‖x̃t − xi,`‖2 ≤ 2η̄2
(
‖ρt−1‖2 + ‖gt‖2

)
. (129)

Next, note that

‖gt‖2 =

∥∥∥∥ 1

m

m∑
i=1

hi,t

∥∥∥∥2

(a)

≤ 1

m

m∑
i=1

‖hi,t‖2

(b)

≤ 1

m

m∑
i=1

‖ρi,t−1 +∇fi(x̄t)‖2

(c)

≤ 2

m

m∑
i=1

‖ρi,t−1‖2 +
2

m

m∑
i=1

‖∇fi(x̄t)‖2

(d)
= 2Vt−1 +

2

m

m∑
i=1

‖∇fi(x̄t)‖2

(e)

≤ 2Vt−1 + 2C‖∇f(x̄t)‖2 + 2D.

(130)

In the above steps, (a) follows from Jensen’s inequality; (b) follows from the fact that hi,t =
Cδc (ρi,t−1 +∇fi(x̄t)), and the definition of the TOP-k operation; (c) follows from (35) with γ = 1;
(d) follows from the definition of Vt−1, and (e) follows from Assumption 1. Finally, observe that

‖∇f(x̄t)‖2 = ‖∇f(x̄t)−∇f(x̃t) +∇f(x̃t)‖2

≤ 2‖∇f(x̄t)−∇f(x̃t)‖2 + 2‖∇f(x̃t)‖2

(a)

≤ 2L2‖x̄t − x̃t‖2 + 2‖∇f(x̃t)‖2

(b)
= 2η̄2L2‖ρt−1‖2 + 2‖∇f(x̃t)‖2

(c)

≤ 2η̄2L2Vt−1 + 2‖∇f(x̃t)‖2,

(131)

where for (a), we used the L-smoothness of f(·); for (b), we used (122), and for (c), we used Jensen’s
inequality to bound ‖ρt−1‖2 by Vt−1. Combining the bounds (129), (130) and (131), we obtain:

‖x̃t − xi,`‖2 ≤ 2η̄2
(
‖ρt−1‖2 + 2Vt−1 + 2C‖∇f(x̄t)‖2 + 2D

)
≤ 2η̄2

(
(3 + 4η̄2L2C)Vt−1 + 4C‖∇f(x̃t)‖2 + 2D

)
≤ 4η̄2

(
2Vt−1 + 2C‖∇f(x̃t)‖2 +D

)
.

(132)

42

For the second inequality, we once again used Jensen’s to conclude ‖ρt−1‖2 ≤ Vt−1; for the last
inequality, we used η̄2L2C ≤ η̄2L2C2 ≤ 1

4 , which in turn follows from C ≥ 1, and the fact that
η̄ ≤ 1

2LC based on our choice of step-size. Plugging the bound on ‖x̃t − xi,`‖2 in (127), we have

‖x̃t+1 − x∗‖2 ≤ ‖x̃t − x∗‖2 − 2η̄ (f(x̃t)− f(x∗)) + 2η̄2‖∇f(x̃t)‖2

+
L(1 + 2η̄L)

m

m∑
i=1

ηi

τi−1∑
`=0

4η̄2
(

2Vt−1 + 2C‖∇f(x̃t)‖2 +D
)

≤ ‖x̃t − x∗‖2 − 2η̄ (f(x̃t)− f(x∗)) + 2η̄2‖∇f(x̃t)‖2

+
3L

m

m∑
i=1

4η̄3
(

2Vt−1 + 2C‖∇f(x̃t)‖2 +D
)

= ‖x̃t − x∗‖2 − 2η̄ (f(x̃t)− f(x∗)) + 2η̄2 (1 + 12η̄LC) ‖∇f(x̃t)‖2

+ 24η̄3LVt−1 + 12η̄3LD

≤ ‖x̃t − x∗‖2 − 2η̄ (f(x̃t)− f(x∗)) + 14η̄2‖∇f(x̃t)‖2 + 24η̄3LVt−1 + 12η̄3LD.
(133)

For the second inequality, we used η̄L ≤ 1 and η̄ = ηiτi, and for the last inequality, we used
η̄LC ≤ 1

2 . This concludes the proof.

