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Abstract

Learning a sequence of tasks without access to i.i.d. observations is a widely studied
form of continual learning (CL) that remains challenging. In principle, Bayesian
learning directly applies to this setting, since recursive and one-off Bayesian up-
dates yield the same result. In practice, however, recursive updating often leads
to poor trade-off solutions across tasks because approximate inference is nec-
essary for most models of interest. Here, we describe an alternative Bayesian
approach where task-conditioned parameter distributions are continually inferred
from data. We offer a practical deep learning implementation of our framework
based on probabilistic task-conditioned hypernetworks, an approach we term poste-
rior meta-replay. Experiments on standard benchmarks show that our probabilistic
hypernetworks compress sequences of posterior parameter distributions with virtu-
ally no forgetting. We obtain considerable performance gains compared to existing
Bayesian CL methods, and identify task inference as our major limiting factor.
This limitation has several causes that are independent of the considered sequential
setting, opening up new avenues for progress in CL.

1 Introduction

In recent years, a variety of continual learning (CL) algorithms have been developed to overcome the
need to train neural networks with an independent and identically distributed (i.i.d.) sample. Most
CL literature focuses on the particular scenario of continually learning a sequence of T tasks with
datasets D(1), . . . ,D(T ). Because only access to the current task is granted, successful training of a
discriminative model that captures p(Y | X) has to occur without an i.i.d. training sample from the
overall joint D(1:T ) i.i.d.∼ p(X)p(Y | X).

The advantages of a Bayesian approach for solving this problem are numerous and include the
ability to drop all i.i.d. assumptions across and within tasks in a mathematically sound way, the
ability to revisit tasks whenever new data becomes available, and access to principled uncertainty
estimates capturing both data and parameter uncertainty. Up until now, Bayesian approaches to CL
essentially focused on finding a combined posterior distribution via a recursive Bayesian update
p(W | D(1:T )) ∝ p(W | D(1:T−1))p(D(T ) |W). Because the posterior of the previous task is used
as prior for the next task, these approaches are also known as prior-focused [17]. In theory, the
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above recursive update can always recover the posterior p(W | D(1:T )), independently of how the
data is presented. However, because proper Bayesian inference is intractable, approximations are
needed in practice, which lead to errors that are recursively amplified. As a result, whether solutions
that are easily found in the i.i.d. setting can be obtained via the approximate recursive update strongly
depends on factors such as task ordering, task similarity and the considered family of distributions.
These factors limit the effectiveness of the recursive update and have a detrimental effect on the
performance of prior-focused methods, especially in task-agnostic CL settings.

MAP solutions 

Figure 1: The proposed posterior meta-replay
framework learns task-specific posteriors p(W |
D(t)) via a single shared meta-model, with task-
specific point estimates (e.g., MAP) being a limit
case. In this view, the modelled solution space is
not limited to admissible solutions that lie in the
overlap of all task-specific posteriors. By contrast,
prior-focused methods learn a single posterior
p(W | D(1:T )) recursively and thus require the
existence of trade-off solutions between learned
and future tasks in the currently modelled solution
space. Shaded areas indicate high density regions.

To overcome these limitations, we propose an
alternative Bayesian approach to CL that does
not rely on the recursive update to learn distinct
tasks and instead aims to learn task-specific pos-
teriors (Fig. 1, refer to SM F.1 for a detailed
discussion of the graphical model). In this view,
finding trade-off solutions across tasks is not re-
quired, and knowledge transfer can be explicitly
controlled for each task via the prior, which is
no longer prescribed by the recursive update and
can thus be set freely. By introducing probabilis-
tic extensions of task-conditioned hypernetworks
[91], we show how task-specific posteriors can
be learned with a single shared meta-model, an
approach we term posterior meta-replay.

This approach introduces two challenges: forget-
ting at the level of the hypernetwork, and the need
to know task identity to correctly condition the
hypernetwork. We empirically show that forget-
ting at the meta-level can be prevented by using
a simple regularizer that replays parameters of
previous posteriors. In task-agnostic inference
settings, often referred to as class-incremental
learning in the context of classification benchmarks [88], the main hurdle therefore becomes task
inference at test time. Here we focus on this task-agnostic setting, arguably the most challenging but
also the most natural CL scenario, since the obtained models can be deployed just like those obtained
via i.i.d. training (e.g., irrespective of the sequential training, the final model will be a classifier
across all classes). In order to explicitly infer task identity from unseen inputs without resorting
to generative models, we thoroughly study the use of principled uncertainty that naturally arises
in Bayesian models. We show that results obtained in this task-agnostic setting with our approach
constitute a leap in performance compared to prior-focused methods. Furthermore we show that
limitations in task inference via predictive uncertainty are not related to our CL solution, but depend
instead on the combination of approximate inference method, architecture, uncertainty measure and
prior. Finally, we investigate how task inference can be further improved through several extensions.

