
Bayesian Optimization of Function Networks:
Supplementary Material

Raul Astudillo
Cornell University

ra598@cornell.edu

Peter I. Frazier
Cornell University
pf98@cornell.edu

A Proof of Proposition 1

In this section, we provide a formal statement and proof of Proposition 1. We begin by proving the
following auxiliary result.

Lemma A.1. Suppose that f : RB1×...×BJ → R and hj : RA → RBj , j = 1, . . . , J, are all
Lipischitz continuous with Lipschitz constants Lf and Lhj , j = 1, . . . , J, respectively. Then, the
function g : RA → R defined by g(x) = f(h1(x), . . . , hJ(x)) is Lipschitz with Lipschitz constant
Lg := Lf

∑
j=1,...,J Lhj

.

Proof. We have

|g(x)− g(x′)| = |f(h1(x), . . . , hJ(x))− f(h1(x′), . . . , hJ(x′))|
≤ Lf‖(h1(x), . . . , hJ(x))− (h1(x′), . . . , hJ(x′))‖2

≤ Lf
J∑
j=1

‖hj(x)− hj(x′)‖2

≤ Lf
J∑
j=1

Lhj‖x− x′‖2

= Lg‖x− x′‖2.

We are now in position to show Proposition 1, which can be seen as a simple generalization of
Theorem 1 in Balandat et al. (2020).

Proposition A.1 (Proposition 1). Suppose that X is compact, and that the functions µn,k, σn,k :

R|I(k)| × R|J(k)| → R, k = 1, . . . ,K, are Lipschitz continuous. Let

x̂
(M)
∗ ∈ argmax

x∈X
ÊI-FNn

(
x;Z(1:M)

)
, X∗ = argmax

x∈X
EI-FNn(x),

where {Zm}∞m=1 are independent standard normal random variables. Then, for every ε > 0, there

exist A,α > 0 such that P
(

dist
(
x̂
(M)
∗ , X∗

)
> ε
)
≤ Ae−αM for all M .

Proof. Let Lµn,k
and Lσn,k

be the Lipschitz constants of µn,k and σn,k, respectively, and consider
the functions f̂n,k : R|I(k)| × R|J(k)| × R→ R, k = 1, . . . ,K, given by

f̂n,k(xI(k), yJ(k), zk) = µn,k(xI(k), yJ(k)) + σn,k(xI(k), yJ(k))zk.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

We note that, for any fixed zk, the function (xI(k), yJ(k)) 7→ f̂n,k(xI(k), yJ(k), zk) is(
Lµn,k

+ Lσn,k
|zk|
)
-Lipschitz.

Now consider the functions ĥn,1, . . . , ĥn,k : X× RK → R defined recursively by

ĥn,k(x, z) = f̂n,k

(
xI(k), ĥn,J(k)(x, z), zk

)
, k = 1, . . . ,K.

Applying Lemma 1 repeatedly, we find that, for any fixed z ∈ RK , the functions x 7→ ĥn,k(x, z), k =
1, . . . ,K, are Lipschitz continuous with Lipschitz constants Lĥn,k

(z), k = 1, . . . ,K, defined recur-
sively by

Lĥn,k
(z) =

(
Lµn,k

+ Lσn,k
|zk|
)1 +

∑
j∈J(k)

Lĥn,j
(z)

 , k = 1, . . . ,K.

Let ĝn = ĥn,k and Lĝn = Lĥn,k
. Then, for any fixed z, the function x 7→ ĝn(x, z) is Lĝn(z)-

Lipschitz. Moreover, by definition, ĝn satisfies

EI-FNn(x) = En
[
{ĝn(x, Z)− g∗n}

+
]
,

where Z is a K-dimensional standard normal random vector and also

ÊI-FNn
(
x;Z(1:M)

)
=

1

M

M∑
m=1

{
ĝn

(
x, Z(m)

)
− g∗n

}+

.

Now observe that Lĝn(z) is a polynomial in the variables |z1|, . . . , |zk| with degree at most 1 for
each variable. Since the folded normal distribution has finite moment generating function everywhere
Therefore, if Z is K-dimensional standard normal random vector, then Lĝn(Z) has a finite moment
generating function in a neighborhood of 0.

An similar argument can be used to show that, for every x, ĝn(x, Z) has a finite moment generating
function in a neighborhood of zero. The desired result is now a direct consequence of Proposition
2 in the supplement of Balandat et al. (2020), which is in turn a consequence of Theorem 2.3 in
Homem-de Mello (2008).

B Proof of Theorem 1

In this section, we prove Theorem 1. Throughout this section, we let (xn : n) denote the sequence of
points at which the function network is evaluated. We begin by introducing the following definition,
which is analogous to Definition 2.1 in Bect et al. (2019).

Definition B.1. Let Fn be the sigma algebra generated by the function network observations up
to time n. The sequence (xn : n) is said to be a (non-randomized) sequential design if xn is
Fn−1-measurable for all n.

Throughout this section, we assume that (xn : n) is a sequential design. We note, in particular, that if
xn ∈ maxx∈X EI-FNn−1(x) for all n, then (xn : n) is a sequential design.

Our proof relies on the following assumptions.

Assumption B.1. X is compact.

Assumption B.2. The prior mean and covariance functions of f1, . . . , fK , are such that f1, . . . , fK
are continuous almost surely.

Assumption B.3. The prior covariance functions of f1, . . . , fK are bounded.

Assumption B.4. With probability 1 under the prior, given f1, . . . , fK and a sequential design (xn :
n), there exists a function β(z) such that |ĝn−1(xn, z)| ≤ β(z) for all n and z and

∫∞
−∞ ϕ(z)β(z) <

∞, where ϕ is the standard normal pdf.