In the next lemma, we derive a recursion to bound Vt - a measure of the sparsification error.

Lemma 17. Suppose the conditions stated in Lemma 16 hold. Then, we have

Vt ≤
(

1− 1

2δc
+ 4η̄2L2δcC

)
Vt−1 + 4δcC‖∇f(x̃t)‖2 + 2δcD. (134)

Proof. Let us observe that

Vt =
1

m

m∑
i=1

‖ρi,t‖2

=
1

m

m∑
i=1

‖ρi,t−1 +∇fi(x̄t)− hi,t‖2

=
1

m

m∑
i=1

‖ρi,t−1 +∇fi(x̄t)− Cδc (ρi,t−1 +∇fi(x̄t)) ‖2

≤
(

1− 1

δc

)
1

m

m∑
i=1

‖ρi,t−1 +∇fi(x̄t)‖2

≤
(

1− 1

δc

)
(1 + γ)Vt−1 +

(
1− 1

δc

)(
1 +

1

γ

)
1

m

m∑
i=1

‖∇fi(x̄t)‖2.

(135)

For the second-last inequality, we used Property 3 of the TOP-k operator in Lemma 14; for the last
inequality, we used the definition of Vt−1 and the relaxed triangle inequality (35). Now in order for
Vt to contract over time, we must have(

1− 1

δc

)
(1 + γ) < 1 =⇒ γ <

1

δc − 1
.

Accordingly, suppose γ = 1
2(δc−1) . Simple calculations then yield(

1− 1

δc

)
(1 + γ) = 1− 1

2δc
;

(
1− 1

δc

)(
1 +

1

γ

)
=

(
1− 1

δc

)
(2δc − 1) < 2δc.

43

Substituting the above bounds in (135), and invoking Assumption 1, we obtain

Vt ≤
(

1− 1

2δc

)
Vt−1 + 2δc

(
C‖∇f(x̄t)‖2 +D

)
≤
(

1− 1

2δc

)
Vt−1 + 2δcC

(
2η̄2L2Vt−1 + 2‖∇f(x̃t)‖2

)
+ 2δcD

=

(
1− 1

2δc
+ 4η̄2L2δcC

)
Vt−1 + 4δcC‖∇f(x̃t)‖2 + 2δcD,

(136)

where for the second inequality, we used (131).

Now that we have a handle over each of the two components of the Lyapunov function ψt+1, we are
in a position to complete the proof of Theorem 8.

Completing the proof of Theorem 8: Suppose η̄ is chosen such that η̄ ≤ 1
72LδcC

. Note that this
choice of η̄ meets the requirements for Lemmas 16 and 17 to hold. Now based on Lemmas 16 and 17,
and the definition of ψt, we have

ψt+1 = ‖x̃t+1 − x∗‖2 + η̄2Vt

≤ ‖x̃t − x∗‖2 − 2η̄ (f(x̃t)− f(x∗)) + 2η̄2(7 + 2δcC)‖∇f(x̃t)‖2

+

(
1− 1

2δc
+ 4η̄2L2δcC + 24η̄L

)
η̄2Vt−1 + 2η̄2(6η̄L+ δc)D

(a)

≤ ‖x̃t − x∗‖2 − 2η̄ (f(x̃t)− f(x∗)) + 18η̄2δcC‖∇f(x̃t)‖2

+

(
1− 1

2δc
+ 28η̄L

)
η̄2Vt−1 + 2η̄2

(
6

δcC
+ δc

)
D

(b)

≤ ‖x̃t − x∗‖2 − 2η̄ (1− 18η̄LδcC) (f(x̃t)− f(x∗)) +

(
1− 1

2δc
+ 28η̄L

)
η̄2Vt−1

+ 2η̄2

(
6

δcC
+ δc

)
D

(c)

≤
(

1− 3

4
η̄µ

)
‖x̃t − x∗‖2 +

(
1− 1

2δc
+ 28η̄L

)
η̄2Vt−1 + 2η̄2

(
6

δcC
+ δc

)
D.

