
A Proofs

In this section we include all proofs omitted in the main paper, and supply some additional comments.

A.1 Proofs for Section 3

Theorem 3.2. Let Pi : Rd ◆ Rd, i = [k], be proximal maps. Then, the averaged map

P :=
P

k

i=1 ↵iPi, where ↵i � 0,
P

k

i=1 ↵i = 1, (9)

is also a proximal map. Similarly, the product map

P := P1 ⇥ P2 ⇥ · · ·⇥ Pk, w⇤
= (w⇤

1, . . . ,w
⇤
k
) 7!

�
P1(w⇤

1), . . . ,Pk(w⇤
k
)
�

(10)

is a proximal map (from Rdk to Rdk).

Proof. Define P(w) =
P

i
↵iPi(w) if each Pi(w) is single-valued. It is known that any proximal

map Pi is almost everywhere single-valued [38], thus P is almost everywhere defined. Then, if
necessary we take the closure of the graph of P so that it is defined everywhere. (This last step can be
omitted if we always take the upper or lower limits at any jump of Pi.) With this interpretation of the
average in (9), the rest of the first claim then follows from [Proposition 4, 48].

For the second claim about the product map in (10), let Pi be the proximal map of fi(w⇤
i
). Then, it

follows immediately from the definition (8) that the product map P is the proximal map of the sum
function f(w⇤

) :=
P

i
fi(w⇤

i
), where w⇤

= (w⇤
1, . . . ,w

⇤
k
).

A.2 Proofs for Section 4

Let us first record a general result for iterates of the following type:

w⇤
t+1 = w⇤

t
+ ⌘tz

⇤
t
, (39)

where w⇤
0 is given and z⇤

t
may be arbitrary.

Lemma A.1. For any w, any sequence of wt, and arbitrary function g, the iterates (39) satisfy:
tX

⌧=s

⌘⌧ [hw⌧�w,�z⇤
⌧
i+g(w⌧)�g(w)] = �s�1(w)��t(w)+

tX

⌧=s

�⌧ (w⌧), (40)

where �⌧ (w) :=
1
⇡⌧

g(w)�
1
⇡⌧

g(w⌧+1)�
⌦
w �w⌧+1,w⇤

⌧+1

↵
and 1

⇡t
= 1 +

P
t

⌧=1 ⌘⌧ .

Proof. The proof is simple algebra (and was discovered by abstracting the original, tedious proof of
Theorem 4.1). For any w, we verify:
tX

⌧=s

⌘⌧ [hw⌧�w,�z⇤
⌧
i+g(w⌧)�g(w)] (41)

=

tX

⌧=s

⌦
w⌧ �w,w⇤

⌧
� w⇤

⌧+1

↵
+ ⌘⌧ [g(w⌧)� g(w)] (42)

=

tX

⌧=s

⌦
w⌧ �w,w⇤

⌧
� w⇤

⌧+1

↵
+ (

1
⇡⌧

�
1

⇡⌧�1
)[g(w⌧)� g(w)] (43)

=

tX

⌧=s

�
⌦
w⌧�w⌧+1,w

⇤
⌧+1

↵
+
⌦
w�w⌧+1,w

⇤
⌧+1

↵
�hw�w⌧ ,w

⇤
⌧
i+(

1
⇡⌧

�
1

⇡⌧�1
)[g(w⌧)�g(w)]

(44)

=

tX

⌧=s

�⌧ (w⌧)��⌧ (w)+�⌧�1(w). (45)

Telescoping completes the proof.

16

Theorem 4.1. Suppose r⇤ is L-smooth (i.e. rr⇤ is L-Lipschitz continuous), then for any w:
tX

⌧=0

�⌧
⇡⌧

[(`⇤⇤ + r⇤⇤)(w⌧)� (`⇤⇤ + r⇤⇤)(w)] (1� �0)�(w,w0) +

tX

⌧=0

�
2
⌧

2⇡⌧
Lkw⇤

⌧
� z⇤

⌧
k
2
2, (20)

where wt := rr⇤(w⇤
t
), ⇡t :=

Q
t

⌧=1(1 � �⌧), and ⇡0 := 1. �(w,wt) := r⇤⇤(w) � r⇤⇤(wt) �

hw �wt,w⇤
t
i is the Bregman divergence induced by the convex function r⇤⇤.