2

Assumptions B.1, B.2, and B.3 are standard. Assumption B.4 is bespoke to our arguments, but
holds, for example, when the posterior mean of fK is uniformly bounded. (This bound can depend
on f1, . . . , fK .) This occurs, for example, when each fk is in the reproducing kernel Hilbert space
(RKHS) corresponding to the prior covariance function. In particular, if fK is in this RKHS and the
prior kernel is bounded, then fK is bounded and there is a uniform bound (depending on the RKHS
norm of fK and the prior covariance) over the deviation between fK and the sequence of posterior
means resulting from our observations. The sum of these two bounds and a term that is linear in z
arising from the posterior standard deviation term in the definition of ĝn−1(xn, z) provides β(z). We
also believe that Assumption B.4 holds more broadly.

Note that our proof does not rely on the no-empty-ball assumption (NEB) of Vazquez and Bect (2010).
Thus, our proof also extends the proof of Astudillo and Frazier (2019) to a broader class of prior
distributions.

As in the main paper, we refer to the “time-n” posterior, which is the conditional distribution of
f1, . . . , fK given (xm : m ≤ n) and (hk(xm) : k ≤ K,m ≤ n). En denotes expectation with
respect to this conditional distribution, and Pn denotes the probability operator.

Recall the sampling procedure from Section 4.3 of the main paper. This defined a function ĝ(x, Z)
that depended on the current posterior distribution, a point x in the feasible domain, and a vector Z.
When Z was generated as a standard normal random variable, the distribution of ĝ(x, Z) was the
same as that of g(x) under the current posterior. To support working with this over a sequence of
posterior distributions, we use ĝn(x, Z) to indicate this function calculated using the posterior at time
n. We similarly use the notation ĥk(x, Z) to represent the function ĥn,k(x, Z) from the main paper
computed with respect to the posterior at time n.
Lemma B.1. g∗∞ := limn g

∗
n exists and is finite almost surely. Moreover, any limit point x∞ of the

sequence (xn : n) satisfies g(x∞) ≤ g∗∞.

Proof. The sequence (g∗n : n) is non-decreasing and bounded above by the random variable g∗ :=
maxx′∈X g(x′). The random variable g∗ is almost surely finite since g is almost surely continuous (it
is the composition of a collection of almost surely continuous functions hk) and X is compact. Thus
g∗∞ := limn g

∗
n exists and is finite almost surely.

Let x∞ be the limit of a convergent subsequence (xnm
: m) of (xn : n). Since g is almost surely

continuous,

g(x∞) = g(lim
m
xnm) = lim

m
g(xnm) ≤ lim

m
g∗nm+1 ≤ lim

m
g∗∞ = g∗∞.

Lemma B.2. Consider the almost sure event that fk is continuous for all k = 1, . . . ,K. On this
event, the function hk is continuous for all k = 1, . . . ,K.

Proof. We show this via induction. The base case, for k = 1, follows since f1 is continuous on the
event considered, xI(k) is a continuous function of x, and so h1(x) = f1(xI(k)) is the composition
of two continuous functions and so is a continuous function of x.

We now show the induction step. Fix k > 1. Suppose hk′(x) is continuous for all k′ < k. applying
the induction hypothesis for all k′ ∈ J(k) ⊆ {1, . . . , k − 1} implies that hJ(k)(x) is continuous.
Also xI(k) is a continuous function of x. Thus, x 7→ (xI(k), hJ(k)(x)) is continuous. This and the
fact that fk is continuous on the event considered implies that hk(x) = fk(xI(k), hJ(k)(x)) is a
composition of continuous functions and so is continuous.

Lemma B.3. For each k = 1, . . . ,K, the functions µn,k and σn,k converge pointwise to some
continuous functions µ∞,k and σ∞,k almost surely; moreover, this convergence is uniform over
compact subsets of R|I(k)| × R|J(k)|.

Proof. Fix k and consider the almost sure event that f1, . . . , fk−1 are continuous. Condition on
continuous realizations of f1, . . . , fk−1, thus fixing hJ(k) as well.

LetA be an arbitrary compact subset of R|I(k)|×R|J(k)| and defineB = {(xI(k), hJ(k)(x)) : x ∈ X}.
B is compact by Lemma B.2 since x 7→ (xI(k), hJ(k)(x)) is continuous, X is compact, and the image

3

of a compact set through a continuous function is compact. The observations of fk occur at input
points {(xn,I(k), hJ(k)(xn)) : n} ⊂ B.

Let C = A ∪B and note that C is compact. Then, by Proposition 2.9 in Bect et al. (2019), µn,k and
σn,k converge uniformly over C and thus also over A.

Lemma B.4. Let (xnm : m) be a convergent subsequence of (xn : n) with limit x∞. Then,
limm→∞ ĝnm−1(xnm , z) = g(x∞) for each z ∈ RK almost surely.

Proof. All the convergence claims made in this proof are almost surely. First note that Lemma B.3
implies that, for each k = 1, . . . ,K, the function f̂n,k defined in the proof of Proposition 1 converges
to the function f̂∞,k defined by

f̂∞,k(xI(k), yJ(k), zk) = µ∞,k(xI(k), yJ(k)) + σ∞,k(xI(k), yJ(k))zk.

uniformly in (xI(k), yJ(k)) (but not necessarily zk). This in turn implies that, for each k = 1, . . . ,K,
ĥn,k converges to the function ĥ∞,k defined recursively by

ĥ∞,k(x, z) = f̂∞,k

(
xI(k), ĥ∞,J(k)(x, z), zk

)
uniformly in x ∈ X for each z ∈ RK .