We summarize our main contributions below:

• We describe a Bayesian CL framework where task-conditioned posterior parameter distributions
are continually learned and compressed in a hypernetwork.

• In a series of synthetic and real-world CL benchmarks we show that our task-conditioned hyper-
networks exhibit essentially no forgetting, both for explicitly parameterized and implicit posterior
distributions, despite using the parameter budget of a single model.

• Compared to prior-focused methods, our approach leads to a leap in performance in task-agnostic
inference while maintaining the theoretical benefits of a Bayesian approach.

• Our approach scales to modern architectures such as ResNets, and remaining performance limita-
tions are linked to uncertainty-based out-of-distribution detection but not to our CL solution.

• Finally, we show how prominent existing Bayesian CL methods such as elastic weight consolidation
can be dramatically improved in task-agnostic settings by introducing a small set of task-specific
parameters and explicitly inferring the task.
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2 Related Work

Continual learning. CL algorithms attempt to mitigate catastrophic interference while facilitating
transfer of skills whenever possible. They can be coarsely categorized as (1) regularization-methods
that put constraints on weight updates, (2) replay-methods that mimic pseudo-i.i.d. training by
rehearsing stored or generated data and (3) dynamic architectures which can grow to allocate capacity
for new knowledge [71]. Most related to our work is the study from von Oswald et al. [91] that
introduces task-conditioned hypernetworks for CL, and already considers task inference via predictive
uncertainty in the deterministic case. Our framework can be seen as a probabilistic extension of their
work, which provides task-specific point estimates via a shared meta-model (cf. Sec. 3). Follow-up
work also achieves task inference via predictive uncertainty, e.g., Wortsman et al. [94] use it to select
a learned binary mask per task that modulates a random base network. Here we complement these
studies by thoroughly exploring task inference via several uncertainty measures, disclosing the factors
that limit task inference and highlighting the importance of parameter uncertainty.

A variety of methods tackling CL have been derived from a Bayesian perspective. A prominent
example are prior-focused methods [17], which incorporate knowledge from past data via the prior
and, in contrast to our work, aim to find a shared posterior for all data. Examples include (Online)
EWC [38, 78] and VCL [65, 54]. Other methods like CN-DPM [46] use Bayes’ rule for task inference
on the joint p(X, C), where C is a discrete condition such as task identity. An evident downside
of CN-DPM is the need for a separate generative and discriminative model per condition. More
generally, such an approach requires meaningful density estimation in the input space, a requirement
that is challenging for modern ML problems [64].

Other Bayesian CL approaches consider instead task-specific posterior parameter distributions. Lee
et al. [47] learn separate task-specific Gaussian posterior approximations which are merged into a
single posterior after all tasks have been seen. CBLN [49] also learns a separate Gaussian posterior
approximation per task but later tries to merge similar posteriors in the induced Gaussian mixture
model. Task inference is thus required and achieved via predictive uncertainty, although for a more
reliable estimation all experiments consider batches of 200 samples that are assumed to belong to the
same task. Tuor et al. [85] also learn a separate approximate posterior per task and use predictive
uncertainty for task-boundary detection and task inference. In contrast to these approaches, we learn
all task-specific posteriors via a single shared meta-model and remain agnostic to the approximate
inference method being used. A conceptually related approach is MERLIN [33], which learns
task-specific weight distributions by training an ensemble of models per task that is used as training
set for a task-conditioned variational autoencoder. Importantly, MERLIN requires a fine-tuning stage
at inference, such that every drawn model is fine-tuned on stored coresets, i.e., a small set of samples
withheld throughout training. By contrast, our approach learns the parameters of an approximate
Bayesian posterior p(W | D(t)) per task t, and no fine-tuning of drawn models is required.

Bayesian neural networks. Because neural networks are expressive enough to fit almost any data
[98] and are often deployed in an overparametrized regime, it is implausible to expect that any single
solution obtained from limited data generalizes to the ground truth p(Y | w,X) ≈ p(Y | X) almost
everywhere on p(x). By contrast, Bayesian statistics considers a distribution over models, explicitly
handling uncertainty to acknowledge data insufficiencies. This distribution is called the posterior
parameter distribution p(W | D) ∝ p(D |W) p(W), which weights models based on their ability
to fit the data (via the likelihood p(D |W)), while considering only plausible models according to
the prior p(W). Predictions are made by marginalizing over models (for an introduction see MacKay
[57]). Bayesian neural networks (BNN) apply this formalism to network parameters w, whereas for
practical reasons hyperparameters like architecture are chosen deterministically [56].

