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Abstract

The convergence of stochastic gradient descent is highly dependent on the step-size,
especially on non-convex problems such as neural network training. Step decay
step-size schedules (constant and then cut) are widely used in practice because
of their excellent convergence and generalization qualities, but their theoretical
properties are not yet well understood. We provide convergence results for step
decay in the non-convex regime, ensuring that the gradient norm vanishes at an
O(lnT/

√
T ) rate. We also provide near-optimal (and sometimes provably tight)

convergence guarantees for general, possibly non-smooth, convex and strongly con-
vex problems. The practical efficiency of the step decay step-size is demonstrated
in several large-scale deep neural network training tasks.

1 Introduction

We focus on stochastic programming problems on the form

min
x∈X

f(x) := Eξ∼Ξ[f(x; ξ)]. (1)

Here, ξ is a random variable drawn from some source distribution Ξ over an arbitrary probability
space and X is a closed, convex subset of Rd. This problem is often encountered in machine learning
applications, such as training of deep neural networks. Depending on the specifics of the application,
the function f can either be non-convex, convex or strongly convex; it can be smooth or non-smooth;
and it may also have additional structure that can be exploited.

Despite the many advances in the field of stochastic programming, the stochastic gradient descent
(SGD) method [37, 32] remains important and is arguably still the most popular method for solving
(1). The SGD method updates the decision vector x using the following recursion

xt+1 = ΠX (xt − ηtĝt) (2)

where ĝt is an unbiased estimate of the gradient (or subgradient) at xt and ΠX is the Euclidean
projection onto X . The step-size parameter (learning-rate) ηt > 0 is critical to control the rate at
which the model learns and to guarantee that the SGD iterates converge to an optimizer of (1). Setting
the step-size too large will result in iterates which never converge; and setting it too small leads to
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slow convergence and may even cause the iterates to get stuck at bad local minima. As long as the
iterates do not diverge, a large constant step-size promotes fast convergence but only to a (large)
neighborhood of the optimal solution. To increase the accuracy, we have to decrease the step-size.

The traditional approach is to decrease the step-size in every iteration, typically as η0/t or η0/
√
t.

Both these step-size schedules have been studied extensively and guarantee a non-asymptotic con-
vergence of SGD [31, 26, 36, 19, 38, 15]. However, from a practical perspective, these step-size
policies often perform poorly, since they begin to decrease too early. For non-convex problems, such
as those which arise in training of deep neural networks, the most successful and popular step-size
policy in practice is the step decay step-size [25, 21, 22]. This step-size policy starts with a relatively
large constant step-size and then cuts the step-size by a fixed number (called decay factor) at after a
given number of epochs. Not only does this step-size result in a faster initial convergence, but it also
guarantees that the SGD iterates eventually converge to an exact solution.

The step decay step-size is the default choice in many deep learning libraries, such as TensorFlow [4]
and PyTorch [35]; both use a decay rate of 0.1 and user-defined milestones when the step-size is
decreased. Although some recent studies attempt to monitor the optimization process to trigger the
milestones when certain conditions are met [27, 50], such approaches are difficult to analyze. Another
common approach is to simply divide the targeted number of iterations into N intervals of equal
length, and trigger a milestone at the end of each such interval. However, the theoretical properties of
this simpler step-size policy is also not yet well understood. To make the problem more manageable
theoretically, some related step-size policies that let the length of each segment increase linearly [6]
or exponentially [19, 8, 49] are analyzed. On the contrary, we consider the more practical case when
the horizon T of the step-decay step-size is divided into several equal parts.

If the number of iterations or horizon T is known apriori, reference [11] analyzes a step decay
step-size with a decay rate of 1/2 applied every T/ log2 T iterations and establishes a near-optimal
O(log2 T/T ) convergence rate for vanilla SGD on least-squares problems. However, to our knowl-
edge, there are no convergence guarantees in the literature under more general conditions, e.g., for
general strongly-convex, general convex, or non-convex problems. Motivated by this, in this paper,
we study the non-asymptotic convergence of SGD with the step decay step-size in more general
settings.

1.1 Main Contributions

This work establishes novel convergence guarantees for SGD with the step decay step-size on non-
convex, convex and strongly convex optimization problems. We make the following contributions:

• We propose a non-uniform probability rule Pt ∝ 1/ηt for selecting the output in the smooth
non-convex setting. Based on this rule, we (i) establish a near-optimal O(lnT/

√
T ) rate for

SGD with step decay step-size; (ii) improve the results for exponential decay step-size [28];
(iii) remove the lnT factor in the best known convergence rate for the 1/

√
t step-size.

• For strongly convex problems, we establish the following error bounds for the last iterate
under step-decay: (i) O(lnT/T ) for smooth problem, which we also prove to be tight; (ii)
O(ln2 T/T ) without the smoothness assumption.

• For the general convex case, we prove that the step decay step-size at the last iterate can
achieve a near-optimal convergence rate (up to a lnT factor).

1.2 Related Work

For SGD, the best known bound for the expected error of the T th iterate is of O(1/
√
T ) when

the objective is convex and smooth [32, 12], and of O(1/T ) when the objective is also strongly
convex [31, 36]. Without any further assumptions, these rates are known to be optimal. If we
restrict our attention to diminishing step-sizes, ηt = η0/t, the best known error bound for strongly
convex and non-smooth problems is of O(lnT/T ) [38], which is also tight [17]. This rate can be
improved to O(1/T ) by averaging strategies [36, 26, 38] or a step decay step-size [19]. For smooth
non-convex functions, Reference [12] established anO(1/

√
T ) rate for SGD with a constant step-size

ηt = O(1/
√
T ). Recently, this error bound has proven to be tight up to a constant, unless additional

assumptions are made [9].

2



Step decay step-sizes were probably first considered for deterministic subgradient methods [14] and
[40]. More recently step decay step-size schemes have been employed to improve the convergence
rates under various conditions: local growth (convex) [45], Polyak-Lójasiewicz (PL) condition [49],
sharp growth (non-convex) [8]. Most of these references consider proximal algorithms (which add a
quadratic term λ ‖·‖2 to the original loss function) and, in addition, perform an extra averaging step
between stages. In particular, if the function f is µ-weakly convex (i.e. f + µ

2 ‖·‖
2 is convex), λ is

required to be larger than µ
2 [49, 6]. In contrast, we study the performance of step decay step-size for

the standard SGD algorithm. Moreover, in [45] the output of each inner-loop is an uniform average.
So their complexity reflects the average performance over iterations. But for convex and strongly
convex problems, we focus on the final iterate which is the most preferred choice in practice. In fact,
most practitioners just use the final iterate.

Reference [6] considers slowly decaying step-sizes, ∼ 1/t where t is the stage index. In other words,
the step-size is not cut by a constant factor between stages as we do, but it decays (very) slowly.
Compared to [19] and [49], where the inner-loop size S grows exponentially, we use a constant
value of S, which is known to work better in practice. In the extreme case when S = 1, step-decay
reduces to the exponentially decaying step-size recently studied under the PL condition and a general
smoothness assumption [28].

A number of adaptive step-size selection strategies have been proposed for SGD (e.g., [10, 42, 23, 30,
29]), some of which result in step-decay policies [44, 27, 50]. For example, Reference [27] develops
a statistical procedure to automatically determine when the SGD iterates with a constant step-size no
longer make progress, and then halve the step-size. Empirically, this automatic scheme is competitive
with the best hand-tuned step-decay schedules, but no formal guarantees for this observed behaviour
are given.

The paper is organized as follows. Notation and basic definitions are introduced in Section 2. In
Section 3, we analyze the convergence rates of step decay step-size on nonconvex case and propose a
novel non-uniform sampling rule for the algorithm output. The convergence for general convex and
strongly convex functions are investigated in Sections A and 4, respectively. Numerical results of
our algorithms are presented and discussed in Section 5. Finally, conclusions are made in Section 6.

2 Preliminaries

In this part, we will give some definitions and notations used throughout the paper.

Definition 1. (1) The stochastic gradient oracle Õ is variance-bounded if for any input vector x̂,it
returns a random vector ĝ such that E[‖ĝ − E[ĝ]‖2] ≤ V 2. (2) Õ is bounded if for any input vector
x̂, it returns a random vector ĝ such that E[‖ĝ‖2] ≤ G2 for some fixed G > 0.

Definition 2. When the function f is differentiable on X , we say that f is L-smooth on X if
there exists a constant L > 0 such that ‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖. It also implies that
f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2 ‖x− y‖
2 for any x, y ∈ X . If f is not differentiable on X , we

say that f is L-smooth with respect to x∗ if f(x)− f(x∗) ≤ L
2 ‖x− x

∗‖2 ,∀x ∈ X , with L > 0.

The definition of L-smoothness for non-convex functions has been considered by [36].

Definition 3. The function f is µ-strongly convex on X ⊆ Rd if f(y) ≥ f(x) + 〈g, y − x〉 +
µ
2 ‖y − x‖

2
, ∀x, y ∈ X , g ∈ ∂f(x), with µ > 0.

Definition 4. The function f is convex on X if f(y) ≥ f(x) + 〈g, y − x〉 for any g ∈ ∂f(x) and
x, y ∈ X .

Throughout the paper, we assume the objective function f is bounded below on X and let f∗ denote
its infimum. If f is strongly convex, x∗ is the unique minimum point of f and f∗ = f(x∗).

Notation: Let [n] denote the set of {1, 2, · · · , n} and ‖·‖ := ‖·‖2 without specific mention. We use
brc and dre to denote the nearest integer to the real number r from below and above. For simplicity of
notation, we assume that S, N , (logα T )/2, logα T and T/ logα T are all integers. The subgradient
of the function f on x is denoted by ∂f(x) := {v | f(y) ≥ f(x) + 〈v, y − x〉 ,∀y}.
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3 Non-asymptotic Convergence for Non-convex Problems

In this section, we provide the first convergence bounds for SGD with step-decay step-sizes on
non-convex problems. We also show that our technical approach can be used to improve the best
known convergence bounds for both i) standard 1/

√
t step-sizes and ii) exponential decay step-sizes.