(137)

For (a), we used δc ≥ 1, C ≥ 1, and η̄LδcC ≤ 1 to simplify the preceding inequality; for (b), we
used the L-smoothness of f(·); for (c), we used the fact that η̄LδcC ≤ 1

72 , and that f(·) is µ-strongly
convex. Now given our choice of η̄, observe that

1− 1

2δc
+ 28η̄L ≤ 1− 1

2δcC
+

28

72δcC
= 1− 1

9δcC
< 1− 1

96δcCκ
≤ 1− 3

4
η̄µ,

where κ = L
µ . Thus,

ψt+1 ≤
(

1− 3

4
η̄µ

)(
‖x̃t − x∗‖2 + η̄2Vt−1

)
+ 2η̄2

(
6

δcC
+ δc

)
D

=

(
1− 3

4
η̄µ

)
ψt + 2η̄2

(
6

δcC
+ δc

)
D.

(138)

Using the above inequality recursively, we obtain

ψT+1 ≤
(

1− 3

4
η̄µ

)T
ψ1 + 2η̄2

(
1−

(
1− 3

4 η̄µ
)T

1−
(
1− 3

4 η̄µ
))(6

δcC
+ δc

)
D

≤
(

1− 3

4
η̄µ

)T
ψ1 +

8

3
η̄

(
6

δcC
+ δc

)
D

µ
.

(139)

44

Now since ρi,0 = 0,∀i ∈ S, we have ρ0 = 0, and V0 = 0. It thus follows that x̃1 = x̄1 − η̄ρ0 = x̄1,
and ψ1 = ‖x̃1 − x∗‖2 + η̄2V0 = ‖x̄1 − x∗‖2. Finally, observe that

‖x̄T+1 − x∗‖2 = ‖x̄T+1 − x̃T+1 + x̃T+1 − x∗‖2

≤ 2‖x̃T+1 − x∗‖2 + 2‖x̄T+1 − x̃T+1‖2

= 2‖x̃T+1 − x∗‖2 + 2η̄2‖ρT ‖2

≤ 2
(
‖x̃T+1 − x∗‖2 + η̄2VT

)
= 2ψT+1.

(140)

Based on the above discussion, and (139), we have

‖x̄T+1 − x∗‖2 ≤ 2

(
1− 3

4
η̄µ

)T
‖x̄1 − x∗‖2 +

16

3
η̄

(
6

δcC
+ δc

)
D

µ
, (141)

which is precisely the desired conclusion.

45

I Proof of Theorem 7: Gradient Sparsification at Server with
Error-Feedback

The proof of Theorem 7 follows similar conceptual steps as that of Theorem 8. Thus, we will only
sketch the main arguments, leaving the reader to verify the details. Given that δc = 1, we note that
the governing equations for this setting are as follows.

xi,`+1 = xi,` − ηi(∇fi(xi,`)−∇fi(x̄t) + gt)

gt = Cδs (et−1 +∇f(x̄t))

et = et−1 +∇f(x̄t)− gt.
(142)

The first and the third equations above hold for every communication round t ∈ {1, . . . , T}, whereas
the second holds for every t ∈ {2, . . . , T}. Initially, we have g1 = ∇f(x̄1), and e1 = e0 = 0. Let us
define the sequence {x̃t} as follows:

x̃t = x̄t − η̄et−1, (143)

where η̄ = ηiτi,∀i ∈ S. Then, based on the definition of the virtual sequence, and (142), it is easy to
verify that

x̃t+1 = x̃t −
1

m

m∑
i=1

ηi

τi−1∑
`=0

∇fi(xi,`). (144)