While a deterministic discriminative model can only capture aleatoric uncertainty (i.e., uncertainty
intrinsic to the data p(Y | X)), a Bayesian treatment allows to also capture epistemic uncertainty
by being uncertain about the model’s parameters (parameter uncertainty). This proper treatment
of uncertainty is of utmost importance for safety-critical applications, where intelligent systems
are expected to know what they don’t know. However, due to the complexity of modelling high-
dimensional distributions at the scale of modern deep learning, BNNs still face severe scalability
issues [82]. Here, we employ several approximations to the posterior based on variational inference
[5] from prior work, ranging from simple and scalable methods with a mean-field variational family
like Bayes-by-Backprop (BbB, [6]) to methods with complex but rich variational families like the
spectral Stein gradient estimator [79]. For more details see Sec. 3 and SM C.
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Figure 2: Posterior meta-replay for CL. (a) The architecture consists of a main network M that
processes inputs x and generates predictions ŷ according to a set of weights w generated by a weight
generator (WG). The WG is a deterministic function fWG(z,θ(t)) that transforms a base distribution
p(Z) into a distribution over main network weights, where θ(t) are the parameters of the approximate
posterior qθ(t)(W). Crucially, θ(t) are task-specific, and generated by a task-conditioned (TC)
hypernetwork, which receives task embeddings e(t) as input. The embeddings and the parameters ψ
of the TC are learned continually via a simple meta-replay regularizer (Eq. 1). (b) We refer to the
approximate posteriors as explicit if fWG is predefined. In Bayes-by-Backprop (BbB), for example,
the reparametrization trick transforms Gaussian noise into weight samples. (c) More complex,
implicit posterior approximations are parametrized by an auxiliary hypernetwork, which receives its
task-conditioned parameters from the TC, which now plays the role of a hyper-hypernetwork. The
obtained posterior approximations are more flexible and can, for example, capture multi-modality.

3 Methods

In this section we describe our posterior meta-replay framework (Fig. 2). We start by introducing
task-conditioned hypernetworks as a tool to continually learn parameters of task-specific posteriors,
each of which is learned using variational inference (SM C.1). We then explain how the framework
can be instantiated for both simple, explicit posterior approximations, and complex ones parametrized
by an auxiliary network, and describe how forgetting can be mitigated through the use of a meta-
regularizer. We next explain how predictive uncertainty, naturally arising from a probabilistic view of
learning, can be used to infer task identity for both PosteriorReplay methods, and PriorFocused
methods that use a multihead output. Finally, we outline ways to boost task inference.

Task-conditioned hypernetworks. Traditionally, hypernetworks are seen as neural networks that
generate the weights w of a main network M processing inputs as ŷ = fM(x,w) [22, 77]. Here, we
consider instead hypernetworks that learn to generate θ, the parameters of a distribution qθ(W) over
main network weights. By taking low-dimensional task embeddings e(t) as inputs and computing
θ(t) = fTC(e(t),ψ), task-conditional (TC) computation is possible. Sampling is realized by trans-
forming a base distribution p(Z) via a weight generator (WG) fWG(z,θ(t)), whose choice determines
the family of distributions considered for the approximation (i.e., the variational family). In our
framework, weights w ∼ qθ(t)(W) are directly used for inference without requiring any fine-tuning.

Importantly, all learnable parameters are comprised in the TC system, which can be designed to have
less parameters than the main network, i.e., dim(ψ) +

∑
t dim(e(t)) < dim(w). Such constraint is

vital to ensure fairness when comparing different CL methods, and is enforced in all our computer
vision experiments. Additional details can be found in SM C.2.

Posterior-replay with explicit distributions. Different families of distributions can be realized
within our framework. In the special case of a point estimate qθ(t)(W) = δ(W − θ(t)), the WG
system can be omitted altogether as it corresponds to the identity θ(t) = fWG(z,θ(t)). This reduces
our solution to the deterministic CL method introduced by von Oswald et al. [91], which we refer to as
PosteriorReplay-Dirac. However, capturing parameter uncertainty is a key ingredient of Bayesian
statistics that is necessary for more robust task inference (cf. Sec. 4.2). We thus turn as a first
step to explicit distributions qθ(t)(W), for which the WG system samples according to a predefined
function. We refer as PosteriorReplay-Exp to finding a mean-field Gaussian approximation via the
BbB algorithm (SM C.3.1, [6]). In this case, θ(t) corresponds to the set of means and variances that
define a Gaussian for each weight, which is directly generated by the TC. In the SM, we also report
results for another instance of explicit distribution (cf. SM C.3.2).
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Posterior-replay with implicit distributions. Since the expressivity of explicit distributions is
limited, we also explore the more diverse variational family of implicit distributions [19, 31]. These
are parametrized by a WG that now takes the form of an auxiliary neural network, making the
parameters θ(t) of the approximate posterior dependent on the chosen WG architecture. This setting,
referred to as PosteriorReplay-Imp, results in a hierarchy of three networks: a TC network generates
task-specific parameters θ(t) for the approximate posterior, which is defined through an arbitrary base
distribution p(Z) and the WG hypernetwork, which in turn generates weights w for a main network
M that processes the actual inputs of the dataset D(t). Interestingly, the TC now plays the role of a
hyper-hypernetwork as it generates the weights of another hypernetwork (Fig. 2a and Fig. 2c).