Before we proceed, we illustrate the theoretical novelty that allows us to derive these results. Most
convergence results for SGD on non-convex problems analyze a random iterate drawn from {xt}Tt=1
with some probability Pt [12, 13, 28]. For example, reference [12] provides the following result.

Proposition 3.1. Suppose that f is L-smooth on Rd and the stochastic gradient oracle is variance-
bounded by V 2. If the step-size ηt = η0/

√
t ≤ 1/L, then

E[‖∇f(x̂T )‖2] ≤ f(x1)− f∗

η0(
√
T − 1)

+
LV 2η0(lnT+1)

2(
√
T − 1)

, (3)

where x̂T is randomly chosen from {xt}Tt=1 with probability Pt ∝ ηt. 1

Since ηt is decreasing, Pt ∝ ηt means that initial iterates are given higher weights in the average in
Equation (3) than the final iterates. This contradicts the intuition that the iterates become better as the
algorithm progresses. Ideally, we should do the opposite, i.e. put high weights on the final iterates
and low weights on the initial iterates. This is exactly what we do to obtain convergence bounds
for step decay step-size: we use the probability Pt ∝ 1/ηt instead of Pt ∝ ηt [12, 28] or uniformly
sampling [8]. This is especially important when the step-sizes decrease exponentially fast, like in step
decay and exponential decay step-sizes. For example, suppose that ηt ∝ 0.9−t and T = 100. Then
with Pt ∝ ηt we pick the output from the first 10 iteration with 65% probability. On the other hand,
with Pt ∝ 1/ηt we pick the output from the last 10 iterations with 65% probability; see Figure 1.

There are other averaging or sampling rules which favor the last iterate in a similar spirit as we do.
References [26] and [16] consider SGD with a 1/t step-size and analyze the increasing weighted
average ∼ tr (r > 0) of the iterates. [6, 46] selects a random iterate as output with increasing
probabilities, ∼ tr (r > 0) for stagewise optimization algorithms, but their step-sizes and output
probabilities are very different from ours. Especially, for step-decay, their output probabilities are
on the form tr (r > 0), while we use αt (α > 1) which increases much quicker with t, hence our
sampling rule favours late iterates to a much higher degree. Moreover, our output distribution is
directly related to the step-size, and does not include any new parameters that require hyper-tuning.

In the following three subsections we perform such an analysis to 1) provide convergence bounds for
step decay step-size (where no bounds existed before) 2) provide improved convergence rate results
for exponential decay step-size, and 3) improve the convergence bound for 1/

√
t step-size.

3.1 Convergence Rates under the Step Decay Step-Size

Algorithm 1 describes the SGD algorithm with step decay step-size and our probability rule for
selecting the output. Here, and in the analysis below, N is the number of stages, and α is the decay
factor by which the step-size is divided at the end of each such stage. In practical deep neural network
training, α = 10 is the default and N is typically a hyper-parameter selected by experience. For
non-convex problems, we will show that it makes sense to let N depend on the desired number of
iterations T and the decay factor α. Specifically, we will derive results for N = (logα T )/2 (which
is typically a small number) and show that this choice works well in numerical experiments.

Theorem 3.2. Suppose that the non-convex objective function f is L-smooth on Rd, the stochastic
gradient oracle is variance-bounded by V 2, and assume that there exists a constant ∆0 > 0 such
that E[f(xt1)− f∗] ≤ ∆0 for all t ≥ 1. If we run Algorithm 1 with T > 1, α > 1, N ≥ 1, η0 ≤ 1/L,
and x1

1 ∈ Rd, then

E[‖∇f(x̂T )‖2] ≤ 2(α− 1)∆0

α2η0
· NαN

T (1− α−N )
+
η0LV

2(α− 1)

αN − 1
. (4)

1In [12], Pt ∝ (2ηt − Lη2t ). If ηt is far smaller than 1/L, we have (2ηt − Lη2t ) ≈ 2ηt. For simplicity, we
rewrite the probability as Pt ∝ ηt to show the results.
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Algorithm 1 SGD with step decay step-size on the non-convex case

1: Input: initial point x1
1, initial step-size η0, decay factor α > 1, the number of iterations T ,

outer-loop size N
2: Initialize: inner-loop size S = T/N
3: for t = 1 : N do
4: ηt = η0/α

t−1

5: for i = 1 : S do
6: Query a stochastic gradient oracle at xti to get a vector ĝti such that E[ĝti ] = ∇f(xti)
7: xti+1 = xti − ηtĝti
8: end for
9: xt+1

1 = xtS+1
10: end for
11: Return: x̂T is randomly chosen from all the previous iterations {xti} with probability P ti =

1/ηt
S
∑N
t=1 1/ηt

where i ∈ [S] and t ∈ [N ]

Furthermore, if we assume that N = (logα T )/2, then

E[‖∇f(x̂T )‖2] ≤ A∆0

η0
· lnT√

T − 1
+B

LV 2η0√
T − 1

, (5)

where A = (α− 1)/(α2 lnα) and B = α− 1.

The theorem establishes the first convergence guarantee of SGD with step decay step-sizes on
non-convex problems. The results in Eq. (4) capture the influence of N (the number of stages)
on the convergence rate. For example, if N = 1, then the step-decay schedule reduces to the
constant step-size and the convergence bound in Theorem 3.2 matches the known results by setting
ηt = η0/

√
T [12]. For N > 1, the error bound becomes more complicated. Increasing N reduces

the noise term, but it increases the error related to the function value. So there is a trade-off between
making the two terms in the right hand side of Eq. (4) small.

The convergence rate is optimized by selecting N = (logα T )/2, which yields the rate given in
Eq. (5). It ensures a O(lnT/

√
T ) rate towards a stationary point, which is comparable to the results

for ηt = O(1/
√
t) step-size in [12] or Proposition 3.1. However, as illustrated in our experiments

in Section 5, step decay step-size converges faster in practice and tends to find stationary points
that generalize better. Moreover, in the deterministic case when V = 0, let N = 1, Theorem 3.2
yields the standard O(1/T ) convergence rate result for deterministic gradient descent [33, 5, 13].
Another benefit of Theorem 3.2 is that we can reduce the effect of the very large noise variance V 2 to
the convergence bound by setting α = 1 + 1/V 2. This is in contrast to Proposition 3.1 and 1/

√
t

step-sizes, where an increased V 2 results in a worse upper bound.

The main novel difficulty in proofing Theorem 3.2, compared to similar results, appears in that we
have the new term

∑T
t=1 E[f(xt) − f(xt+1)]/η2

t to account for. To this end, we require that the
expectation of the function value at each outer iterate E[f(xt)] is uniformly upper bounded. In [39],
the authors proved that the function values at the iterates of SGD can be controlled by the initial state,
provided that the step-size is bounded by 1/L. Therefore, it is fair to make this assumption as long
as the initial state is given. Nevertheless, this assumption (or its stronger version that the objective
function is upper bounded) has been widely used (or implied) in optimization [20, 47, 48, 46] and
statistic machine learning [43, 7], and it has never been violated in our numerical experiments. We
illustrate the details of the proof in the supplementary material.

3.2 A Special Case: Exponentially Decaying Step-Size

An interesting special case occurs when we set S = 1 in the step decay step-size. In this case, the
step-size will decay exponentially, ηt = η0/α

t. The first convergence rate results for such step sizes,
which we will call Exp-Decay, have only recently appeared in the preprint [28]; we compare our
work to those results below.

Clearly, for S = 1, the exponential decay factor α > 1 cannot be chosen arbitrarily: if α is too large,
then ηt will vanish in only a few iterations. To avoid this, we choose a similar form of the decaying
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factor as [28] and set α = (β/T )−1/T , where β ∈ [1, T ). The intuition is that at the final iteration
T the step-size is on the order of 1/

√
T (setting β = O(

√
T )), and thus does not vanish over the T

iterations. Note that in the special case where S = 1, then N = T , the choice for β is also implied
from Theorem 3.2 by setting αT =

√
T . We are now ready to prove the algorithm’s convergence.

Theorem 3.3. Suppose that the non-convex objective function f is L-smooth and there exists a
constant ∆0 > 0 such that E[f(xt)− f∗] ≤ ∆0 for all t ≥ 1, and that the stochastic gradient oracle
is variance-bounded by V 2. If we run Algorithm 1 with T > 1, S = 1, η0 ≤ 1/L, x1

1 ∈ Rd, and
α = (β/T )−1/T , then

E[‖∇f(x̂T )‖2] ≤
η0 ln(Tβ )

(Tβ − 1)T

[
2∆0

η2
0

(
T

β

)2

+ LV 2T

]
,

where x̂T is randomly drawn from {xt}Tt=1 with probability Pt = 1/ηt∑T
t=1 1/ηt

. In particular, β =
√
T

yields

E[‖∇f(x̂T )‖2] ≤
(

∆0

η0
+
LV 2η0

2

)
· lnT√

T − 1
. (6)

Theorem 3.3 establishes the convergence of Exp-Decay to a stationary point. With β =
√
T , Exp-

Decay yields the rate of O(lnT/
√
T ), which is comparable to the results in [28]. However, in [28],

theO(lnT/
√
T )-rate is obtained under the (arguably impractical) assumption that the initial step-size

η0 is bounded by O(1/
√
T ). This means that the initial step-size η0 will be small if we plan on

running the algorithm for a large number of iterations T . This is in conflict to the original motivation
for using exponentially decaying step-sizes, namely to allow for large initial step-sizes which decrease
as the algorithm progresses. On the other hand, our results in Theorem 3.3 only require that the initial
step-size is bounded by 1/L, which matches the largest fixed step-sizes that ensure convergence.