Following exactly the same steps as in the proof of Lemma 10, we obtain

‖x̃t+1 − x∗‖2 ≤ ‖x̃t − x∗‖2 − 2η̄ (f(x̃t)− f(x∗)) +
L(1 + 2η̄L)

m

m∑
i=1

ηi

τi−1∑
`=0

‖xi,` − x̃t‖2

+ 2η̄2‖∇f(x̃t)‖2. (145)

Just as in the proof of Theorem 8, our next task is to derive a bound on ‖xi,` − x̃t‖2. To this end, we
start with

‖x̃t − xi,`‖2 ≤ 2η̄2
(
‖et−1‖2 + ‖gt‖2

)
. (146)

To arrive at the above inequality, we used (143), and the fact that ‖x̄t− xi,`‖ ≤ η̄‖gt‖. Next, observe
that

‖gt‖2 = ‖Cδs (et−1 +∇f(x̄t)) ‖2

≤ ‖et−1 +∇f(x̄t)‖2

≤ 2‖et−1‖2 + 2‖∇f(x̄t)‖2.

(147)

Using the smoothness of∇f(·), we also have

‖∇f(x̄t)‖2 = ‖∇f(x̄t)−∇f(x̃t) +∇f(x̃t)‖2

≤ 2‖∇f(x̄t)−∇f(x̃t)‖2 + 2‖∇f(x̃t)‖2

≤ 2L2‖x̄t − x̃t‖2 + 2‖∇f(x̃t)‖2

= 2η̄2L2‖et−1‖2 + 2‖∇f(x̃t)‖2.

(148)

Suppose η̄ is chosen such that η̄L ≤ 1
2 . Combining the bounds we have derived above, we can then

obtain

‖x̃t − xi,`‖2 ≤ 8η̄2
(
‖et−1‖2 + ‖∇f(x̃t)‖2

)
. (149)

Substituting the above bound in (145), and simplifying the resulting inequality leads to

‖x̃t+1 − x∗‖2 ≤ ‖x̃t − x∗‖2 − 2η̄ (f(x̃t)− f(x∗)) + 14η̄2‖∇f(x̃t)‖2 + 24η̄3L‖et−1‖2. (150)

46

Given the dependence of the above inequality on the gradient sparsification error et−1, we next
proceed to derive a recursion for bounding ‖et‖. We follow similar steps as in Lemma 17.

‖et‖2 = ‖et−1 +∇f(x̄t)− Cδs (et−1 +∇f(x̄t)) ‖2

(a)

≤
(

1− 1

δs

)
‖et−1 +∇f(x̄t)‖2

(b)

≤
(

1− 1

δs

)
(1 + γ)‖et−1‖2 +

(
1− 1

δs

)(
1 +

1

γ

)
‖∇f(x̄t)‖2

(c)

≤
(

1− 1

2δs

)
‖et−1‖2 + 2δs‖∇f(x̄t)‖2

(d)

≤
(

1− 1

2δs
+ 4η̄2L2δs

)
‖et−1‖2 + 4δs‖∇f(x̃t)‖2.

(151)

In the above steps, for (a), we used Property 3 of the TOP-k operator in Lemma 14; for (b), we used
(35); for (c), we set γ = 1

2(δs−1) ; finally, for (d), we used the bound on ‖∇f(x̄t)‖2 in (148). We now
have all the individual pieces required to complete the proof of Theorem 7. To proceed, let us define
the following Lyapunov function:

ψt , ‖x̃t − x∗‖2 + η̄2‖et−1‖2.

Referring to (150) and (151), using the fact that f(·) is µ-strongly convex, and following similar
arguments as in the proof of Theorem 8, we obtain

ψt+1 ≤ ‖x̃t − x∗‖2 − 2η̄ (1− 18η̄Lδs) (f(x̃t)− f(x∗)) +

(
1− 1

2δs
+ 28η̄L

)
η̄2‖et−1‖2

≤
(

1− 3

4
η̄µ

)
‖x̃t − x∗‖2 +

(
1− 1

2δs
+ 28η̄L

)
η̄2‖et−1‖2

≤
(

1− 3

4
η̄µ

)(
‖x̃t − x∗‖2 + η̄2‖et−1‖2

)
=

(
1− 1

96δsκ

)
ψt.