We show the following two claims by induction on k:

1. σnm−1,k(xnm,I(k), ĥnm−1,J(k)(xnm , z))→ 0.

2. ĥnm−1,k(xnm
, z)→ h(x∞).

We first show the induction step, where we assume the induction hypothesis is true for all k′ < k and
show it for k.

Each element of J(k) is strictly less than k and so the induction hypothesis implies
that ĥnm−1,J(k)(xnm

, z) → hJ(k)(x∞). Moreover, since xnm
→ x∞, and σn,k con-

verges uniformly to σ∞,k, it follows that σnm−1,k(xnm,I(k), ĥnm−1,J(k)(xnm , z)) converges to
σ∞,k(x∞,I(k), hJ(k)(x∞)). Similarly, ĥnm−1,k(xnm , z) converges to

ĥ∞,k(x∞, z) = f̂∞,k

(
x∞,I(k), ĥ∞,J(k)(x∞, z), zk

)
= f̂∞,k

(
x∞,I(k), hJ(k)(x∞), zk

)
= µ∞,k(x∞,I(k), hJ(k)(x∞)) + σ∞,k(x∞,I(k), hJ(k)(x∞))zk,

where the second equation is obtained by noting that, since ĥnm−1,J(k)(xnm , z) → hJ(k)(x∞)

(by the induction hypothesis) and ĥnm−1,J(k)(xnm , z) → ĥ∞,J(k)(x, z), it must be the case that
ĥ∞,J(k)(x∞, z) = hJ(k)(x∞).

Now observe that σnm+1,k(xnm,I(k), hJ(k)(xnm
)) converges to σ∞,k(x∞,I(k), hJ(k)(x∞)), but

σnm+1,k(xnm,I(k), hJ(k)(xnm
)) = 0 for all m, and thus σ∞,k(x∞,I(k), hJ(k)(x∞)) = 0. This

proves the first part of the induction step. Similarly, note that µnm+1,k(xnm,I(k), hJ(k)(xnm
)) con-

verges to µ∞,k(x∞,I(k), hJ(k)(x∞)), but

µnm+1,k(xnm,I(k), hJ(k)(xnm
)) = fk(xnm,I(k), hJ(k)(xnm

))

= hk(xnm
)→ hk(x∞).

This proves the second part of the induction step.

The proof of the base case (k = 0) is analogous except that J(k) = ∅ eliminates terms that depend
on k′ < k.

Lemma B.5. lim infn EI-FNn−1(xn) = 0 almost surely.

4

Proof. Since (xn : n) is contained in a compact set, it has a convergent subsequence, (xnm : m).

Then, letting ϕ(z) be the standard normal probability density function,

lim
m→∞

EI-FNnm−1(xnm) = lim
m→∞

∫ ∞
−∞

{
ĝnm−1(xnm , z)− g∗nm−1

}+
ϕ(z) dz

=

∫ ∞
−∞

lim
m→∞

{
ĝnm−1(xnm

, z)− g∗nm−1
}+

ϕ(z) dz

by the dominated convergence theorem and Assumption B.4.

By Lemmas B.1 and B.4,

lim
m→∞

{
ĝnm−1(xnm

, z)− g∗nm−1
}+

= {g(x∞)− g∗∞}
+

= 0

for each z. Thus, limm→∞ EI-FNnm−1(xnm) = 0, implying that lim infn EI-FNn−1(xn) ≤ 0. This
and the fact that EI-FNn−1(x) ≥ 0 for all x implies that lim infn EI-FNn−1(xn) = 0.

The following lemma considers a sequence of random variables In that we will later take to be the
random improvements generated within our statistical model under the posterior after nmeasurements.
The quantity E[I+n] will then be the EI-FN under this posterior.
Lemma B.6. Consider a sequence of scalar random variables In. If lim infn P(In ≥ ε) > 0 for any
given ε > 0, then lim infn E[I+n] > 0.

Proof. We have E[I+n] ≥ εP(In ≥ ε). Thus, lim infn E[I+n] ≥ ε lim infn P(In ≥ ε) > 0.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Pick any point x ∈ X. Since we choose to evaluate at the point with largest
EI-FNn(x), EI-FNn(x) ≤ EI-FNn(xn+1) for each n.

Lemma B.5 then implies that there is a subsequence (nm : m) on which limm EI-FNnm
(xnm+1) =

0. This and the fact that EI-FNn(x) ≥ 0 imply that limn EI-FNnm
(x) = 0. Thus,

lim infn EI-FNn(x) = 0.

Recall that EI-FNn(x) = En[{g(x)− g∗n}
+

]. Consider the conditional distribution of g(x) − g∗n
under the time-n posterior. This is the same as the conditional distribution of ĝn(x;Z)− g∗n where
only Z is random and the other quantities are completely determined by the observations of the
function network at x1, . . . , xn. By taking In to be a random variable with the same distribution for
each n, then on any sequence of observations, Lemma B.5 and the contrapositive of Lemma B.6
imply that lim infn Pn(g(x)− g∗n ≥ ε) = 0 for each ε > 0.

Since the random variable g∗∞ defined in Lemma B.1 bounds each g∗n above, Pn(g(x)− g∗n ≥ ε) ≥
Pn(g(x)− g∗∞ ≥ ε) and we have lim infn Pn(g(x)− g∗∞ ≥ ε) = 0 for each ε > 0.