Variational inference commonly resorts to optimizing an objective consisting of a data-dependent
term and a prior-matching term KL(qθ(W) || p(W)). Estimating the prior-matching term when
using implicit distributions is not straightforward since we do not have analytic access to the density
nor the entropy of qθ(t)(W). To overcome this challenge, we resort to the spectral Stein gradient
estimator (SSGE, SM C.4.2, [79]). This method is based on the insight that direct access to the
log-density is not required, but only to its gradient with respect to W. Noticing that this quantity
appears in Stein’s identity, the authors consider a spectral decomposition of the term and use the
Nyström method to approximate the eigenfunctions. We test an alternative method for dealing with
implicit distributions in the SM that is based on estimating the log-density ratio (SM C.4.1).

As an additional challenge introduced by the use of implicit distributions, the support of qθ(t)(W) is
limited to a low-dimensional manifold when using an inflating architecture for WG, causing the prior-
matching term to be ill-defined. To overcome this, we investigate the use of small noise perturbations
in WG outputs (SM C.4.3). Normalizing flows [70] can also be utilized as WG architectures to gain
analytic access to qθ(t)(W), albeit at the cost of architectural constraints such as invertibility.

Overcoming forgetting via meta-replay. Since all learnable parameters are part of the TC system,
forgetting only needs to be addressed at this meta-level. With Ltask the task-specific loss (SM Eq. 3)
and D(·||·) a divergence measure between distributions, the loss for task t becomes:

L(t)(ψ, E ,D(t)) = Ltask(ψ, e(t),D(t)) + β
∑
t′<t

D
(
qθ(t′,∗)(W)||qθ(t′)(W)

)
(1)

where E = {e(t′)}tt′=1 is the set of task embeddings up to the current task, β is the strength of
the regularizer and θ(t

′,∗) ≡ fTC(e(t′,∗),ψ∗) are the parameters of the posterior approximation
obtained from a checkpoint of the TC parameters before learning task t: {ψ∗} ∪ {e(t′,∗)}t′<t. The
checkpointed meta-model allows replaying posterior distributions from the past and retaining them
via divergence minimization as detailed below, hence the name posterior meta-replay. Importantly,
the loss on task t only depends on the corresponding dataset D(t), but knowledge transfer across
tasks is possible because task-specific models are learned through a shared meta-model.1 Since the
computation required to compute this regularizer linearly scales with the number of tasks, we also
explore stochastically regularizing on a subset of randomly selected tasks in each update (cf. SM
D.3), and show that this does not impair performance. Notably, our PosteriorReplay method does not
incur in a significant increase of runtime or memory usage (SM F.2).

The evaluation of Eq. 1 requires estimates of a divergence measure to prevent changes in learned
posterior approximations of past tasks. Because these are required at every loss evaluation and need to
be cheap to compute, we do not consider sample-based estimates but only estimates that directly utilize
posterior parameters. This goal is easy to achieve for families of posterior approximations that possess
an analytic expression for a divergence measure (e.g., Gaussian distributions). More specifically, for
PosteriorReplay-Exp, we consider the forward KL, backward KL and the 2-Wasserstein distance but
did not observe that the specific choice of divergence measure is crucial in practice (cf. SM C.3.1 and
Table S14). In all other cases, approximations are required. Specifically, we resort in our experiments
to the use of an L2 regularizer at the output of the TC network:

β
∑
t′<t

‖fTC(e(t′,∗),ψ∗)− fTC(e(t′),ψ)‖22 (2)

Perhaps surprisingly, we observe that this crude regularization, reminiscent to the one used in von
Oswald et al. [91] for point estimates, does not harm performance and leads to models that exhibit

1While this type of transfer is rather implicit, explicit knowledge transfer can be realized via task-specific
priors (cf. SM F.7).
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virtually no forgetting. However, we discuss in SM F.3 how this isotropic regularization could be
improved given that the KL is locally approximated by a norm ‖·‖F induced by the Fisher information
matrix F on qθ(W).