Another advantage of Theorem 3.3 is that it uses the output probability Pt ∝ 1/ηt, instead of Pt ∝ ηt
as in [28]. As discussed in the beginning of the section (and in Figure 1), Pt ∝ 1/ηt means that the
output is much more likely to be chosen during the final iterates, whereas with Pt ∝ ηt the output
is more likely to come from the initial iterates. Therefore, Theorem 3.3 better reflects the actual
convergence of the algorithm, since in practice it is typically the final iterate that is used as the trained
model. We illustrate this better in our experiments in Section 5.

3.3 Improved Convergence for the 1/
√
t Step-Size

The next theorem demonstrates how the idea of using the output distribution Pt ∝ 1/ηt instead of
Pt ∝ ηt can improve standard convergence bounds for 1/

√
t step-sizes.

Theorem 3.4. Suppose that the objective function is L-smooth and there exists a constant ∆0 > 0
such that E[f(xt) − f∗] ≤ ∆0 for all t ≥ 1, and that the stochastic gradient oracle is variance-
bounded by V 2. If ηt = η0/

√
t ≤ 1/L, then

E[‖∇f(x̂T )‖2] ≤
(

3∆0

η0
+

3LV 2η0

2

)
· 1√

T

where x̂T is randomly drawn from {xt}Tt=1 with probabilities Pt = 1/ηt∑T
t=1 1/ηt

.

Theorem 3.4 establishes an O(1/
√
T ) convergence rate of SGD with 1/

√
t step-sizes. This improves

the best known convergence bounds O(lnT/
√
T ) for the algorithm, see Proposition 3.1 or [12].

4 Non-asymptotic Convergence for Strongly Convex Problems

We now investigate the convergence of the step decay step-sizes in the strongly convex case. We allow
general convex and closed constraint set X ⊂ Rd and possibly non-smooth convex problems. To
capture this setting, Algorithm 1 needs to be adjusted by including a projection step and subgradients
(see Algorithm 2 in supplementary material). We also give the convergence for the general convex
case (see Appendix A).
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4.1 Strongly Convex and L-Smooth Functions

We first consider the case when f is strongly convex and L-smooth (with respect to x∗).
Theorem 4.1. Assume that the objective function f is µ-strongly convex on X and the stochastic
gradient oracle is bounded by G2. If we consider Algorithm 2 with T > 1, N = logα T , x1

1 ∈ X ,
and η0 < 1/(2µ), then we have

E
∥∥xNS+1− x∗

∥∥2 ≤ R

exp
(
A3

T−1
lnT

) +
αη0G

2 exp
(
A3

lnT

)
2µA3

lnT

T

where A3 = 2µη0α lnα/(α − 1) and R =
∥∥x1

1 − x∗
∥∥2

. Further, if the objective function f is
L-smooth with respect to x∗ then we can bound the objective function as follows

E[f(xNS+1)− f(x∗)] ≤ L

2
E
∥∥xNS+1 − x∗

∥∥2
.

The theorem provides an O(lnT/T ) theoretical guarantee for the last iterate under step decay step-
size.2 This bound matches the convergence rate of [11] for strongly convex least squares problems.
Therefore, Theorem 4.1 can be considered a generalization of the result in [11] to general smooth
and strongly convex problems.

From Theorem 4.1, we see that the effect of the initial condition ‖x1
1−x?‖2 is forgotten exponentially

fast, unlike for 1/t step-sizes (e.g.[31]). For 1/t step-sizes, the initial learning rate is critical (both
in theory and practice) to the convergence rate of SGD [32, 31]. For example, an initial step-size
of η0 < 2/µ, will lead to a t−µη0/2 rate, far from the optimal rate 1/t. For step decay, the initial
step-size only affects the constant in front of the theoretical convergence bound and is not sensitive to
the choice of initial step-size η0 < 1/(2µ). We also observe this property of step-decay step-size in
the experiments in Figure 4(b).

Under some step-sizes, e.g. ηt = 1/t , it is possible to get an O(1/T ) convergence rate for SGD for
smooth and strongly convex problems [31, 36, 19]. However, our next result shows that the rate in
Theorem 4.1 is tight for Algorithm 2.
Theorem 4.2 (Lower Bound). Consider Algorithm 2 with S = T/ logα T and x1

1 = 0. For any
T ∈ N+ and δ ∈ (0, 1), there exists a function f̃T : X → R, where X = [−4, 4], that is both
1-strongly convex and 1-smooth such that

f̃T (xNS+1)− f̃T (x∗) ≥ ln(1/δ)

9 exp(2) lnα
· lnT

T

with probability at least δ, where x∗ = minx∈X f̃T (x).

The high probability lower boundO(lnT/T ) matches the upper bound in Theorem 4.1. This suggests
that the bound in Theorem 4.1 is actually tight for Algorithm 2 in the smooth strongly-convex case.

4.2 Strongly Convex and Non-Smooth Functions

For general, not necessarily smooth, strongly convex functions we have the following result.
Theorem 4.3. Suppose that the objective function f is µ-strongly convex on X and the stochastic
gradient oracle is bounded by G2. If we run Algorithm 2 with T > 1, S = T/ logα T , x1

1 ∈ X , and
η0 < 1/(2µ), then we have

E[f(xNS )− f(x∗)] ≤ R lnT

A4 exp
(
B4

T−α
lnT

) + C4
lnT + 2

T
+D4 exp

(
E4

lnT

)
ln2 T

T

where A4 = η0α lnα, B4 = 2µA4/(α− 1), C4 = G2η0α, D4 = G2/(2µ lnαB4), E4 = αB4.

The theorem shows that even without the smoothness assumption, we can still ensure convergence
at the rate O(ln2 T/T ). We can improve the rate to O(lnT/T ) with an averaging technique, as
illustrated next. Moreover, the averaging technique improves the dependence of the parameter µ from
1/µ2 (see Theorem 4.3) to 1/µ.

2Note that exp(A3/ lnT )≤ exp(A3/ ln 2) for all T≥2 and exp(A3/ lnT ) converges to 1 as T goes to∞.
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Theorem 4.4. Under the assumptions of Theorem 4.3

E[f(x̂T )− f(x∗)] ≤ A5R

exp
(
B4

T
lnT − 1

) + C5
lnT

T

where x̂T =
∑N
t=t∗ ηt

∑S
i=1 x

t
i/(S

∑N
t=t∗ ηt), t

∗ := max{0, blogα(η0αA5T/ logα T )c}, A5 =
2µα/(α− 1), C5 = α(2 + 1/(α2 − 1))G2/(2µ lnα), and B4 is as defined in Theorem 4.3.

5 Numerical Experiments

In this section, we evaluate the practical performance of step decay step-size and compare it against
the following popular step-size policies: 1) constant step-size, ηt = η0; 2) 1/t step-size, ηt =
η0/(1 + a0t); 3) 1/

√
t step-size ηt = η0/(1 + a0

√
t); 4) Exp-Decay [28], ηt = η0/α

t with
α = (β/T )−1/T for β ≥ 1. In each experiment, we perform a grid search to select the best values for
the free parameters η0, a0, β as well as for the step decay step-size parameter α. More details about
the relationship between the different step-size policies are given in the supplementary material.

5.1 Experiments on MNIST with Neural Networks

Consider the classification task on MNIST database of handwritten digits using a fully-connected
2-layer neural network with 100 hidden nodes (784-100-10) [3]. We first explore the output xT at the
last iterate T , which is the output of the algorithm that is typically used in practice. The theoretical
output x̂T (in Theorem 3.2) is drawn from all the previous iterates {xti} with probability Pt ∝ 1/ηt.
To get an insight into the relationship between the last iterate and theoretical output in Theorem 3.2,
we randomly choose 6000 iterates (10% of the total iterates) with probability Pt ∝ 1/ηt, record
their exact training loss and testing loss, and calculate the probabilities (shown in Figure 1, middle
and right). We can see that the theoretical output can reach the results of the last iterate with high
probability, no matter training loss or testing loss.

In the same way, in order to show the advantages of probability Pt ∝ 1/ηt over Pt ∝ ηt, we
also implement Step-Decay with probability Pt ∝ ηt in Figure 1. We can see that the output with
probability Pt ∝ 1/ηt is more concentrated at the last phase and has a higher probability, especially,
in terms of loss, compared to the result of probability Pt ∝ ηt.
The performance of the various step-size schedules is shown in Figure 2. Exp-Decay and Step-Decay
perform better than other step-sizes both in loss (training and testing) and testing accuracy. Step-
Decay has an advantage over Exp-Decay in the later stages of training where it attains a lower training
and testing loss.

5.2 Experiments on CIFAR10 and CIFAR100

To illustrate the practical implications of the step decay step-size, we perform experiments with
deep learning tasks on the CIFAR [1]. We will focus on results for CIFAR100 here, and present
complementary results for CIFAR10 in the supplementary material. To eliminate the influence of
stochasticity, all experiments are repeated 5 times.

We consider the benchmark experiments for CIFAR100 on a 100-layer DenseNet [22]. We employ
vanilla SGD without dampening and use a weight decay of 0.0005. The optimal step-size and
algorithm parameters are selected using a grid search detailed in the supplementary material. The
results are shown in Figure 3. We observe that Step-Decay achieves the best results in terms of both
testing loss and testing accuracy, and that it is also fast in reaching a competitive solution. Another
observation is that as the iterates proceeds in each phase, its testing loss and accuracy is getting worse
because its generalization ability is weakened. Therefore, deciding when to stop the iteration or
reduce the step-size is important.