For any event W , (Pn(W) : n) is a uniformly integrable martingale, and thus converges almost
surely to a limiting random variable P∞(W), where P∞ is defined as the conditional expectation with
respect to the event (xn, hk(xn) : n <∞, k ≤ K) (by Theorem 5.13 of Çınlar (2011)). Taking W to
be the event that g(x)− g∗∞ ≥ ε, we have that Pn(g(x)− g∗∞ ≥ ε) has a limit, P∞(g(x)− g∗∞ ≥ ε).
Moreover, this limit must be the same as the lim inf , which we showed above was 0. Thus,

P∞(g(x)− g∗∞ ≥ ε) = 0.

Since this is true for each ε > 0, taking the limit as ε → 0 and using the monotone convergence
theorem shows

P∞(g(x) > g∗∞) = 0.

Taking the expectation under the prior and applying the law of conditional expectation, we have that

0 = E [P∞(g(x) > g∗∞)] = E [E∞(1{g(x) > g∗∞})] = E [1{g(x) > g∗∞}] = P(g(x) > g∗∞).

Thus, the value of g(x) is almost surely less than or equal to the limiting value of the sequence of
best points found.

5

Let X be a countable set that is dense in X. Such set exists because X is compact. Then, because the
countable union of events with probability zero also has probability zero,

0 = P(g(x) > g∗∞ for some x ∈ X) = P
(

sup
x∈X

g(x) > g∗∞

)
Moreover, because g is almost surely continuous and X is dense in X, supx∈X g(x) = supx∈X g(x)
almost surely. Hence, P (supx∈X g(x) > g∗∞) = 0, which concludes the proof.

C Proof of Proposition 2

In this section we prove Proposition 2 by providing a function network and a set of initial conditions
where EI-FN does not measure the optimization domain densely. While the example we provide is
very simple, we think such behavior also arises in more complex networks.

Proposition C.1 (Proposition 2). There exists a function network in which EI-FN is consistent but
whose measurements are not necessarily dense in X.

Proof. Let X = [0, 1] and consider a function network with two nodes f1 : X→ R and f2 : X×R→
R where f2 is deterministic, given byf2(x, y) = max{1, y} − x, and the objective function is given
by g(x) = f2(x, f1(x)).

Suppose that f1 is drawn from a GP prior with a continuous mean function and a bounded positive
definite covariance function whose sample paths are almost surely continuous. From this and the
fact that f2 is deterministic and continuous, it follows that Assumptions 2.1-2.3 in §2 are satisfied.
Assumption 2.4 is also satisfied because f2 is bounded over X× R. Thus, Theorem 1 implies that
EI-FN is consistent almost surely.

Let τ = inf{n ≥ 1 : f1(xn) > 1} be the first time that we measure a point whose value for f1 is
strictly greater than 1. (If we never measure such a point, then τ is infinity.)

If P(τ <∞) = 0 under EI-FN, then this problem is one in which EI-FN does not measure densely.
This is because there is a strictly positive probability that supx∈[0,1] f1(x) > 1. Moreover, the fact
that f1 is almost surely continuous implies that on this event there is an non-empty interval on which
f1(x) is strictly above 1 over the entire interval. If EI-FN were to never measure in this interval then
it would not have measured densely. Thus, going forward, we assume P(τ <∞) > 0. In fact, using
a similar argument, we may assume P(τ <∞, f1(0) < 1, f1(1) < 1) > 0.

For any x > xτ , we have g(x) ≤ 1− x < 1− xτ = g(xτ) almost surely. Thus, any such x is almost
surely strictly suboptimal under the posterior and EI-FNn(x) = 0 for all n ≥ τ .

Now let n ≥ τ and consider any unmeasured point x with 1 − x > g∗n; such a point exists on the
event under consideration since f1(0) < 1 implies g∗n ≤ max{f1(0), 1 − minm≤n xm} < 1 and
we make take x arbitrarily close to 0. Because the prior covariance function is positive definite, the
posterior probability distribution over f1(x) has full support over the real line. Thus, in particular,
there is a strictly positive posterior probability that f1(x) ≥ 1. On this event, g(x) = 1 − x > g∗n
and so EI-FNn(x) is strictly positive.

It follows that EI-FN would not measure at a point in the interval (xτ , 1], which concludes the proof.

D Additional Details on the Numerical Experiments

D.1 Hyperparameter Estimation, Number of q-MC Samples, Runtimes, and Licenses

All GPs in our experiments have a constant mean function and ARD Matérn covariance function with
smoothness parameter equal to 5/2, which is a standard choice in practice. The length scales of these
GPs are estimated via maximum a posteriori (MAP) estimation with Gamma priors.

We use M = 128 quasi-MC samples obtained via scrambled Sobol sequences (see Balandat et al.
(2020) for details) for computing the SAA of EI-FN. We use the same number of samples for EI-CF

6

and 8 samples for KG. KG is maximized following the one-shot approach proposed introduced
by Balandat et al. (2020). Under this approach, the dimension of the optimization problem that
arises when optimizing KG grows linearly with the number of samples and thus one is restricted
to a small number of samples. The average runtimes of the BO methods for each of the problems
are summarized in Table 1. We emphasize that, while optimizing EI-FN is more expensive than
optimizing EI, the additional computation required by our method is compensated by its excellent
performance, and is thus justified for problems where each function network evaluation takes several
minutes or more. We also note KG becomes very expensive to optimize for problems with relatively
high input dimension, and can be even more expensive than EI-FN.

The BoTorch python package and the source code for the robot pushing problem are both publicly
available under a MIT licence. Our code is also publicly available under a MIT license.