Task inference. A system with task-specific solutions requires access to task identity when processing
unseen samples. In our framework, this amounts to selecting the correct task embedding to condition
the TC. Although auxiliary systems can be used to infer task identity [24, 91], here we exploit
predictive uncertainty, assuming task identity can be inferred from the input alone. For a task inference
approach based on predictive uncertainty to work, the properties of the input data distribution p(t)(x)
need to be reflected in the uncertainty measure, i.e., uncertainty needs to be low for in-distribution data
and high for out-of-distribution (OOD) data [11]. Uncertainty-based task inference with deterministic
discriminative models only captures aleatoric uncertainty, making its overall validity debatable.
Indeed, aleatoric uncertainty is only calibrated in-distribution and its OOD behavior is hard to foresee.
Instead, we argue that epistemic uncertainty arising naturally in a Bayesian setting is crucial for
robust uncertainty-based task inference. In our case, epistemic uncertainty stems from the fact
that the posterior parameter distribution p(W|D(t)) in conjunction with the network architecture
induces a distribution over functions. If this distribution captures a rich set of functions, a diversity
of predictions on OOD data can be expected even if those functions agree in-distribution (cf. Sec.
4.2). Note, however, that inducing such diverse distribution over functions is not straightforward with
neural networks, and that more research is required to justify uncertainty-based OOD detection [11].

We explore two different ways to quantify uncertainty for task inference. In Ent the task t leading
to the lowest entropy on the predictive posterior p(y | D(t); x̃) is selected, where p(y | D(t); x̃) =∫
W
p(y | W; x̃)p(W|D(t)) dW is approximated via Monte-Carlo with samples from qθ(t)(W).

This approach captures both aleatoric and epistemic uncertainty when used in a probabilistic setting.
In Agree the task leading to the highest agreement in predictions across models drawn from qθ(t)(W)
is selected. This approach exclusively measures epistemic uncertainty and can therefore only be
estimated in a probabilistic setting. Although we generally consider task inference for individual
samples, we also explore batch-wise (BW) task inference for batches of 100 samples that are assumed
to belong to the same task. Such approach drastically boosts task inference simply due to a statistical
accumulation effect when having above chance level task inference for single inputs. Intuitively, BW
corresponds to accumulating evidence to decrease uncertainty (e.g., an agent looking at an object
from multiple perspectives). Further details can be found in SM C.6, and using uncertainty for
task-boundary detection when training without explicit access to task identity is explored in SM D.8.

Facilitating task inference through coresets. A key advantage of Bayesian statistics is the ability
to update models as new evidence arrives. When continually learning a sequence of tasks, posteriors
may for example undergo a post-hoc fine-tuning on stored coresets to mitigate catastrophic forgetting
of earlier tasks. Specifically, given a dataset split D(t) \ C(t) ∪ C(t), one can perform a final update
p(W|D(t)) ∝ p(W | D(t) \ C(t))p(C(t) | W) using a stored coreset C(t) in conjunction with an
already learned posterior approximation for p(W | D(t) \ C(t)) that now acts as a prior. Interestingly,
access to coresets after training on all tasks can also be exploited to facilitate task inference via
predictive uncertainty. Here, we explore this idea by encouraging task-specific models to produce
uncertain predictions for OOD samples (i.e., coresets from other tasks), an approach that we denote
CS (SM C.7), and in which we store 100 inputs per task. Intriguingly, training on OOD inputs makes
these become in-distribution, and therefore renders model agreement (Agree) inapplicable for task
inference, which we empirically observe.

Improving prior-focused CL. We investigate ways to improve PriorFocused methods within our
framework. First, we endow them with implicit posterior approximations qθ(W) parametrized
by a WG hypernetwork, an approach we refer to as PriorFocused-Imp. Because the posterior is
shared across tasks, no TC system is required and the parameters θ can be directly optimized via
SSGE. Second, we enrich PriorFocused methods with a small set of task-specific parameters that
enable uncertainty-based task inference for prior-focused methods too. Specifically, the learned
parameters w consist of a set of shared weights φ and a set of task-specific output heads with
weights {ξ(t)}Tt=1. This approach is in contrast with how PriorFocused methods like Online EWC are
commonly deployed in task-agnostic inference settings, where the softmax output grows as new tasks
arrive (e.g., [88]). The use of a growing softmax causes the model class parametrized by w to change
over time, and therefore violates the Bayesian assumption that the approximate posterior is obtained
from a model class containing the ground-truth model. We show that this leads to limitations that
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can be overcome by a multihead approach. For Online EWC, we refer to the growing softmax and
multihead scenarios as EWC-growing and EWC-multihead, respectively (cf. SM C.5.2). We also
explore the prior-focused instantiation of BbB, known as VCL (cf. SM C.5.1).

4 Experiments
In this section, we start by illustrating the conceptual advantage of the PosteriorReplay approach
compared to PriorFocused methods, as well as the importance of parameter uncertainty for robust
task inference. We then explore scalability to more challenging computer vision CL benchmarks.