Finally, we compare the performance of Exp-Decay and Step-Decay on Nesterov’s accelerated
gradient (NAG) [34, 41] and other adaptive gradient methods, including AdaGrad [10], Adam [23]
and AdamW [30]. The results are shown in Table 1. All the parameters involved in step-sizes,
algorithms, and models are best-tuned (shown in supplementary material). The ± shows 95%
confidence intervals of the mean accuracy value over 5 runs. We can see that compared to the
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Figure 1: Output probability distributions (left); training loss (middle) and testing loss (right)
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Figure 2: Results on MNIST: left - training loss; middle - testing loss; right - testing accuracy
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Figure 3: Results on CIFAR100: left - training loss; middle - testing loss; right - testing accuracy

Exp-Decay step-size, Step-Decay can reach higher testing accuracy on Adam, AdamW and NAG.
This suggest that the Step-Decay step-size can be extended to other methods.

5.3 Experiments on Regularized Logistic Regression

We now turn our attention to how the step-decay step-size and other related step-sizes behave in
the strongly convex setting. We consider the regularized logistic regression problem on the binary
classification dataset rcv1.binary (n = 20242; d = 47236) from LIBSVM [2], where a 0.75 partition
is used for training and the rest is for testing.

Figure 4(a) shows how a constant step-size has to be well-tuned to give good performance: if we
choose it too small, convergence will be painstakingly slow; if we set it too large, iterates will stagnate
or even diverge. This effect is also visualized in blue in Figure 4(b), where only a narrow range of
values results in a low training loss for the constant step-size. In contrast, the initial step-size of both
Exp-Decay and Step-Decay can be selected from a wide range (≈ 10 − 104) and still yield good
results in the end. In other words, Exp-Decay and Step-Decay are more robust to the choice of initial
step-size than the alternatives. A more thorough evaluation of all the considered step-sizes on logistic
regression can be found in Supplementary D.3.
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Table 1: Test accuracy on CIFAR100.

Method
CIFAR100-DenseNet

Testing accuracy

AdaGrad 0.6197 ± 0.00518
Adam + Exp-Decay 0.6936 ± 0.00483
Adam + Step-Decay 0.7041 ± 0.00971
AdamW + Exp-Decay 0.7165 ± 0.00353
AdamW + Step-Decay 0.7335 ± 0.00261
NAG + Exp-Decay 0.7531 ± 0.00606
NAG + Step-Decay 0.7568 ± 0.00156
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Figure 4: The results on rcv1.binary - logistic(L2)

6 Conclusion

We have provided theoretical guarantees for SGD under the step decay family of step-sizes, widely
used in deep learning. Our first results established a near-optimal O(lnT/

√
T ) rate for step decay

step-sizes in the non-convex setting. A key step in our analysis was to use a novel non-uniform
probability distribution Pt ∝ 1/ηt for selecting the output of the algorithm. We showed that this
approach allows to improve the convergence results for SGD under other step-sizes as well, e.g., by
removing the lnT term in the best known convergence rate for ηt = 1/

√
t step-sizes. Moreover,

we established near-optimal (compared to the min-max rate) convergence rates for general convex,
strongly convex and smooth, and strongly convex and non-smooth problems. We illustrated the
superior performance of step-decay step-sizes for training of large-scale deep neural networks. In the
experiments, we observed that as the iterates proceeding in each phase, their generalization abilities
are getting worse. Therefore, it will be an interesting to study how to best select the size of inner-loop
S (instead of constant or exponentially growing) to avoid the loss of generalization.

Broader Impact

This is mostly a theoretical work and, therefore, it does not have any direct negative societal impacts.
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Algorithm 2 Projected SGD with step decay step-size on the convex and strongly convex cases

1: Input: initial point x1
1, initial step-size η0, decay factor α > 1, the number of iteration T ,

outer-loop size N
2: Initialize: inner-loop size S = T/N
3: for t = 1 : N do
4: ηt = η0/α

t−1

5: for i = 1 : S do
6: Query a stochastic gradient oracle at xti to get a random vector ĝti such that E[ĝti ] = gti

where gti ∈ ∂f(xti)
7: xti+1 = ΠX (xti − ηtĝti), where ΠX is the projection operator on X
8: end for
9: xt+1

1 = xtS+1
10: end for
11: Return: xNS+1

A Non-asymptotic Convergence for General Convex Problems

We now establish the first convergence rate results for the step decay step-size in the general convex
setting. More specifically, we consider a possibly non-differentiable convex objective function on
a closed and convex constraint set X ⊆ Rd. For this problem class, we analyze the projected SGD
with step decay step-size detailed in Algorithm 2.

We have the following convergence guarantees:

Theorem A.1. Suppose that the objective function f is convex on X and supx,y∈X ‖x− y‖
2 ≤ D2.

The stochastic gradient oracle is bounded by G2. If we run Algorithm 2 with T > 1, S = 2T/ logα T ,
x1

1 ∈ X , then we have

1

S

S∑
i=1

E[f(xNi )]− f∗ ≤ A2
lnT√
T

+
B2√
T
,

where A2 = D2/(4η0α lnα) and B2 = G2η0α/2. Moreover, we have the following bound on the
final iterate:

E[f(xNS )]− f∗ ≤ (A2 +B2)
lnT√
T

+
(2 + ln 2)B2√

T
.

Theorem A.1 establishes an O(lnT/
√
T ) convergence rate for both the average objective function

value and the objective function value at the final iterate. This convergence rate is comparable to the
results obtained for other diminishing step-sizes such as ηt = η0/

√
t under the same assumptions [38].

Proof. (of Theorem A.1) The convexity of f yields 〈gti , x− xti〉 ≤ f(x) − f(xti) for any x ∈ X ,
where gti ∈ ∂f(xti). Also, by convexity of X , we have ‖ΠX (u)− v‖ ≤ ‖u− v‖ for any points
u ∈ Rd and v ∈ X . Using these inequalities and applying the assumption that the stochastic gradient
oracle is bounded by G2, i.e., E[‖ĝti‖

2
] ≤ G2, for any x ∈ X , we have

E[
∥∥xti+1 − x

∥∥2
] = E[

∥∥ΠX (xti − ηtĝti)− x
∥∥2

] ≤ E[
∥∥xti − ηtĝti − x∥∥2

]

≤ E[
∥∥xti − x∥∥2

]− 2ηtE[
〈
gti , x

t
i − x

〉
] + η2

tG
2

≤ E[
∥∥xti − x∥∥2

]− 2ηt[f(xti)− f(x)] + η2
tG

2. (7)

Shifting [f(xti)− f(x)] to the left side gives

2ηtE[f(xti)− f(x)] ≤ E[
∥∥xti − x∥∥2

]− E[
∥∥xti+1 − x

∥∥2
] + η2

tG
2. (8)

Now, consider the final phase N (let t = N ) and x = x∗ and apply (8) recursively from i = 1 to S to
obtain

2ηN

S∑
i=1

E[f(xNi )− f∗] ≤ E[
∥∥xN1 − x∗∥∥2

] + Sη2
NG

2. (9)
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Combining the assumption that supx,y∈X ‖x− y‖
2 ≤ D2 for some finite D with the expression for

the step-size in the final phase that ηN = η0α/
√
T , we have∑S

i=1 E[f(xNi )]

S
− f∗ ≤

E
[∥∥xN1 − x∗∥∥2

]
2ηNS

+
G2ηN

2

≤ D2

4η0α
· logα T√

T
+
G2η0α

2
· 1√

T
. (10)

We have thus proven the first part of Theorem A.1. Next, based on the above results, we prove the
error bound for the last iterate. We focus on the last phaseN and apply (8) recursively from i = S−k
to S to find

2ηN

S∑
i=S−k

E[f(xNi )− f(xNS−k)] ≤ E
[∥∥xNS−k − xNS−k∥∥2

]
− E

[∥∥xNS+1 − xNS−k
∥∥2
]

+ (k + 1)η2
NG

2.

(11)

Introducing WN
k+1 := 1

k+1

∑S
i=S−k E[f(xNi )], inequality (11) implies that

−f(xNS−k) ≤ −WN
k+1 +

ηNG
2

2
. (12)

By the definition of WN
k+1, we have (k + 1)WN

k+1 − kWN
k = f(xNS−k). Using this formula and

applying (12) gives

kWN
k = (k + 1)WN

k+1 − f(xNS−k) ≤ (k + 1)WN
k+1 −WN

k+1 +
ηNG

2

2
.

Dividing by k, we get

WN
k ≤WN

k+1 +
ηNG

2

2k
.

Using the above inequality repeatedly for k = 1, 2, · · · , S − 1, we have

WN
1 ≤WN

S +
ηNG

2

2

S−1∑
k=1

1

k
≤WN

S +
G2η0α

2
√
T

(
ln

(
2T

logα T

)
+ 1

)
. (13)

Recalling the definition of WN
S and applying (10) into the above inequality, we obtain

E[f(xNS )]− f∗ ≤ D2

4η0α
· logα T√

T
+
G2η0α

2
· lnT√

T
+
G2η0α(1 + ln(2)/2)√

T
.

The proof is complete.

B Proofs of Section 3

Before presenting the proofs of Section 3, we state and prove the following useful lemma.
Lemma B.1. Suppose that f is L-smooth on Rd and the stochastic gradient oracle is variance-
bounded by V 2. If ηt ≤ 1/L, consider the SGD algorithm, we have

ηt
2
E[‖∇f(xt)‖2] ≤ E[f(xt)]− E[f(xt+1)] +

LV 2η2
t

2
.