Table 1: Average runtimes (seconds) per evaluation of the BO methods compared. EI-CF is N/A in
problems that lack the structure it requires for use: that the objective is a composition of an inner
black-box function and a outer known non-linear function.

KG EI EI-CF EI-FN

Drop-Wave 15.1 2.5 N/A 15.4
Rosenbrock, K = 4 23.6 4.16 N/A 122.2
Ackley 72.1 18.3 N/A 89.2
Alpine2, K = 6 84.1 22.5 N/A 215.6
Manufacturing 29.1 5.4 N/A 117.2
COVID-19 43.1 6.2 N/A 229.4
Robot 935.2 29.6 110.1 182.3
Calibration 1225.2 43.5 207.2 293.7

D.2 Details on Synthetic Test Problems

Here we describe in detail how each of the synthetic test functions is arranged as a function network.

D.2.1 Alpine2

The Alpine2 test function (Jamil and Yang, 2013) is defined by

g(x) = −
K∏
k=1

√
xk sin(xk).

We adapt this function to our setting by letting

f1(x1) = −
√
x1 sin(x1);

fk(xk, yk−1) =
√
xk sin(xk)yk−1, k = 2, . . . ,K;

I(k) = {k}, k = 1, . . . ,K; J(1) = ∅; and J(k) = {k − 1}, k = 2, . . . ,K. In our experiments, we
set X = [0, 10]K , and consider K = 2, 4, and 6.

The network structure of this test function can be summarized as a series of nodes where the output
of each node is governed by one decision variable of its own, and the output of the previous node.

D.2.2 Ackley

The Ackley test function (Jamil and Yang, 2013) has been widely used as a benchmark function in
the BO literature. It is defined by

g(x) = 20 exp

−0.2

√√√√ 1

D

D∑
d=1

x2d

+ exp

(
1

D

D∑
d=1

cos(2πxd)

)
− 20− e.

7

We adapt it to our setting by letting

f1(x) =
1

D

D∑
d=1

x2d;

f2(x) =
1

D

D∑
d=1

cos(2πxd);

f3(y1, y2) = 20 exp (−0.2
√
y1) + exp (y2)− 20− e;

I(1) = I(2) = {1, . . . , D}; I(3) = ∅; J(1) = J(2) = ∅; and J(3) = {1, 2}. In our experiment, we
set X = [−2, 2]D, and D = 6.

D.2.3 Rosenbrock

The Rosenbrock test function (Jamil and Yang, 2013) is also a widely used benchmark function in
the BO literature. It is defined by

g(x) = −
D−1∑
d=1

100(xd+1 − x2d)2 + (1− xd)2.

We adapt it to our setting by letting

f1(x1, x2) = −100(x2 − x21)2 − (1− x1)2;

fk(xk, xk+1, yk−1) = −100(xk+1 − x2k)2 − (1− xk)2 + yk−1, k = 2, . . . , D − 1;

I(k) = {k, k + 1}, k = 1, . . . , D − 1; J(1) = ∅; and J(k) = {k − 1}, k = 2, . . . , D − 1. In our
experiments, we set X− [−2, 2]D, and consider D = 3, 5, and 7.

D.2.4 Drop-Wave

The Drop-Wave test function (Surjanovic and Bingham, 2013) is highly multi-modal and complex. It
is defined by

g(x) =
1 + cos

(
12
√
x21 + x22

)
2 + 0.5 (x21 + x22)

.

We adapt it to our setting by taking

f1(x) =
√
x21 + x22;

f2(y1) =
1 + cos (12y1)

2 + 0.5y21
;

I(1) = {1, 2}; I(2) = ∅; J(1) = ∅; and J(2) = {1}. In our experiment, we set X = [−5.12, 5.12]2.

D.3 Manufacturing Throughput Maximization

Here we describe the manufacturing throughput manufacturing test problem. This problem is similar
in spirit to the biomanufacturing example in the introduction, but focusing on more traditional
manufacturing in which workproduct is discrete rather than continuous. We have a manufacturing
line with a series of stations that perform operations: e.g., steel is cut to size, then bent to shape,
then holes are drilled, and finally the piece is painted. We consider “make-to-order’ in which custom
features of the part (e.g., color, size, orientation of the holes) require waiting until a customer order
arrives to begin processing the part.

Orders for parts arrive randomly according to a homogeneous Poisson process. Orders move to the
first station in the manufacturing line and enter a queue where they wait. The first order in the queue
requires a processing time exponentially distributed with a service rate that decreases with the amount
of resource devoted to that station (e.g., more workers, better machines). Parts not being processed
wait in the queue until they arrive to the front of the queue. Once processed, a part moves to the
second station where it similarly waits in a queue until it is at the front, then waits an exponential

8

amount of time that depends on a second service rate, which we can again control through staffing.
This continues, with each part completing service moving to the next queue until it has completed
service at all stations.

Our goal is to choose a collection of service rates, one for each station, to maximize the number of
parts finished in a fixed amount of time. We constrain the sum of the service rates across the stations
to represent a limit on total resources that can be allocated.

In our experiment, we consider a manufacturing line with 4 stations. The objective to maximize is
the throughput of the network in steady state, f(x), where xi is the service rate of station i, over the
feasible domain X = {x : 0 ≤ xi, i = 1, ..., 4, and

∑4
i=1 xi ≤ 1}. Let fi(xi, yi−1) be throughput

of station i in steady state given that the service rate of station is i is xi and station i−1 has throughput
yi−1 in steady state. Then, our objective function can be written as a function network by taking
I(k) = {k}, k = 1, . . . ,K; J(1) = ∅; and J(k) = {k − 1}, k = 2, 3, 4. This network is illustrated
in Figure 1.

f1 f2 f3 f3

x1 x2 x3 x4

y1 y2 y3 y4

Figure 1: Manufacturing line as a function network.