To assess forgetting, we provide During scores, measured directly after training each task, and Final
scores, evaluated after training on all tasks. We consider two different testing scenarios: (1) either
task-identity is explicitly given (TGiven) or (2) task-identity has to be inferred (TInfer), e.g. via
predictive uncertainty. Unless explicitly mentioned, task inference is performed for each sample in
isolation and is obtained using the Ent criterion (TInfer-Final). Whenever the wrong task is inferred,
the sample is directly considered as incorrectly classified. Supplementary results and controls are
provided in SM D, and all experimental details can be found in SM E.2

4.1 Simple 1D regression illustrates the pitfalls of prior-focused learning
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4(a) (b)4
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Figure 3: PriorFocused methods struggle to learn
three 1D polynomial regression tasks. (a) Differ-
ent colors represent the task-specific posterior ap-
proximations within the final PosteriorReplay-Exp
model. For unseen inputs x the posterior with the
lowest predictive uncertainty is chosen to make
predictions. (b) Predictive posterior using the fi-
nal approximation of p(W | D(1:3)), obtained via
PriorFocused-Imp. Shaded areas represent stan-
dard deviation, and black dots training samples.

To illustrate conceptual differences between
PosteriorReplay and PriorFocused methods we
study 1D regression, for which the predictive
posterior can be visualized. Each task-specific
posterior obtained with PosteriorReplay-Exp
fits the training data well (Fig. 3a) and ex-
hibits increasing uncertainty when leaving the
in-distribution domain, as desired for success-
ful task inference. Interestingly, when studying
low-dimensional problems, we generally found
it easier to find viable hyperparameter configura-
tions for PosteriorReplay with implicit methods
than with explicit ones. As we do not consider a
multihead for this problem, PriorFocused meth-
ods have to fit a single posterior to all polynomi-
als in a sequential manner and struggle to find
a good fit (Fig. 3b), independent of the type of
posterior approximation used. Results for other methods and an analysis of the correlations and
multi-modality that can be captured by implicit methods in weight space can be found in SM D.1.

Because we use a mean squared error (MSE) loss, the likelihood is a Gaussian with fixed variance
(SM C.3.1) and all x-dependent uncertainty originates from parameter uncertainty. We next consider
classification problems where both epistemic and aleatoric uncertainty can be explicitly modelled.

4.2 Maintaining parameter uncertainty is crucial for robust task inference

Table 1: 2D mode classification accuracies (Mean ±
standard error of the mean (SEM) in %, n = 10). Task
identity is inferred via predictive uncertainty using an
entropy (Ent) or model agreement (Agree) criterion. PR
denotes PosteriorReplay.

Final Acc TGiven TInfer (Ent) TInfer (Agree)

PR-Dirac 99.78 ± 0.21 44.90 ± 5.74 N/A
PR-Exp 100.0 ± 0.00 81.07 ± 6.78 90.02 ± 3.57
PR-Imp 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00

To investigate the importance of parame-
ter uncertainty, we consider a 2D classifi-
cation problem for which uncertainty can
be visualized in- and out-of-distribution.
Classification tasks are of special interest
as it is possible to model arbitrary input-
dependent discrete distributions, e.g. via a
softmax at the outputs. This surprisingly
often results in meaningful OOD perfor-
mance in high-dimensional benchmarks
without any treatment of parameter uncer-
tainty [82].

2Source code for all experiments (including all baselines) is available at: https://github.com/
chrhenning/posterior_replay_cl .
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Figure 4: Parameter uncertainty is crucial for robust task infer-
ence. (a) Density of input distribution p(x) across tasks. Dots
represent training points, colors task-affiliation and lines deci-
sion boundaries for each of the three consecutively learned 2D
binary classification tasks. (b) Entropy of predictive distribu-
tion induced by the approximate posterior of task 2 learned via
PosteriorReplay-Dirac. (c) Same as (b) for PosteriorReplay-Imp.

Here, we consider a Gaussian
mixture of two modes per task,
each mode being a different class
(Fig. 4a). TInfer-Final (Agree),
which is indicative of the im-
portance of epistemic uncertainty
for OOD detection, is the most
robust measure for task infer-
ence in this experiment (Table
1). PosteriorReplay-Dirac, which
does not incorporate epistemic un-
certainty, performs poorly. Fi-
nally, implicit methods maintain
an advantage over explicit ones, presumably due to the increased flexibility in modelling the posterior.

To better understand why differences between methods arise we provide uncertainty maps over the
input space (Fig. 4). Consistent with the observed low task inference accuracy, PosteriorReplay-Dirac
displays arbitrary uncertainty away from the training data (Fig. 4b). By contrast, PosteriorReplay-Imp
(Fig. 4c) approaches the desired behavior of displaying high uncertainty away from the training data
of the corresponding task. We provide detailed analysis in SM D.2.