Proof. Recall the SGD iterations xt+1 = xt − ηtĝt, where E[ĝt] = ∇f(xt). By the smoothness of f
on Rd, we have

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

≤ f(xt) + 〈∇f(xt),−ηtĝt〉+
L

2
‖xt+1 − xt‖2

≤ f(xt)− ηt 〈∇f(xt), ĝt〉+
Lη2

t

2
‖ĝt‖2 . (14)
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The stochastic gradient oracle is variance-bounded by V 2, i.e., E[‖ĝt −∇f(xt)‖2] ≤ V 2. Taking
expectation on both sides of (14) and applying E[ĝt] = ∇f(xt) and the variance-bounded assumption
gives

E[f(xt+1)] ≤ E[f(xt)]− ηtE[‖∇f(xt)‖2] +
Lη2

t

2
E[‖ĝt‖2]

≤ E[f(xt)]− ηtE[‖∇f(xt)‖2] +
Lη2

t

2
E[‖ĝt −∇f(xt) +∇f(xt)‖2]

≤ E[f(xt)]− ηtE[‖∇f(xt)‖2] +
Lη2

t

2

(
E[‖ĝt −∇f(xt)‖2 + E[‖∇f(xt)‖2]

)
≤ E[f(xt)] +

(
−ηt +

Lη2
t

2

)
E[‖∇f(xt)‖2] +

Lη2
t

2
E[‖ĝt −∇f(xt)‖2

≤ E[f(xt)] +

(
−ηt +

Lη2
t

2

)
E[‖∇f(xt)‖2] +

LV 2η2
t

2
. (15)

where the second inequality follows the fact that gradient ĝt is unbiased (E[ĝt] = ∇f(xt)). We thus
have that

E[‖ĝt −∇f(xt) +∇f(xt)‖2] = E[‖ĝt −∇f(xt)‖2 + ‖∇f(xt)‖2 + 2 〈ĝt −∇f(xt),∇f(xt)〉]
= E[‖ĝt −∇f(xt)‖2] + E[‖∇f(xt)‖2].

Since η0 ≤ 1/L, we have −ηt + η2
tL/2 ≤ −ηt/2. Using this inequality, shifting E[‖∇f(xt)‖2] to

the left side, and re-arranging (15) gives

ηt
2
E[‖∇f(xt)‖2] ≤ E[f(xt)]− E[f(xt+1)] +

LV 2η2
t

2
.

Proof. (of Proposition 3.1) By Lemma B.1, the following inequality holds for SGD

ηt
2
E[‖∇f(xt)‖2] ≤ E[f(xt)]− E[f(xt+1)] +

LV 2η2
t

2
. (16)

Under the diminishing step-size ηt = η0/
√
t, we estimate the summation of ηt and η2

t from t = 1 to
T , respectively:

T∑
t=1

ηt = η0

T∑
t=1

1√
t
≥ η0

∫ T

t=1

1√
t
dt = 2η0(

√
T − 1)

T∑
t=1

η2
t = η2

0

T∑
t=1

1

t
≤ η2

0

(
1 +

∫ T

t=1

1

t
dt

)
= η2

0(lnT + 1).

Recall that the output x̂T is chosen randomly from the sequence {xt}Tt=1 with probability Pt =
ηt∑T
t=1 ηt

. We thus have

E[‖∇f(x̂T )‖] =
ηtE[‖∇f(xt)‖2]∑T

t=1 ηt

≤
2
∑T
t=1 E[f(xt)− E[f(xt+1)]]∑T

t=1 ηt
+
LV 2

∑T
t=1 η

2
t∑T

t=1 ηt

≤ 2(f(x1)− f∗)∑T
t=1 ηt

+
LV 2

∑T
t=1 η

2
t∑T

t=1 ηt

≤ f(x1)− f∗

η0(
√
T − 1)

+
LV 2η0(lnT + 1)

2(
√
T − 1)

.

16



Proof. (of Theorem 3.2) Invoking the result of Lemma B.1, at the current iterate xti, the following
inequality holds:

ηt
2
E[
∥∥∇f(xti)

∥∥2
] ≤ E[f(xti)]− E[f(xti+1)] +

LV 2η2
t

2
,

Dividing both sides by η2
t /2 yields

1

ηt
E[
∥∥∇f(xti)

∥∥2
] ≤ 2

η2
t

(
E[f(xti)]− E[f(xti+1)]

)
+ LV 2 (17)

At each inner phase for i ∈ [S], the step-size ηt is a constant. Applying (17) repeatedly for
i = 1, 2, · · ·S gives

1

ηt

S∑
i=1

E[
∥∥∇f(xti)

∥∥2
] ≤ 2

η2
t

(
E[f(xt1)]− E[f(xtS+1)]

)
+ LV 2 · S (18)

Since the output x̂T of Algorithm 1 is randomly chosen from all previous iterates {xti}with probability
P ti = 1/ηt

S
∑N
l=1 1/ηt

, we have

E[‖∇f(x̂T )‖2] =
1

S
∑N
t=1(1/ηt)

N∑
t=1

1

ηt

S∑
i=1

∥∥∇f(xti)
∥∥2

≤ 1

S
∑N
t=1(1/ηt)

N∑
t=1

2

η2
t

(
E[f(xt1)]− E[f(xtS+1)]

)
+

LV 2 · S
S
∑N
t=1 1/ηt

≤ 2η0

Sη2
0

∑N
t=1 α

t−1

N∑
t=1

α2(t−1)
(
E[f(xt1)]− E[f(xtS+1)]

)
+

LV 2η0∑N
t=1 α

t−1
. (19)

By the update rule in Algorithm 1, the last point xtS+1 of the tth loop is the starting point of the
next loop, i.e., xtS+1 = xt+1

1 for each t ∈ [N ]. Applying the bounded assumption on the objective
function that E[f(xt1)− f∗] ≤ ∆0 for all t ≥ 1,

N∑
t=1

α2(t−1)
(
E[f(xt1)]− E[f(xtS+1)]

)
≤ f(x1

1)− f∗ + (α2 − 1)

N∑
t=2

α2(t−2) · E[f(xt1)− f∗]

≤ α2(N−1)∆0.

Plugging this inequality into (19) and S = T/N we obtain that

E[‖∇f(x̂T )‖2] ≤ 2η0α
2(N−1)∆0

η2
0S
∑N
t=1 α

t−1
+

LV 2η0∑N
t=1 α

t−1

≤ 2(α− 1)∆0

α2η0
· NαN

T (1− α−N )
+
η0LV

2(α− 1)

αN − 1
.

Substituting N = (logα T )/2 and S = 2T/ logα T into the above inequality gives

E[‖∇f(x̂T )‖2] ≤ (α− 1)∆0

η0α2
· logα T√

T − 1
+
η0LV

2(α− 1)√
T − 1

.

Then by changing the base α of logα T to be natural logarithm, the theorem is proved.

Proof. (of Theorem 3.3) Based on Lemma B.1, at the current iterate xt, we have

ηt
2
E[‖∇f(xt)‖2] ≤ E[f(xt)]− E[f(xt+1)] +

LV 2η2
t

2
.

Dividing the above inequality by η2
t /2 and summing over t = 1 to T gives

T∑
t=1

1

ηt
E[‖∇f(xt)‖2] ≤

T∑
t=1

2(E[f(xt)]− E[f(xt+1)])

η2
t

+ LV 2T (20)
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Applying the assumption that the objective functionE[f(xt)− f∗] ≤ ∆0 for all t ≥ 1, and recalling
the definition of the exponential decay step-size [28], i.e., ηt = η0/α

t where α = (β/T )−1/T and
β ≥ 1, we find

T∑
t=1

2(E[f(xt)]− E[f(xt+1)])

η2
t

≤ 2(f(x1)− f∗)
η2

1

+ 2

T∑
t=2

(
1

η2
t

− 1

η2
t−1

)
E[f(xt)− f∗]

≤ 2(f(x1)− f∗)
η2

1

+
2

η2
0

(
α2 − 1

) T∑
t=2

α2(t−1)∆0

≤ 2∆0

η2
0

·
(
T

β

)2

. (21)

Next, we estimate the sum of 1/ηt from t = 1 to T :
T∑
t=1

1

ηt
=

1

η0

T∑
t=1

αt =
α(1− αT )

η0(1− α)
=

(Tβ − 1)

η0(1− 1/α)

≥
(Tβ − 1)

η0 ln(α)
=

(Tβ − 1)T

η0 ln(Tβ )
. (22)

where the last inequality follows from the fact that 1− x ≤ ln( 1
x ) for all x > 0.

Combining the selection rule for x̂T with inequalities (20), (21) and (22), we have

E[‖∇f(x̂T )‖2] =
1∑T

t=1 1/ηt

[
T∑
t=1

1

ηt
E[‖∇f(xt)‖2]

]

≤
η0 ln(Tβ )

(Tβ − 1)T

[
2∆0

η2
0

(
T

β

)2

+ LV 2T

]
.

Letting β =
√
T , we see that

E[‖∇f(x̂T )‖2] ≤ η0 lnT

2(
√
T − 1)

[
2∆0

η2
0

+ LV 2

]
,

which concludes the proof.

Proof. (of Theorem 3.4) In this case, we consider the diminishing step-size ηt = η0/
√
t. By Lemma

B.1:
ηt
2
E[‖∇f(xt)‖2] ≤ E[f(xt)]− E[f(xt+1)] +

LV 2η2
t

2
. (23)

In the same way as Theorems 3.2 and 3.3, we divide (23) by η2
t /2 and sum over t = 1 to T to obtain

T∑
t=1

1

ηt
E[‖∇f(xt)‖2] ≤

T∑
t=1

2(E[f(xt)]− E[f(xt+1)])

η2
t

+ LV 2T

≤ 2

η2
0

[
f(x1)− f∗) +

T∑
t=2

(t− (t− 1))E[f(xt)− f∗)]

]
+ LV 2T

≤ 2T∆0

η2
0

+ LV 2T. (24)

Recalling that the output x̂T is randomly chosen from the sequence {xt}Tt=1 with probability Pt =
1/ηt∑T
t=1 1/ηt

and applying (24), yields

E[‖∇f(x̂T )‖2] =

∑T
t=1 1/ηtE[‖∇f(xt)‖2]∑T

t=1 1/ηt
≤ 1∑T

t=1 1/ηt

[
2T∆0

η2
0

+ LV 2T

]
≤
(

3∆0

η0
+

3LV 2η0

2

)
· 1√

T
.
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where the last inequality holds because
∑T
t=1 1/ηt ≥ 1/η0 ·

∫ T
t=0

√
tdt = 2

3η0
T 3/2. The proof is

complete.