D.4 Optimization of Pooled Testing for COVID-19

Here we describe our COVID-19 testing benchmark problem, which considers reinforcement learning
for large-scale testing to prevent the spread of COVID-19. It builds on the model for infection
dynamics described in the epidemic model calibration problem in §5.3 of the main paper.

Overview We design an asymptomatic screening protocol for controlling the spread of COVID-19
in a city. This approach regularly tests the entire population to identify people who are infected but
do not have symptoms and may be unknowingly spreading virus. This approach has been employed
successfully to control the spread of COVID-19 among students at several US universities (Denny
et al., 2020) and also in Wuhan, China (Cao et al., 2020). To limit the resources needed for testing,
we use pooled testing, which is described in detail in the supplement. This has a parameter (the pool
size) that, when increased, reduces the testing resources used per person tested but also degrades test
accuracy in a complex way that depends on the prevalence of the virus in the population.

We simulate the effect of asymptomatic screening using pooled testing on a single population,
indexing time by t = 1, 2, 3. As in §5.3, we track the fraction of the population that is infectious
and susceptible. To model the immunity that follows infection with COVID-19, an individual can be
“recovered” (R), which means that they were previously infected, are no longer infectious and cannot
be infected again. At the start of time period t, It is the fraction of the population that is infectious,
and Rt is the fraction that is recovered. The rest is susceptible.

During each period t, the entire population is tested using a pool size of xt. A black-box simulator
determines the accuracy of these tests and the testing resources used (which depends on both xt
and the prevalence It). Individuals testing positive are isolated1 so that they cannot infect others
during the period, and infectious individuals missed in testing infect others. Lower accuracy results in
more individuals missed in testing. At the end of the period, all individuals in isolation are modeled
as having recovered and leave isolation. This process results in a loss Lt incorporating infections,
testing resources used, and individuals isolated. Our goal is to choose the pool sizes x1, x2, x3 to
minimize the total loss

∑
t Lt.

This is encoded as a function network in Figure 3 in the main paper. As described above and in detail
below, each time period performs a calculation that takes the pool size xt and a bivariate description
(It, Rt) of the population’s current infection status. (The details of this computation is unknown to
our function networks Bayesian optimization model.) It then produces as output a loss Lt and the

1This is sometimes confused with quarantine: close contacts are quarantined, while positives are isolated

9

corresponding description (It+1, Rt+1) of the population’s infection status at the start of the next
period. The objective function is

∑
t Lt. The known form of the final node

∑
t Lt is leveraged while

the other nodes are treated as black boxes.

Given this overview of the problem, we now describe in detail how these black boxes are computed.

Pooled Testing We first describe pooled testing in more detail. Pooled testing is a method for
testing a large number of people for the presence of virus or some other pathogen (Cleary et al., 2021;
Dorfman, 1943) in a way that reduces the amount of resource (specifically, chemical reagent and
machine time) required per test performed compared with testing each person individually.

As in any COVID-19 test, we first collect a nasal or saliva sample from each individual being tested.
Each sample is placed in a separate tube of fluid. Pooled testing relies on the ability to be able to test
several people (a “pool”) simultaneously, returning a signal that tells us whether (1) no one in the
pool is positive; or (2) at least one person in the pool is positive. To accomplish this, a bit of fluid
from each sample in the pool is taken and mixed together. Then a single chemical reaction (PCR, or
polymerase chain reaction) is run to asses whether anyone in the pool is positive.

We specifically consider square array pooled testing (Westreich et al., 2008). This approach considers
x2 saliva samples as occupying a x× x grid. Then, it forms 2x pools: one pool from the samples
in each row; and one from the samples in each column. Pools are tested, as described above. If a
sample’s row or column pool tests negative, then that sample is considered free of virus. All other
samples (those whose row and column pool both test positive) are tested individually using a chemical
reaction performed on additional fluid from that sample. This is illustrated in Figure 3 in the main
paper.

The chemical reactions used to check for virus sometimes make errors: both false negatives, in which
a pool or individual sample including material from an infected person tests negative; and false
positives, in which a pool that does not contain virus nevertheless is deemed positive. Moreover, the
probability of a false negative rises with the pool size (Cleary et al., 2021). This results in errors from
the overall pooled testing procedure, where an individual who is virus-free is deemed positive (a false
positive) or an individual who is infected with virus is deemed negative (a false negative).

In addition to depending on the pool size, the probability of these two kinds of errors (false positives
and false negatives) in the overall testing procedure depends on the prevalence, i.e., the fraction of the
population infected. When prevalence is high, there are sometimes two positive individuals providing
fluid to a pool. This increases the chance that the pool tests positive. Also, more poools contain
positive individuals, increasing the number of negative people whose row and column pools both test
positive. This increases the chance that an overall test of a virus-free person will come back positive.

The level of resource used is proportional to the number of chemical reactions performed. This
also depends on the pool size and the prevalence If the prevalence is small, then the number of
chemical reactions used is approximately 1/(2x) since the number of chemical reactions performed
on individual samples is small. As prevalence rises, larger pool sizes require more followup testing
(because the pools become likely to contain at least one positive individual) and smaller pool sizes
become efficient.