(152)
In the last two steps, we used η̄ = 1

72Lδs
, implying ηi = 1

72Lδsτi
. The rest of the proof follows by

recursively using the above inequality in conjunction with the following easily verifiable facts:

ψ1 = ‖x̄1 − x∗‖2 since e0 = 0; ‖x̄T+1 − x∗‖2 ≤ 2ψT+1.

47

J Simulation Results for FedSplit

In [10], the authors introduce FedSplit - an algorithmic framework based on operator-splitting
procedures. Given an initial global model x̄1, the update rule of FedSplit is given by

y
(t)
i = prox_updatei(2x̄t − z

(t)
i),

z
(t+1)
i = z

(t)
i + 2(y

(t)
i − x̄t),

x̄t+1 =
1

m

∑
i∈S

z
(t+1)
i ,

(153)

where z(1)
i = x̄1, i ∈ S. The local update at client i is defined in terms of a proximal solver

prox_updatei(·). Ideally, this proximal solver would be an exact evaluation of the following
proximal operator for some step-size s > 0:

proxsfi(u) := argmin
x∈Rd

{
fi(x) +

1

2s
‖u− x‖2︸ ︷︷ ︸

hi(x)

}
. (154)

As suggested in [10], in practice, FedSplit would be implemented using an approximate proximal
solver. One way to do so, as clearly detailed in [10], is to run e steps of gradient descent on hi(x) using
a suitably chosen step-size α. The latter is precisely the method we use to numerically implement
FedSplit. As per Corollary 1 in [10], FedSplit achieves linear convergence to a neighberhood of
the global minimum for any value of e. In what follows, we show that FedSplit may diverge even
under the simplest of settings. In particular, we consider an instance of problem (1) where two clients
with simple quadratics attempt to minimize the global objective function (1) using FedSplit. The
local objective function of client 1 is given by

f1(x) =
1

2
xT
[
L 0
0 µ

]
︸ ︷︷ ︸

A1

x−
[
1
1

]T
︸ ︷︷ ︸
BT

1

x,

and the local objective function of client 2 is given by

f2(x) =
1

2
xT
[
µ 0
0 µ

]
︸ ︷︷ ︸

A2

x−
[
−1
2

]T
︸ ︷︷ ︸
BT

2

x,

where L = 1000, and µ = 1. The step-sizes corresponding to the proximal operator and gradient
descent, namely s and α, respectively, are chosen as per Corollary 1 in [10]. Furthermore, we run e
rounds of gradient descent per communication round t for e ∈ {1, · · · , 41}. Given the fact that the
implementation code of FedSplit is not publicly available, we note that our local implementation
of the scheme has diverged for all odd values of e between 1 and 41, inclusive. It should be noted,
however, that our implementation of FedSplit converged for some even values of e in the considered
range, as shown in Figure 5. We have further observed that increasing the ratio κ = L/µ beyond
1000 causes FedSplit to diverge for values of e higher than 41 as well.

48

0 200 400 600
10

0

10
100

10
200

10
300

0 200 400 600 800 1000
10

-4

10
-2

10
0

0 200 400 600 800 1000

10
-5

10
0

0 200 400 600 800 1000
10

-5

10
0

10
5

Figure 5: Simulation results for FedSplit for e ∈ {1, 2, 40, 41}.