C Proofs of Section 4

Proof. (of Theorem 4.1 ) In this case, we consider the step decay step-size (see Algorithm 2) with
S = T/ logα T and N = logα T . By the µ-strongly convexity of f on X , we have

f(x∗) ≥ f(xti) +
〈
gti , x

∗ − xti
〉

+
µ

2

∥∥xti − x∗∥∥2
, and (25)

f(xti) ≥ f(x∗) +
〈
g∗, xti − x∗

〉
+
µ

2

∥∥xti − x∗∥∥2
,∀g∗ ∈ ∂f(x∗). (26)

Due to the fact that x∗ minimizes f on X , we have 〈g∗, x− x∗〉 ≥ 0 for all g∗ ∈ ∂f(x∗) and x ∈ X .
In particular, for x = xti we have 〈g∗, xti − x∗〉 ≥ 0. Plugging this into (26) and re-arranging (25)
and (26) gives 〈

gti , x
t
i − x∗

〉
≥ µ

2

∥∥xti − x∗∥∥2
+ f(xti)− f(x∗) ≥ µ

∥∥xti − x∗∥∥2
. (27)

By the convexity of X , we have ‖ΠX (u)− v‖2 ≤ ‖u− v‖2 for any u ∈ Rd and v ∈ X . Then
applying the update rule of Algorithm 2 and using these inequalities gives

E
[∥∥xti+1 − x∗

∥∥2 | F ti
]

= E
[∥∥ΠX (xti − ηtĝti)− x∗

∥∥2 | F ti
]
≤ E

[∥∥xti − ηtĝti − x∗∥∥2 | F ti
]

≤
∥∥xti − x∗∥∥2 − 2ηtE

[〈
ĝti , x

t
i − x∗

〉
| F ti

]
+ η2

tE
[∥∥ĝti∥∥2 | F ti

]
≤
∥∥xti − x∗∥∥2 − 2ηt

〈
gti , x

t
i − x∗

〉
+ η2

tG
2

≤ (1− 2µηt)
∥∥xti − x∗∥∥2

+ η2
tG

2, (28)

where the third inequality follows from the stochastic gradient oracle is bounded by G2, i.e., ĝti
satisfies that E[ĝti ] = gti ∈ ∂f(xti) and E[‖ĝti‖

2
] ≤ G2. In this case, the time horizon T is divided

into N = logα T phases and each is of length S = T/ logα T . Recursively applying (28) from i = 1
to S in the tth phase and using the assumption η0 < 1/(2µ) gives

E
[∥∥xtS+1 − x∗

∥∥2
]
≤ (1− 2µηt)

SE
[∥∥xt1 − x∗∥∥2

]
+G2η2

t

S−1∑
l=0

(1− 2µηt)
l

≤ (1− 2µηt)
SE
[∥∥xt1 − x∗∥∥2

]
+
G2

2µ
· ηt. (29)

Repeating the recursion (29) from t = 1 to N , we get

E
[∥∥xNS+1 − x∗

∥∥2
]
≤

N

Π
t=1

(1− 2µηt)
S
∥∥x1

1 − x∗
∥∥2

+
G2

2µ

N∑
t=1

ηt ·
N

Π
l>t

(1− 2µηl)
S

≤ exp

(
−2µS

N∑
t=1

ηt

)∥∥x1
1 − x∗

∥∥2
+
G2

2µ

N∑
t=1

ηt exp

(
−2µS

N∑
l>t

ηl

)
, (30)

where the second inequality follows from the fact that (1 + x)s ≤ exp(sx) for any x ∈ R and
s > 0. Recalling the formula for the step decay step-size, ηt = η0/α

t−1 in the tth phase, and that
N = logα T and S = T/ logα T , we can estimate the two sums that appear in (30) as follows:

S

N∑
t=1

ηt =
T

logα T
· η0(1− α−N )

1− 1/α
=

η0α

(α− 1)
· T − 1

logα T

S

N∑
l>t

ηl =
T

logα T
· η0α

−t(1− α−(N−t))

(1− 1/α)
=

η0α

(α− 1)
· Tα

−t − 1

logα T
.
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Using these inequalities in (30) gives

E
[∥∥xNS+1 − x∗

∥∥2
]
≤ exp

(
−2µη0α

α− 1
· T − 1

logα T

)∥∥x1
1 − x∗

∥∥2
+
G2η0

2µ

N∑
t=1

1

αt−1
exp

(
−2µη0α

α− 1
· Tα

−t − 1

logα T

)
.

(31)

Next, we turn to bound the right-hand side of (31). Let t∗ := max
{

0,
⌊
logα

(
2µη0α
α−1 ·

T
logα T

)⌋}
. If

t∗ ≥ 1, we prefer to divide the second term into two parts. First, we estimate this term for t ≤ t∗:

G2η0

2µ

t∗∑
t=1

1

αt−1
exp

(
−2µη0α

α− 1
· Tα

−t − 1

logα T

)
≤ G2η0

2µ

t∗∑
t=1

1

αt−1
exp

(
−α

t∗

αt
+

2µη0α

(α− 1) logα T

)

≤
G2η0α exp

(
2µη0α

(α−1) logα T

)
2µαt∗

·
t∗∑
t=1

αt
∗

αt
exp

(
−α

t∗

αt

)

≤
G2η0α exp

(
2µη0α

(α−1) logα T
− 1
)

2µαt∗

≤
G2(α− 1) exp

(
µη0α

(α−1) logα T
− 1
)

2µ2
· logα T

T
,

(32)

where the third inequality uses that
∫ +∞
x=1

x exp(−x)dx ≤ 2/ exp(1). Next, we estimate the term for
t∗ < t ≤ N :

G2η0

2µ

N∑
t=t∗+1

1

αt−1
exp

(
−2µη0α

α− 1
· Tα

−t − 1

logα T

)
≤ G2η0α

2µ

N∑
t=t∗+1

1

αt
exp

(
−α

t∗

αt
+

2µη0α

(α− 1) logα T

)

≤
G2η0 exp

(
2µη0α

(α−1) logα T

)
2µ

· α(1− 2/ exp(1))

αt∗

≤
G2(α− 1) exp

(
2µη0α

(α−1) logα T

)
(1− 2/ exp(1))

4µ2
· logα T

T
,

(33)

where the second inequality uses that
∫ 1

x=0
x exp(−x)dx = 1− 2/ exp(1). Incorporating (32) and

(33) into (31) gives

E
[∥∥xNS+1 − x∗

∥∥2
]
≤

∥∥x1
1 − x∗

∥∥2

exp
(

2µη0α
α−1 ·

T−1
logα T

) +
G2(α− 1) exp

(
2µη0α

(α−1) logα T

)
4µ2

· logα T

T
.

Changing the base α of logα to the natural logarithm, that is logα T = lnT/ lnα, we arrive at the
desired result.

Before proving the lower bound of Algorithm 2, we state an utility lemma.
Lemma C.1. [24] Let X1, X2, · · · , XK be independent random variables taking values uniformly
from {−1,+1} and X = 1

K

∑K
i=1Xi. Suppose 2 ≤ c ≤

√
K
2 , then

P
[
X ≥ c√

K

]
≥ exp(−9c2/2).

The lemma was proposed by [24] (see lemma 4) to show the tightness of the Chernoff bound. Recently
it has been used to derive a high probability lower bound of the 1/t step-size [18]. We will now
use Lemma C.1 to prove the following high probability lower bound of the step decay scheme in
Algorithm 2 for S = T/ logα T .
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Proof. (of Theorem 4.2) We consider the one-dimensional function f̃T (x) = 1
2x

2, where x ∈ X =
[−4, 4]. This function is 1-strongly convex and 1-smooth on X . For any point xti, the gradient oracle
will return a gradient xti−zti where E[zti ] = 0. We apply the step decay step-size with S = T/ logα T

to f̃T using x1
1 = 0 and η0 = 1. Then the last iterate satisfies

xNS+1 =

N∑
t=1

S∑
i=1

ηt(1− ηt)S−iΠN
l>t(1− ηl)Szti . (34)

Letting t∗ = logα T−logα logα T+1, we have that ηt∗ = η0/α
t∗−1 = logα(T )/T and (1−ηt∗)S =

exp(−1). For t 6= t∗ and i ∈ [S], we pick zti = 0. Then the final iterate xNS+1 can be estimated as

xNS+1 = ηt∗ΠN
l>t∗(1− ηl)S

S∑
i=1

(1− ηt∗)S−izti ≥
logα T

exp(2)T

S∑
i=1

(1− ηt∗)S−izt
∗

i .

For ν∗i = (1− ηt∗)S−i, it holds that exp(−1) < ν∗i < 1 for all i ∈ [S]. Define zt
∗

i = X∗i /ν
∗
i where

X∗i is uniformly chosen from {−1,+1}. Then |zt∗i | ≤ exp(1) ∈ X for any i ∈ [S]. Hence, this
gradient oracle satisfies the assumptions. Now,

xNS+1 ≥
logα T

exp(2)T

S∑
i=1

X∗i =
1

exp(2)

(
logα T

T

S∑
i=1

X∗i

)
. (35)

Invoking Lemma C.1 with c =
√

2 ln(1/δ)/3 and K = T/ logα T gives

f(xNS+1) =
1

2
(xNS+1)2 ≥ 1

2

(
1

exp(2)

√
2 ln(1/δ)

3
√
T/ logα T

)2

=
ln(1/δ)

9 exp(2) lnα
· lnT

T
(36)

with probability at least δ > 0. Since we know the optimal function value f̃∗T = f̃T (x∗) = 0, the the
desired high probability lower bound follows.