Infection Dynamics without Pooled Testing As described above, time is divided into discrete
time points t = 1, 2, 3, each representing a distinct two-week period. At the start of each period, the
population is described by two numbers: It, the fraction of the population that is infectious; and
Rt, the fraction of the population that is recovered and cannot be infected again. These numbers are
both in [0, 1]. The additional St = 1− It −Rt fraction of the population is susceptible, and can be
infected. Such divisions of a population into these three different groups (susceptible, infectious, and
recovered) is widely used in epidemiology (Frazier et al., 2020).

We first describe our assumed infection dynamics in the absence of asymptomatic screening. This is
obtained by integrating continuous-time dynamics within a given two-week period. We denote time
strictly within a two-week period by t+ u, where t is an integer and u ∈ (0, 1). During this period,
we assume that infectious individuals who were infectious at the start of the period remain so for the
full two weeks. Each comes into physical contact with other people at a rate of β people per unit

10

time. A fraction St are susceptible and become infected2. This gives us the differential equation

d

ds
It+u = βStIt+u,

which has solution:
It+u = It exp(βStu).

At the end of the two week period, we then assume that all individuals who were infectious at the start
of the period convalesce and become recovered. Putting this together, in the absence of asymptomatic
screening, the resulting dynamics would be:

St+1 = St − It exp(βSt) (1)
It+1 = It(exp(βSt)− 1) (2)
Rt+1 = Rt + It (3)

Although the details of these dynamics are different from those in §5.3, it results in behavior that is
qualitatively similar. In particular, if β is small enough, then It shrinks to 0, but if it is large enough
then the fraction of the population infected grows to a high fraction over a small number of time
periods.

In our implementation, we set β = (14/3) ln(2) ≈ 3.23, corresponding to an epidemic that doubles
in size every 3 days in the absence of any interventions.

We now incorporate the effect of asymptomatic screening.

Infection Dynamics with Pooled Testing Our simulation includes pooled testing as follows.
Pooled testing using the pool size xt is used at the start of the period. As described above, its
error rates (false positive and false negative) and its efficiency depend on both the pool size and
the prevalence (It). We use a black-box computation using logic described above to calculate three
quantities:

• αFP(xt, It), the fraction of virus-free individuals tested that test positive (i.e., the false
positive rate for the overall pooled testing procedure);

• αTP(xt, It), the fraction of infected individuals tested that test positive (i.e., the true positive
rate for the overall pooled testing procedure);

• αC(xt, It), the number of chemical reactions performed across the entire population.

Individuals that test positive are immediately removed from the population placed into isolation.
This includes both infectious individuals (in particular, a fraction (αTP(xt, It))It of the overall
population) as well as susceptible and recovered individuals who were incorrectly classified (fractions
αFP(xt, It)St and αFP(xt, It)Rt of the overall population respectively). Thus, the number of people
isolated in period t is,

Qt = αTP(xt, It)It + αFP(xt, It)(St +Rt).

This results in a term cQQt that is added to our loss, representing the social costs of isolation.

Because some infectious individuals are in isolation, the number of new infections is smaller
than in the setting described above without asymptomatic screening. This number is It(1 −
αTP(xt, It). Following the infection dynamics described above, this results in an additional new
It(1 − αTP(xt, It)) exp(βSt) infections drawn from the susceptible population. In addition, all
individuals who were infectious as the start of period t recover. Thus, our dynamics are:

It+1 = It(1− αTP(xt, It)) exp(βSt)

St+1 = St − It+1

Rt+1 = Rt + It

One may wonder about two modeling details. First, susceptible people who are erroneously in
isolation are nevertheless modeled as eligible for infection. Additionally, recovered people are

2Note that we use St rather than St+u. This allows for analytical solution to the above equation and does not
substantially harm accuracy: in the regimes of importance for solving the benchmark problem optimally, St

begins close to 1 and It begins close to 0.

11

0 20 40
number of evaluations

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

be
st

 o
bj

ec
tiv

e
va

lu
e

robot pushing

Random
KG
EI
EI-CF
EI-FN

Figure 2: Results from the experiment described in §E.

modeled as being tested, although in practice one might choose to not test these individuals. These
assumptions have little impact on outcomes because (1) false positive rates are small enough that the
fraction of the susceptible population in isolation is a very small fraction of the overal susceptible
population; (2) in the regimes where good solutions lie, few people are ever infected, making
the recovered population also small. Making these assumptions simplifies the description and
implementation.

The loss at time t is the sum of the social cost of isolation described above, the cost of the testing
supplies consumed cTαC(xt, It), and the social cost associated with the new infections, cIIt+1.

Lt = cTαC(xt, It) + cQQt + cIIt+1.

E Additional Numerical Experiment: Active Learning for Robot Pushing

Here we describe one additional experiment. We consider a variation of the active learning for
robot pushing problem introduced by Wang and Jegelka (2017) whose goal is to teach a robot to
push an object to a predetermined target location. We modify the problem by allowing the robot
to push the object several times instead of only once. We formalize this problem as follows. Let
xinit, xtarget ∈ [−5, 5]2 denote the object’s initial and target locations, respectively. At each time step,
t, we choose the location of the robot’s arm, rt ∈ [−5, 5]2, and the duration of the push, dt ∈ [1, 12].
The robot then moves its arm from rt in the current direction of the object, xt, over dt units of
time. After this push, the location of the object becomes xt+1 (if the robot fails to push the object,
xt+1 = xt). The goal is to choose (rt, dt) for t = 1, . . . , T to minimize ‖xtarget − xT ‖22. We set
xinit = (0, 0), xtarget = (2.9, 1.6), and T = 3. This can be interpreted as a function network by
associating each time step with a pair of node functions pt,1 and pt,1 which take (rt, dt, xt) as input
and produce xt+1 = (pt,1(rt, dt, xt), pt,2(rt, dt, xt)) as output.