49

K Additional Experimental Results on Logistic Regression

All the presented simulations are performed on a machine running Windows 8.1 with a 1.8 GHz Intel
Core i7 processor, using MATLAB R2019. In this section, we provide additional numerical results for
FedLin on a logistic regression problem. For each client i ∈ S, the design matrix Ai ∈ Rmi×d is a
collection of mi feature vectors, with the j-th feature vector denoted by aji, j ∈ {1, · · · ,mi}. In
turn, every feature vector aji is associated with a class label bji ∈ {+1,−1}. In a logistic regression
problem, the conditional probability of observing a positive class label bji = +1 for a given feature
vector aji is

P
(
bji = +1

)
=

1

1 + e−a
T
jix
, (155)

where x ∈ Rd is an unknown parameter vector to be estimated. The maximum likelihood estimate of
the parameter vector x is then the solution of the following convex optimization problem

min
x∈Rd

f(x) = min
x∈Rd

1

m

m∑
i=1

mi∑
j=1

log(1 + e−bjia
T
jix)︸ ︷︷ ︸

fi(x)

. (156)

The client objective functions, fi(x), are both smooth and convex. To generate synthetic data, for
each client i ∈ S = {1, · · · , 10}, we generate the design matrix Ai and the corresponding class
labels according to the model (155), where x ∈ R100 and Ai ∈ R500×100. In particular, the entries of
the design matrix are modeled as [Ai]jk

i.i.d.∼ N (0, 1) for j ∈ {1, · · · , 500} and k ∈ {1, · · · , 100}.
The entries of the true parameter vector x are modeled as [x]`

i.i.d.∼ N (0, 1) for ` ∈ {1, · · · , 100}.
To model the effect of systems heterogeneity, we allow clients to perform different numbers of local
iterations. In particular, for each client i ∈ S, the number of local iterations is drawn independently
from a uniform distribution over the range [2, 50], i.e, τi ∈ [2, 50], ∀i ∈ S.

Gradient Sparsification at Server. We first consider a variant of FedLin where gradient sparsifica-
tion is implemented only at the server side without any error-feedback. In particular, we consider
the cases where δs ∈ {2, 4}, which correspond to the implementation of a TOP-50 and a TOP-25
operator on the communicated gradients, respectively. For comparison, we also plot the resulting
performance when no gradient sparsification is implemented at the server side, i.e. δs = 1. As
illustrated in Figure 6, regardless of the level of gradient sparsification at the server side, FedLin
always converges to the true minimizer.

Gradient Sparsification at Clients. Next, we implement gradient sparsification only at the clients’
side, i.e. δs = 1. In particular, we consider the cases where δc ∈ {1.25, 1.67}, which correspond
to the implementation of a TOP-80 and a TOP-60 operator on the communicated local gradients,
respectively. As illustrated in Figure 7, unlike the server case, FedLin with sparsification at the
clients’ side converges with a non-vanishing convergence error, which increases as the value of δc
increases.

50

0 20 40 60 80 100 120 140 160 180 200
10

-8

10
-6

10
-4

10
-2

10
0

10
2

Figure 6: Simulation results for FedLin where gradient sparsification is implemented at the server
side. The constant η̄ is fixed at 0.15 across all clients.

0 20 40 60 80 100 120 140 160 180 200
10

-2

10
-1

10
0

10
1

10
2

10
3

Figure 7: Simulation results for FedLin where gradient sparsification is implemented at the clients’
side. The constant η̄ is fixed at 0.1 across all clients.

51

L Simulation Results for FedLin with Noisy Gradients

In this section, we provide numerical results for FedLin under noisy client gradients to validate the
theoretical results of Theorem 4. In particular, we consider the least square problem of Section 7
with δs = δc = 1 and α = 10. All the remaining parameters are kept the same. To simulate noisy
gradients, we add zero-mean Gaussian noise with variance σ2 ∈ {10−5, 10−3, 10−1}.

0 5 10 15 20 25 30 35 40
10

-15

10
-10

10
-5

10
0

10
5

Figure 8: Simulation results for FedLin under noisy client gradients. The constant η̄ is fixed at 10−2

across all clients.

As illustrated in Figure 8, FedLin under noisy gradients converges with a non-vanishing error-floor,
which increases as the variance of the noise increases. Thus, our simulations here corroborate the
theory in Theorem 4.

52