Proof. (of Theorem 4.3) Recalling the iterate updates of Algorithm 2, for any x ∈ X , we have

E
[∥∥xti+1 − x

∥∥2
]

= E
[∥∥ΠX (xti − ηtĝti)− x

∥∥2
]
≤ E

[∥∥xti − ηtĝti − x∥∥2
]

≤ E[
∥∥xti − x∥∥2

]− 2ηtE[
〈
gti , x

t
i − x

〉
] + η2

tE
[∥∥gti∥∥2

]
≤ E[

∥∥xti − x∥∥2
]− 2ηtE[

〈
gti , x

t
i − x

〉
] + η2

tG
2. (37)

where the second inequality follows since ‖ΠX (u)− v‖ ≤ ‖u− v‖ for any v ∈ X and the third
inequality follows from the fact that the gradient oracle is bounded and unbiased. In the following
analysis, we focus on the final phase, that is t = N . Let k be the integer in {0, 1, 2, · · · , S − 1}.
Extracting the inner product and summing over all i from S − k to S gives

S∑
i=S−k

E
[〈
gNi , x

N
i − x

〉]
≤ 1

ηN
E
[∥∥xNS−k − x∥∥2

]
+ (k + 1)ηNG

2. (38)

By the convexity of f on X , we have E[f(x) − f(xNi )] ≥ E
[〈
gNi , x− xNi

〉]
. Plugging this into

(38), we get

E

[
1

k + 1

S∑
i=S−k

f(xNi )− f(x)

]
≤ 1

(k + 1)ηN
E
[∥∥xNS−k − x∥∥2

]
+ ηNG

2. (39)

We pick x = xNS−k in (39) to find

1

k + 1

S∑
i=S−k

E[f(xNi )]− E[f(xNS−k)] ≤ ηNG2. (40)
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Let Wk+1 = 1
k+1

∑S
i=S−k E[f(xNi )] which is the average of the expected function values at the last

k + 1 iterations of the final phase N . The above inequality implies that

−f(xNS−k) ≤Wk+1 + ηNG
2.

By the definition of Wk, we have W1 = E[f(xNS )] and kWk = (k + 1)Wk+1 − E[f(xNS−k)]. Using
these formulas and applying (40) gives

kWk = (k + 1)Wk+1 − f(xNS−k) ≤ (k + 1)Wk+1 −Wk+1 + ηNG
2

which, after dividing by k, yields

Wk ≤Wk+1 +
ηNG

2

k
.

Applying the above inequality recursively for k = 1, · · · , S − 1, we get

W1 = E[f(xNS )] ≤WS + ηNG
2
S−1∑
k=1

1

k
≤WS + ηNG

2(ln(S − 1) + 1). (41)

It only remains to estimate WS . At the N th phase, the iterate starts from xN1 . We pick x = x∗ and
k = S − 1 in (39) so that

WS := E

[
1

S

S∑
i=1

f(xNi )

]
≤ f(x∗) +

1

ηNS
E
[∥∥xN1 − x∗∥∥2

]
+ ηNG

2. (42)

Note that in order to estimate WS , we have to bound E
[∥∥xN1 − x∗∥∥2

]
first. From inequality (30) of

Theorem 4.1, we know that the distance between the starting point xN1 of the N th phase and x∗ can
be bounded as follows:

E
[∥∥xN1 − x∗∥∥2

]
≤ exp

(
−2µS

N−1∑
t=1

ηt

)∥∥x1
1 − x∗

∥∥2
+
G2

2µ

N−1∑
t=1

ηt exp

(
−2µS

N−1∑
l>t

ηl

)
. (43)

We now follow the proof of Theorem 4.1 to estimate E
[∥∥xN1 − x∗∥∥2

]
. Substituting the step-size

ηt = η0/α
t−1 for t ∈ [N ], N = logα T and S = T/ logα T , we have

S

N−1∑
t=1

ηt =
T

logα(T )

η0(1− α−N+1)

1− 1/α
=

η0α

(α− 1)
· T − α

logα(T )

S
N−1∑
l>t

ηl =
T

logα(T )

η0α
−t(1− α−(N−t−1))

(1− 1/α)
=

η0α

α− 1
· (Tα−t − α)

logα(T )
.

Therefore, using these inequalities in (43) gives

E
[∥∥xN1 − x∗∥∥2

]
≤ exp

(
−2η0µα

α− 1
· T − α

logα T

)∥∥x1
1 − x∗

∥∥2
+
G2(α− 1) exp

(
2µη0α

2

(α−1) logα T

)
4µ2

· logα T

T
.

Incorporating the above results and substituting ηN = η0α/T and S = T/ logα T into (41), we have

E[f(xNS )]− f(x∗) ≤
E
[∥∥xN1 − x∗∥∥2

]
ηNS

+ ηNG
2 + ηNG

2(ln(S − 1) + 1)

≤
∥∥x1

1 − x∗
∥∥2

logα T

η0α exp
(

2η0µα
α−1 ·

T−α
logα T

) +
G2(α− 1) exp

(
2µη0α

2

(α−1) logα T

)
4µ2η0α

· log2
α T

T

+
G2η0α(ln(T ) + 2)

T
.

By changing the base of α to be natural logarithm, i.e., logα T = lnT/ lnα, the proof is finished.
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Proof. (of Theorem 4.4) Recall inequality (37) in the proof of Theorem 4.3: for any x ∈ X it holds
that

E[
∥∥xti+1 − x

∥∥2
] ≤ E[

∥∥xti − x∥∥2
]− 2ηtE[

〈
gti , x

t
i − x

〉
] + η2

tG
2.

By the convexity of f , we have E[f(x)− f(xti)] ≥ E[〈gti , x− xti〉], so the above inequality implies
that

2ηtE[f(xti)− f(x)] ≤ E[
∥∥xti − x∥∥2

]− E[
∥∥xti+1 − x

∥∥2
] + η2

tG
2. (44)

Let t∗ = max
{

0,
⌊
logα

(
2µη0α

2

α−1 ·
T

logα T

)⌋}
and x = x∗. By applying (44) repeatedly and sum-

ming over all t∗ ≤ t ≤ N and i ∈ [S], we have
N∑
t=t∗

ηt

S∑
i=1

f(xti)− f(x∗) ≤ E
[∥∥∥xt∗1 − x∗∥∥∥2

]
+ SG2

N∑
t=t∗

η2
t . (45)

Let

x̂T :=

∑N
t=t∗ ηt

∑S
i=1 x

t
i

S
∑N
t=t∗ ηt

.

Since X is convex and each iterate xti belongs to X , we have x̂T ∈ X . By the convexity of f and
(45) it then follows that

E[f(x̂T )− f(x∗)] = E

[∑N
t=t∗ ηt

∑S
i=1 f(xti)

S
∑N
t=t∗ ηt

]
− f(x∗) ≤

∑N
t=t∗ ηt

∑S
i=1 E[f(xti)]

S
∑N
t=t∗ ηt

− f(x∗)

≤
E
[∥∥xt∗1 − x∗∥∥2

]
S
∑N
t=t∗ ηt

+
SG2

∑N
t=t∗ η

2
t

S
∑N
t=t∗ ηt

.

(46)

Next, we turn to estimate E
[∥∥xt∗1 − x∗∥∥2

]
. By (30) with N = t∗ − 1, we have

E
[∥∥∥xt∗1 − x∗∥∥∥2

]
= E

[∥∥∥xt∗−1
S+1 − x

∗
∥∥∥2
]
≤
t∗−1

Π
t=1

(1− 2µηt)
S
∥∥x1

1 − x∗
∥∥2

+
G2

2µ

t∗−1∑
t=1

ηt Π
l>t

(1− 2µηl)
S

≤ exp

(
−2µS

t∗−1∑
t=1

ηt

)∥∥x1
1 − x∗

∥∥2
+
G2

2µ

t∗−1∑
t=1

ηt exp

(
−2µS

t∗−1∑
l>t

ηl

)
.

(47)

Next, we estimate the summation of ηl from l = t+ 1 to l = t∗ − 1

S

t∗−1∑
l>t

ηl = S ·
η0
αt (1− (1/α)t

∗−t−1)

(1− 1/α)
=

Tη0

logα T

(
1

αt−1 − 1
αt∗−2

α− 1

)
=

η0

α− 1
· T

logα Tα
t−1
− 1

2µ
.

(48)
Incorporating (48) into the second term of (47) gives

t∗−1∑
t=1

ηt exp

(
−2µS

t∗−1∑
l>t

ηl

)
= η0

t∗−1∑
t=1

1

αt−1
exp

(
− 2µη0

(α− 1)αt−1
· T

logα T
+ 1

)

=
η0α

2 exp(1)

αt∗

t∗−1∑
t=1

αt
∗

αt+1
exp

(
− αt

∗

αt+1

)
≤ 2η0α

2

αt∗
=

(α− 1)

µ
· logα T

T
, (49)

where the inequality follows from the fact that
∫ +∞
x=1

x exp(−x)dx ≤ 2/ exp(1). Letting t = 0 in
(48), we have

S

t∗−1∑
l=1

ηl ==
η0α

α− 1
· T

logα T
− 1

2µ
. (50)
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Plugging (49) and (50) into (47), we get

E
[∥∥∥xt∗1 − x∗∥∥∥2

]
≤

∥∥x1
1 − x∗

∥∥2

exp
(

2µη0α
α−1 ·

T
logα T

− 1
) +

G2(α− 1)

2µ2
· logα T

T
. (51)

Incorporating (51) into (46) and using α−1
2µα ≤ S

∑N
t=t∗ ηt ≤

1
2µ and S

∑N
t=t∗ η

2
t ≤

logα T
4µ2(α+1)T gives

E[f(x̂T )− f(x∗)] ≤
E[
∥∥xt∗1 − x∗∥∥2

]

S
∑N
t=t∗ ηt

+
SG2

∑N
t=t∗ η

2
t

S
∑N
t=t∗ ηt

≤
2µαE[

∥∥xt∗1 − x∗∥∥2
]

α− 1
+

αG2

2µ(α2 − 1)
· logα T

T

≤ 2µα

α− 1
·

∥∥x1
1 − x∗

∥∥2

exp
(

2µη0α
α−1 ·

T
logα T

− 1
) +

α
(

1 + 1
2(α2−1)

)
G2

µ
· logα T

T

which concludes the proof.