The results of this experiment are shown in Figure 2. EI-FN improves over EI-CF and improves
substantially over EI and Random.

F Posterior Mean and Covariance Functions

In this section, we write explicit formulas for the posterior mean and covariance functions of the GP
distributions associated to the node functions, f1, . . . , fK . To write this more simply, we define some
additional notation. Given generic vectors x ∈ RD and y ∈ RK , we define zk = (xI(k), yJ(k)) as
the elements of these vectors supplied as input to node k. Similarly, given a historical observation
of the values of the node functions y` = (h1(x`), . . . , hK(x`)), ` = 1, . . . , n, we define z`,k =
(x`,I(k), y`,J(k)). Using this notation, our posterior mean and covariance functions can be written as

µn,k(zk) = µ0,k(zk) + Σ0,k (zk, z1:n,k) Σ0,k (z1:n,k, z1:n,k)
−1

(y1:n,k − µ0,k (z1:n,k)) ,

and

Σn,k(zk, z
′
k) = Σ0,k(zk, z

′
k)−Σ0,k (zk, z1:n,k) Σ0,k (z1:n,k, z1:n,k)

−1
Σ0,k (z1:n,k, z

′
k) ,

respectively.

12

References
Astudillo, R. and Frazier, P. I. (2019). Bayesian optimization of composite functions. In Chaudhuri,

K. and Salakhutdinov, R., editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 354–363. PMLR.

Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B., Wilson, A. G., and Bakshy, E. (2020).
Botorch: A framework for efficient Monte-Carlo Bayesian optimization. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M. F., and Lin, H., editors, Advances in Neural Information Processing
Systems, volume 33, pages 21524–21538. Curran Associates, Inc.

Bect, J., Bachoc, F., and Ginsbourger, D. (2019). A supermartingale approach to Gaussian process
based sequential design of experiments. Bernoulli, 25(4A):2883–2919.

Cao, S., Gan, Y., Wang, C., Bachmann, M., Wei, S., Gong, J., Huang, Y., Wang, T., Li, L., Lu, K.,
et al. (2020). Post-lockdown sars-cov-2 nucleic acid screening in nearly ten million residents of
wuhan, china. Nature communications, 11(1):1–7.

Çınlar, E. (2011). Probability and stochastics. Springer.

Cleary, B., Hay, J. A., Blumenstiel, B., Harden, M., Cipicchio, M., Bezney, J., Simonton, B., Hong,
D., Senghore, M., Sesay, A. K., et al. (2021). Using viral load and epidemic dynamics to optimize
pooled testing in resource-constrained settings. Science Translational Medicine, 13(589):eabf1568.

Denny, T. N., Andrews, L., Bonsignori, M., Cavanaugh, K., Datto, M. B., Deckard, A., DeMarco,
C. T., DeNaeyer, N., Epling, C. A., Gurley, T., et al. (2020). Implementation of a pooled surveillance
testing program for asymptomatic SARS-CoV-2 infections on a college campus — Duke University,
Durham, North Carolina, August 2–October 11, 2020. Morbidity and Mortality Weekly Report,
69(46):1743–1747.

Dorfman, R. (1943). The detection of defective members of large populations. The Annals of
Mathematical Statistics, 14(4):436–440.

Frazier, P. I., Zhang, Y., and Cashore, M. (2020). Feasibility of COVID-19 screening for the U.S.
population with group testing. https://docs.google.com/document/d/1hw5K5V7XOug_
r6CQ0UYt25szQxXFPmZmFhK15ZpH5U0/edit?ts=5e934170#.

Homem-de Mello, T. (2008). On rates of convergence for stochastic optimization problems under non-
independent and and identically distributed sampling. SIAM Journal on Optimization, 19(2):524–
551.

Jamil, M. and Yang, X.-S. (2013). A literature survey of benchmark functions for global optimization
problems. arXiv preprint arXiv:1308.4008.

Surjanovic, S. and Bingham, D. (2013). Drop-Wave function.

Vazquez, E. and Bect, J. (2010). Convergence properties of the expected improvement algorithm with
fixed mean and covariance functions. Journal of Statistical Planning and Inference, 140(11):3088–
3095.

Wang, Z. and Jegelka, S. (2017). Max-value entropy search for efficient Bayesian optimization. In
Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 3627–3635. PMLR.

Westreich, D. J., Hudgens, M. G., Fiscus, S. A., and Pilcher, C. D. (2008). Optimizing screening
for acute human immunodeficiency virus infection with pooled nucleic acid amplification tests.
Journal of Clinical Microbiology, 46(5):1785–1792.

13

https://docs.google.com/document/d/1hw5K5V7XOug_r6CQ0UYt25szQxXFPmZmFhK15ZpH5U0/edit?ts=5e934170#
https://docs.google.com/document/d/1hw5K5V7XOug_r6CQ0UYt25szQxXFPmZmFhK15ZpH5U0/edit?ts=5e934170#

	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Proposition 2
	Additional Details on the Numerical Experiments
	Hyperparameter Estimation, Number of q-MC Samples, Runtimes, and Licenses
	Details on Synthetic Test Problems
	Alpine2
	Ackley
	Rosenbrock
	Drop-Wave

	Manufacturing Throughput Maximization
	Optimization of Pooled Testing for COVID-19

	Additional Numerical Experiment: Active Learning for Robot Pushing
	Posterior Mean and Covariance Functions

