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A Appendix444

We provide further details needed for training and inference in the appendix.445

A.1 Implementation Details446

For the training, we use 8 Tesla V100 GPUs with 16GB memory. As noted in Table 2, we used a single447

RTX 2080Ti GPU for measuring FPS of the main results (see Sec. 4.1). However, 16GB memory is448

not sufficient for evaluating the model with full self-attention over space-time inputs. Therefore, we449

used a single Tesla V100 GPU with 32GB memory for completing the results in Table 3.450

We used detectron2 [34] for our code basis, and hyper-parameters mostly follow the settings of451

DETR [13] unless specified. We used AdamW [36] optimizer with initial learning rate of 10�4 for452

transformers, and 10�5 for backbone. We first pre-train the model for image instance segmentation453

on COCO [35] by setting our model to T = 1. The pre-train procedure follows the shortened training454

schedule of DETR [13], which runs 300 epochs with a decay of the learning rate by a factor of 10 at455

200 epochs. Using the pre-trained weights, the models are trained on targeted dataset using the batch456

size of 16, each clip composed of T = 5 frames downscaled to either 360p or 480p. The models are457

trained for 8 epochs, and decays the learning rate by 10 at 5th epoch. For the evaluation, the input458

videos are downscaled to 360p, and we average clip predictions of equal identities for the final results.459

To balance the weights of class and mask predictions, we use �0 = �1 = �2 = 3. Sigmoid-focal loss460

uses ↵ = 0.25, � = 2 to alleviate foreground-background pixel imbalance. Following CondInst [7],461

we upscale predicted masks to the stride of 4 with bilinear interpolation for computing mask-related462

losses. For the number of layers, we use NE = 3, ND = 3 where each transformer layer is of width463

256 with 8 attention heads.464

We include extra figure which specifies the details of our network (see Fig. 3). We freeze batch465

normalization layers [37] of the backbone due to small batch-sized input. In spatial decoder, each466

convolutional layer is followed by group normalization layer [38] except the last depthwise separable467

convolutional layer [39].468

A.2 Qualitative Comparison469

For comparison, we provide visualized outputs of our model in addition to that of MaskTrack R-470

CNN [1], SipMask [2], and VisTR [11] (see Fig. 4-8). The models are all built on top of ResNet-50,471

and we used official checkpoints offered from the authors. Moreover, we visualized attention maps of472

two memory tokens that have tendencies of attending foreground and background respectively. As473

shown in the results, our model shows superiority over the others under various situations such as:474

(a) fast instance movement, (b) overlaps between instances (c) instances of similar appearances (d)475

motion blurs.476
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Figure 3: Further specifications of our network.

Table 4: Standard deviations of Table 3 that had to be omitted due to the space limit.

(a) Standard deviations of Table 3 (a)

T=5 T=10 T=15 T=20
AP AP75 AP AP75 AP AP75 AP AP75

No Comm 1.0 1.5 1.2 1.3 1.1 1.3 1.0 1.2
Full THW 0.4 0.5 0.7 0.5 1.4 1.3 1.4 1.3
Decomp T-HW 1.4 1.4 1.0 1.0 1.0 1.3 1.1 1.3
IFC 1.6 2.1 1.1 1.9 1.0 1.5 1.2 1.8

(b) Standard deviations of Table 3 (c)

T=5 T=10 T=15 T=20

M=1 1.1 0.9 1.6 1.3
M=2 1.1 0.6 0.6 1.0
M=4 0.8 0.9 0.6 0.7
M=8 1.6 1.1 1.0 1.2
M=16 1.5 0.9 0.4 0.7

(c) Standard deviations of Table 3 (d)

T=5 T=10 T=15 T=20

Unified 0.5 0.6 0.5 0.6
Decomp 1.6 1.1 1.0 1.2

14



MaskTrack
R-CNN

SipMask

VisTR

Ours

Figure 4: Qualitative results. Best viewed on screen.
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Figure 5: Qualitative results. Best viewed on screen.
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Figure 6: Qualitative results. Best viewed on screen.
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Figure 7: Qualitative results. Best viewed on screen.
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Figure 8: Qualitative results. Best viewed on screen.
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