D. The Details of the Setup in Numerical Experiments

In this section, we provide some details for the numerical experiments in Section 5 and give some
complementary experimental results.

To better understand the relationship between all the considered step-sizes, we draw Figure 5 to show
the step-size ηt (y-axis is log(ηt)) versus the number of iterations (starting from the same initial
step-size). In the left picture, we show the many step-sizes, studied in Sections 5.1 and 5.2, which
finally reach the order of 1/

√
T for the non-convex and convex cases. In the strongly convex case (the

right picture), we show the step-sizes which are based on the order of 1/T . We also add yet another
kind of exponentially decaying step-size (called Exp(H-K-2014)) proposed by [19]: ηi = η0/2

i,
t ∈ [Ti, Ti+1) and Ti+1 = 2Ti, where

∑
i Ti = T .
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Figure 5: Step-sizes involved in the experiments

From Figure 5(a), we observe that Exp-Decay for β =
√
T can be regarded as a lower bound of

Step-Decay. From another viewpoint, we can see that when the decay factor α is very close to 1,
the proposed Step-Decay will reduce to Exp-Decay for β =

√
T . A similar relationship can also be

observed from Figure 5(b).

D.1 The Details of the Experiments on MNIST

The MNIST dataset consists of a training set of 60,000 examples and a testing set of 10,000 examples.
We train MNIST on a fully connected two-layer network (784-100-10). The l2 regularization
parameter is 10−4 and the mini-batch size is 128. We run 128 epochs, which implies that the number
of iterations T is equal to the training size (60, 000). The experiments on MNIST are implemented
in Python 3.8.5 on the server with two 3.1 GHz Intel Xeon processors (total 32 cores) and 128 GB of
RAM.
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In order to fairly compare the considered step-sizes, the initial step-size η0 is chosen from the search
grid {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5}. For 1/t and 1/

√
t, the initial step-size is η0 = 1, and a0

is tuned by searching for the final step-size ηT over the grid {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5};
in our experiments, it turned out that the best value of ηT was 0.01. The best initial step-
size η0 was found to be 0.5 for both Exp-Decay and Step-Decay. Similarly, the parameter
β for Exp-Decay is selected to make sure that its final step-size ηT is tuned over the grid
{0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5}; the best tuning of ηT was found to be 0.05. For Step-Decay,
the decay factor α is empirically chosen from an interval (1, 12] and the search grid is in units of 1
after α ≥ 2. The outer-loop size N is blogα T/2c which is numerically better than its ceil. The best
choice was found to be α = 7 (N = 2).

D.2 The Details of the Experiments on CIFAR10 and CIFAR100

The benchmark datasets CIFAR10 and CIFAR100 both consist of 60000 colour images (50000
training images and the rest 10000 images for testing). The maximum epochs called for the two
datasets is 164 and batch size is 128. The numerical experiments for CIFAR10 and CIFAR100 are
implemented in Python 3.7.4 with 2 x Nvidia Tesla V100 SXM2 GPU with 32GB RAM.

First, we employ a 20-layer Resident Network model [21] called ResNet20 to train CIFAR10. We
use vanilla SGD without dampening and a weight-decay of 0.0005. The hyper-parameters are
selected to work best according to their performance on the test dataset. For all evaluated step-
sizes, the initial step-size η0 is tuned from {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}.
For the constant step-size, the best choice was achieved by ηt = 0.05. For the 1/t step-size,
the initial step-size η0 = 1 and the parameter a0 is tuned such that ηT reaches the search grid
{0.0001, 0.0005, 0.001, 0.05, 0.01, 0.5, 0.1} (the grid search yielded ηT = 0.05). We tuned the
1/
√
t step-size in the same way as the 1/t step-size: the initial step-size η0 = 1 and ηT = 0.05.

For Exp-Decay, η0 = 1 and β is chosen such that the final step-size ηT reaches the search grid for
step-size (resulting in ηT = 0.01). For Step-Decay, the best initial step-size is achieved at η0 = 0.5
and α = 6.

The numerical results on CIFAR10 is shown in Figure 6. We can see that the sudden jumps in
step-size helps the algorithm to get a lower testing loss and higher accuracy (red curve) compared to
other step-sizes.
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Figure 6: Results on CIFAR10 - ResNet20

Next, we give the details about how to select the optimal values of the parameter η0,
a0, β and α for CIAFR100. The initial step-size for all step-sizes is chosen from
{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}. For the constant step-size, we found η0 = 0.1
and a weight-decay of 0.0001. For the 1/t step-size, η0 = 1 and a0 was set such that ηT is searched
over the grid above, which yielded ηT = 0.01. For 1/

√
t, η0 = 1 and a0 is set to make sure that ηT

is tuned from the set for step-size, resulting in ηT = 0.01. For Exp-Decay, η0 = 1 and β is chosen
such that ηT reaches the grid {0.0001, 0.0005, 0.001, 0.05, 0.01, 0.5, 0.1} (resulting in ηT = 0.01).
For the Step-Decay, the initial step-size η0 = 1 and the decay factor α = 6.

Next, we detail the parameter tuning for the algorithms in Table 1. The maximum epochs called
was 164 and the batch size was 128. This implies that T = 164 · T/128. The weight-decay was set
to 0.0005 for Adam and NAG. The best initial step-size for AdaGrad was found to be η0 = 0.05
(weight-decay is 0); For Adam, we found the parameters (β1, β2)=(0.9, 0.99). The weight-decay
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was set to 0.025 for AdamW while the other parameters were the same as for Adam. For NAG, the
momentum parameter was set to 0.9. For Exp-Decay: the best-tuned β was 0.005 · T and η0 = 0.1
for NAG; β = 0.01 · T and η0 = 0.005 for Adam and AdamW; For Step-Decay: the optimal α was
found to be 6 for all methods including Adam, AdamW and NAG while the best η0 = 0.05 for NAG
and η0 = 0.005 for Adam and AdamW.

In Figure 7(a), we show how the number of outer-loop iterations N changes with the decay factor
α ∈ (1, 12]. The decay factor is an important hyper-parameter for Step-Decay. To figure out the decay
factor affects the performance, we plot the testing loss and generalization error (the absolute value
of the difference between training loss and testing loss), as well as the testing accuracy in Figures
7(b) and 7(c), respectively. All results are repeated 5 times. The best choice of the decay factor is
found to be α = 6, according to the best performance on testing loss and accuracy. It is observed that
α ∈ [4, 6] performs better and is more stable than α ∈ [7, 12). The main reason is that the length of
each phase for α ∈ [7, 12) is larger than that of α ∈ [4, 6] so that it loses its advantages in the end
(the generalization is weakened). Moreover, suppose that the number of outer-loop iterations N is
fixed, for example at N = 3 (where α ∈ [4, 6]) or N = 2 (where α ∈ [7, 12]), we can see that the
testing loss is getting better if we increase the decay factor.
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Figure 7: The performance of decay factor α on CIFAR100

D.3 Numerical Details for Regularized Logistic Regression

In this part, we present the numerical results for all considered step-sizes on regularized logistic regres-
sion. The initial step-size η0 is best-tuned from the search grid {0.01, 0.05, 0.1, 0.5, 1, 10, 50, 100} for
all step-sizes. For the constant step-size, the initial step-size is η = 1. For 1/t, 1/

√
t, Exp(H-K-2014),

Exp-Decay [28] and Step-Decay, the initial step-size η0 is 10. We tune a0 for 1/t and 1/
√
t step-sizes

such that the final step-size ηT is searched over the grid {0.01, 0.05, 0.1, 0.5, 1, 10, 25, 50, 75, 100}
(ηT = 0.1). Similarly, the parameter β of Exp-Decay [28] is chosen such that ηT is searched over
the grid {0.01, 0.05, 0.1, 0.5, 1, 10, 50, 100} (ηT = 0.01). The initial period T0 for Exp(H-K-2014)
is T0 = 5. For Step-Decay, the decay factor is chosen to be α = 4.

Compared to the polynomial diminishing step-sizes (e.g. 1/t, 1/
√
t), we can observe that Exp-Decay

and Step-Decay not only yields rapid improvements initially, but they also converge to a good solution
in the end.
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Figure 8: The results on rcv1.binary - logistic(L2)

26


	Introduction
	Main Contributions
	Related Work

	Preliminaries
	Non-asymptotic Convergence for Non-convex Problems
	Convergence Rates under the Step Decay Step-Size
	A Special Case: Exponentially Decaying Step-Size
	Improved Convergence for the 1/t Step-Size

	Non-asymptotic Convergence for Strongly Convex Problems
	Strongly Convex and L-Smooth Functions
	Strongly Convex and Non-Smooth Functions

	Numerical Experiments
	Experiments on MNIST with Neural Networks
	Experiments on CIFAR10 and CIFAR100
	Experiments on Regularized Logistic Regression 

	Conclusion
	Non-asymptotic Convergence for General Convex Problems
	Proofs of Section 3
	Proofs of Section 4