4.3 Multiple factors affect uncertainty-based task inference accuracy
To investigate the factors that affect uncertainty-based task inference, we next consider SplitMNIST
[96], a popular variant of the MNIST dataset, adapted to CL by splitting the ten digit classes into five
binary classification tasks. The results can be found in Table 2.

Table 2: Accuracies of SplitMNIST experiments
(Mean ± SEM in %, n = 10) after learning all
tasks when task identity is provided (TGiven-Final)
and when it needs to be inferred (TInfer-Final,
based on the Ent criterion if explicit task-inference
is required). Results are shown for an MLP with
two hidden layers of 400 neurons (MLP-400,400),
an MLP-100,1001 or a Lenet2. PR denotes Poste-
riorReplay and SP SeparatePosteriors.

TGiven-Final TInfer-Final

EWC-growing [87] N/A 19.96 ± 0.07
EWC-multihead 96.40 ± 0.62 47.67 ± 1.52
VCL-multihead 96.45 ± 0.13 58.84 ± 0.64

PR-Dirac 99.65 ± 0.01 70.88 ± 0.61
PR-Exp 99.72 ± 0.02 71.73 ± 0.87
PR-Imp 99.77 ± 0.01 71.91 ± 0.79

SP-Dirac 99.77 ± 0.01 70.39 ± 0.27
SP-Exp 99.81 ± 0.00 68.40 ± 0.23

PR-Exp-BW 99.72 ± 0.02 99.72 ± 0.02
PR-Exp-CS 98.50 ± 0.09 90.83 ± 0.24

DGR [87] N/A 91.79 ± 0.32
HNET+R [91] N/A 95.30 ± 0.13

PR-Dirac1 99.72 ± 0.01 63.41 ± 1.54
PR-Exp1 99.75 ± 0.01 70.07 ± 0.56

PR-Dirac2 99.87 ± 0.04 72.33 ± 2.75
PR-Exp2 99.20 ± 0.67 74.09 ± 1.38

While all methods successfully prevent forget-
ting (i.e., Final scores are maxed-out and close
to the During accuracies, SM D.3) and achieve
acceptable Final accuracies when task identity
is provided, large differences can be observed
when the task needs to be inferred. Methods
with task-specific solutions outperform by a
large margin PriorFocused approaches such as
Online EWC, whose performance substantially
improves when using uncertainty-based task in-
ference through a multihead. Despite superior
performance of PosteriorReplay approaches, a
gap in performance between task-inferred and
task-given scenarios remains. However, train-
ing separate posteriors that are not embedded in
a hypernetwork (SeparatePosteriors) leads to
similar results, showing that task inference limi-
tations are not linked to our solution. These lim-
itations can be surmounted by inferring the task
on batches rather than single samples (BW) or
by using coresets to encourage high uncertainty
for OOD data (CS), which leads to performances
comparable to generative-replay methods which
explicitly capture p(X) (i.e., HNET+R and
DGR).

To better understand the factors that influence
task inference, we consider a variety of approxi-
mate inference methods and architectures. Since
epistemic uncertainty seems to play a vital role
for task inference, the approximate inference
method will likely affect TInfer performance
(e.g., Exp vs. Imp; in supplementary results). In addition, because diversity in function space enables
uncertainty-based OOD detection and because different architectures induce different priors in func-
tion space [93], one can expect that prior and architecture play a key role as well, which we observe
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by comparing the TInfer performance for different architectures. Additional SplitMNIST results can
be found in SM D.3, and results showing scalability to sequences of up to 100 PermutedMNIST tasks
can be found in SM D.4 and D.5.

4.4 PosteriorReplay scales to natural image datasets

While BNNs are advocated because of their theoretical promises, practitioners are often put off
by scalability issues. Here we show that our approach scales to natural images by considering
SplitCIFAR-10 [39], a dataset consisting of five tasks with two classes each. Results obtained with
a Resnet-32 [23] (Table 3) show performance gains in the task-agnostic setting compared to recent
methods like EBM [50], and to the PriorFocused method VCL.

Furthermore, our results reveal considerable improvements through the incorporation of epistemic
uncertainty, as shown by differences between PosteriorReplay-Exp and PosteriorReplay-Dirac.

Table 3: Accuracies of SplitCIFAR-10 experiments (Mean ±
SEM in %, n = 10). TInfer-Final is based on the Ent criterion
if explicit task-inference is required and PR denotes Posterior-
Replay.

TGiven-During TGiven-Final TInfer-Final

VCL-multihead 95.78 ± 0.09 61.09 ± 0.54 15.97 ± 1.91

PR-Dirac 94.59 ± 0.10 93.77 ± 0.31 54.83 ± 0.79
PR-Exp 95.59 ± 0.08 95.43 ± 0.11 61.90 ± 0.66
PR-Imp 94.25 ± 0.07 92.83 ± 0.16 51.95 ± 0.53

PR-Exp-BW 95.59 ± 0.08 95.43 ± 0.11 92.94 ± 1.04
PR-Exp-CS 95.15 ± 0.11 92.48 ± 0.13 64.76 ± 0.34

EBM [50] N/A N/A 38.84 ± 1.08

Notably, PosteriorReplay-Exp-BW
solves CIFAR-10 with a perfor-
mance comparable to a classifier
trained on all data at once, with
the caveat that successive unseen
samples are assumed to belong to
the same task. In contrast to low-
dimensional problems, the implicit
method PosteriorReplay-Imp does
not exhibit a competitive advan-
tage, as it appears to suffer from
scalability issues. Other baselines
and results for a WRN-28-10 can
be found in SM D.6, and results
showing that our framework scales
to the SplitCIFAR-100 benchmark
can be found in SM D.7.

5 Discussion

In this study we propose posterior meta-replay, a framework for continually learning task-specific
posterior approximations within a single shared meta-model. In contrast to prior-focused methods
based on a recursive Bayesian update, our approach does not directly seek trade-off solutions across
tasks. This results in more flexibility for learning new tasks but introduces the need to know task
identity when processing unseen inputs.

Task Inference. Probabilistic inference on task identity can be achieved by additionally considering
inputs and task embeddings as random variables, a strategy that would require task-conditioned gen-
erative models with tractable density [46]. However, learning generative models on high-dimensional
data is a challenging problem and, even if tractable densities are accessible, these do not currently
reflect the underlying data-generative process [64].3 To sidestep these limitations, we study the use
of predictive uncertainty for task inference [91] and show that an entropy-based criterion works
best for both deterministic and Bayesian models. Nevertheless, we highlight that proper task in-
ference requires epistemic uncertainty (e.g., measured in terms of model disagreement). Indeed,
in-distribution samples with high aleatoric uncertainty can lead to high predictive entropy, causing
them to be misclassified as OOD. This does not pose a problem in highly-curated ML datasets where
samples with high aleatoric uncertainty are excluded [62], but drastically limits the applicability of
entropy-based uncertainty estimation in more practical scenarios. For these reasons, we advocate for
the use of Bayesian models whose epistemic uncertainty can induce diversity in function space for
OOD inputs and enable more robust task inference.4

3Interestingly, a concurrent study by van de Ven et al. [89] successfully trains class-conditioned generative
models, indicating that this approach could nevertheless be feasible to tackle task inference.

4Note, while also models with deterministic parameters may be well suited for OOD detection (e.g., Lakshmi-
narayanan et al. [43], that utilizes a deterministic distance preserving input-to-hidden mapping), these solutions
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Limitations. Compared to methods performing deterministic inference, the Bayesian model av-
erage incurs in significant computational overhead. This overhead is reinforced when performing
uncertainty-based task inference, since each predictive posterior needs to be evaluated in parallel.
Moreover, despite strong performance gains compared to prior-focused approaches, we observe
general limitations of such task inference procedure. These could be overcome once a better un-
derstanding of how epistemic uncertainty influences OOD behavior in neural networks is available.
In addition, our work builds on algorithms to perform variational inference, and is therefore only
applicable to problems where these can be successfully deployed. Finally, all our experiments consist
of a set of clearly defined tasks within which i.i.d. samples are available. Although this scenario is in
line with most existing CL literature, it might be of limited relevance for practical CL problems, and
a focus on established benchmarks adhering to these constraints could therefore misguide research
on this area. Indeed, a more natural CL problem might arise from the need to online learn from a
stream of autocorrelated samples. In this context, it is important to note that unlike non-Bayesian
CL methods, our approach can utilize any type of online prior-focused method (such as FOO-VB
[97]) to also learn within tasks in a non-i.i.d. manner. Therefore, as long as some coarse split into
tasks is meaningful, such hierarchical approach holds great promise. However, it should be noted that
any progress towards learning from non-i.i.d. data opens the door to training algorithms from raw,
uncurated datasets, and could therefore counter some of the efforts that are currently done to mitigate
algorithmic bias.

Conclusion. Taken together, our work shows that it is possible to continually learn an approximate
posterior per task without an increased parameter budget, and that task-agnostic inference can be
achieved via predictive uncertainty to obtain a Bayesian CL approach that is scalable to real-world
data. Since forgetting is not a prevalent issue in our experiments and task inference limitations are not
linked to our CL solution, progress in the field of uncertainty-based OOD detection will automatically
translate into further improvements of our method.
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