Proof. We first expand the recursion
w⇤

t+1 = (1� �t)w
⇤
t
+ �tz

⇤
t

(46)
= (1� �t)(1� �t�1)w

⇤
t�1 + �tz

⇤
t
+ (1� �t)�t�1z

⇤
t�1 (47)

= . . . (48)

= (1� �0)⇡tw
⇤
0 +

tX

⌧=0

⇡t
⇡⌧

�⌧z
⇤
⌧
, (49)

where ⇡t :=
Q

t

⌧=1(1 � �⌧) for t � 1 while ⇡0 := 1 and �t 2 [0, 1]. We deduce (by, for instance,
setting z⇤

t
= w⇤

t
⌘ 1, for all t � 0, in (49)) that

1

⇡t

= (1� �0) +

tX

⌧=0

�⌧

⇡⌧

= 1 +

tX

⌧=1

�⌧

⇡⌧

. (50)

Define 1
⇡�1

:= 1� �0 and z⇤
t
= �r`⇤⇤(wt). We apply the convexity of `⇤⇤ to the LHS of (20):

LHS =

tX

⌧=0

�⌧
⇡⌧

[`⇤⇤(w⌧)+r⇤⇤(w⌧)�`⇤⇤(w)�r⇤⇤(w)] (51)

tX

⌧=0

�⌧
⇡⌧

[hw⌧ �w,�z⇤
⌧
i+ r⇤⇤(w⌧)� r⇤⇤(w)]. (52)

Next, we identify ⌘⌧ :=
�⌧
⇡⌧

, g = r⇤⇤, w⇤
⌧+1 := w⇤

⌧+1/⇡⌧ = w⇤
⌧
+ ⌘⌧z⇤⌧ , and �⌧ =

1
⇡⌧

� so that we
can apply Lemma A.1:

LHS

tX

⌧=0

�⌧
⇡⌧

[hw⌧ �w,�z⇤
⌧
i+ r⇤⇤(w⌧)� r⇤⇤(w)] (53)

 (1� �0)�(w,w0)�
1
⇡t
�(w,wt+1) +

tX

⌧=0

1
⇡⌧

�(w⌧ ,w⌧+1) (54)

 (1� �0)�(w,w0) +

tX

⌧=0

1
⇡⌧

L

2 kw
⇤
⌧+1�w⇤

⌧
k
2
2, (55)

where in the last step we applied the nonnegativity of the Bregman divergence � (when induced by a
convex function such as r⇤⇤) as well as the following inequality:
�(w⌧ ,w⌧+1) = r⇤⇤(w⌧)� r⇤⇤(w⌧+1)�

⌦
w⌧ �w⌧+1,w

⇤
⌧+1

↵
(56)

= r⇤⇤(w⌧)� r⇤⇤(w⌧+1)� hw⌧ �w⌧+1,rr⇤⇤(w⌧+1)i (wt = rr⇤(w⇤
t
) () w⇤

t
= rr⇤⇤(wt))

(57)
= r⇤⇤⇤(w⇤

⌧+1)� r⇤⇤⇤(w⇤
⌧
)�

⌦
w⇤

⌧+1 �w⇤
⌧
,rr⇤⇤⇤(rr⇤⇤(w⌧))

↵
(by duality of Bregman divergence)

(58)
= r⇤(w⇤

⌧+1)� r⇤(w⇤
⌧
)�

⌦
w⇤

⌧+1 �w⇤
⌧
,rr⇤(rr⇤⇤(w⌧))

↵
(by convexity of r⇤⇤⇤)

(59)

= r⇤(w⇤
⌧+1)� r⇤(w⇤

⌧
)�

⌦
w⇤

⌧+1 �w⇤
⌧
,w⌧

↵ ⇣
since rr⇤⇤ = (rr⇤)�1

⌘
(60)

⌦
w⇤

⌧+1 �w⇤
⌧
,rr⇤(w⇤

⌧
)
↵
+

L

2 kw
⇤
⌧+1 �w⇤

⌧
k
2
2 �

⌦
w⇤

⌧+1 �w⇤
⌧
,w⌧

↵
(by smoothness of r⇤)

(61)

=
L

2 kw
⇤
⌧+1 �w⇤

⌧
k
2
2 (since w⌧ := rr⇤(w⇤

⌧
)). (62)

Applying (46) completes the proof.

17

Corollary 4.2. Let w̄t :=
P

t

⌧=0 ⇤t,⌧w⌧ , where ⇤t,⌧ :=
�⌧
⇡⌧

/Ht and Ht :=
P

t

⌧=0
�⌧
⇡⌧

. Then, we
have for any w:

(`⇤⇤ + r⇤⇤)(w̄t)� (`⇤⇤ + r⇤⇤)(w)
(1� �0)�(w,w0)

Ht

+
L

2

tX

⌧=0

�⌧⇤t,⌧kw
⇤
⌧
� z⇤

⌧
k
2
2. (21)

Proof. By the convexity of r⇤⇤ and `⇤⇤ as well as the fact that the sum of two convex functions is
convex, we have:

(`⇤⇤ + r⇤⇤)(w̄t)

tX

⌧=0

⇤t,⌧ (`
⇤⇤

+ r⇤⇤)(w⌧). (63)

Inserting the above in Theorem 4.1 (multiplied 1/Ht) and noting that
P

t

⌧=0 ⇤t,⌧ = 1, we have

(`⇤⇤ + r⇤⇤)(w̄t)� (`⇤⇤ + r⇤⇤)(w)

tX

⌧=0

⇤t,⌧ [(`
⇤⇤

+ r⇤⇤)(w⌧)� (`⇤⇤ + r⇤⇤)(w)] (64)

(1��0)�(w,w0)

Ht
+

L

2

tX

⌧=0

�⌧⇤t,⌧kw
⇤
⌧
�z⇤

⌧
k
2
2. (65)

The following instantiation of Corollary 4.2 is notable: setting �t =
1

t+1 implies ⇡t = �t, Ht = t+1,
and therefore w̄t is simply ergodic averaging, i.e.,

w̄t =
1

t+ 1

tX

s=0

wt. (66)

The right-hand side of (21) diminishes at the rate of O(
log t

t
) since

tX

⌧=0

�t⇤t,⌧ =
1

t+ 1

tX

⌧=0

1

⌧ + 1
, and

tX

⌧=0

1

⌧ + 1
= O(log t). (67)

We remark that the log factor can be removed if we set �t =
2

t+2 instead, for which we have

⇡t =

tY

⌧=1

⌧

⌧ + 2
=

2

(t+ 1)(t+ 2)
, (68)

Ht =

tX

⌧=0

�⌧

⇡⌧

=

tX

⌧=0

2

⌧ + 2

(⌧ + 1)(⌧ + 2)

2
=

1

2
(t+ 1)(t+ 2), (69)

tX

⌧=0

�t⇤t,⌧ =
4

(t+ 1)(t+ 2)

tX

⌧=0

⌧ + 1

⌧ + 2
, and

tX

⌧=0

⌧ + 1

⌧ + 2
= O(t). (70)

Proposition A.2.

rM µ

r⇤(w
⇤
t
) = P1/µ

r⇤⇤ (w⇤
t
/µ) (71)

Proof. By the envelope theorem, we have rM µ

r⇤(w
⇤
t
) =

w⇤
t�Pµ

r⇤ (w
⇤
t)

µ
. Furthermore, using the

Moreau decomposition, we have

w⇤
t
= P1

µr⇤(w
⇤
t
) + P1

(µr⇤)⇤(w
⇤
t
) (72)

= Pµ

r⇤(w
⇤
t
) + Pµ

s (w
⇤
t
), (73)

18

where s(w) := r⇤⇤(w/µ). Combining the two results, we have

rM µ

r⇤(w
⇤
t
) =

w⇤
t
� Pµ

r⇤(w
⇤
t
)

µ
(74)

=
Pµ

s (w
⇤
t
)

µ
(75)

=
1
µ
argmin

w

1
2µkw �w⇤

t
k
2
2 + s(w) (76)

= argmin
w

1
2µkµw �w⇤

t
k
2
2 + s(µw) (77)

= argmin
w

µ

2 kw �
w⇤

t
µ
k
2
2 + r⇤⇤(w) (78)

= P1/µ
r⇤⇤ (w⇤

t
/µ). (79)

A.3 Proofs for Section 5

In fact, Theorem 5.1 is a special case of a more general result:

Theorem A.3. Given w⇤
0 , ⌘t � 0 and 1

⇡t
= 1 +

P
t

⌧=1 ⌘⌧ , consider the iterates defined as

wt = P1/µt
r (⇡t�1w

⇤
t
/µt), w⇤

t+1 = w⇤
t
� ⌘t er`(wt). (80)

Then, for any w,
tX

⌧=s

⌘⌧ [hw⌧�w, er`(w⌧)i+r(w⌧)�r(w)] �s�1(w)��t(w)+

tX

⌧=s

�⌧ (w⌧)+ (81)

+

tX

⌧=s

1
2 (

µ⌧+1

⇡⌧
�

µ⌧

⇡⌧�1
)(kwk

2
2 � kw⌧k

2
2), (82)

where �⌧ (w) := r⌧ (w)� r⌧ (w⌧+1)�
⌦
w �w⌧+1,w⇤

⌧+1

↵
is the Bregman divergence induced by

the (possibly nonconvex) function r⌧ (w) :=
1
⇡⌧

r(w) +
µ⌧+1

2⇡⌧
kwk

2
2.

Proof. We simply apply Lemma A.1 with z⇤
⌧
:= �er`(w⌧), w⇤

⌧
= w⇤

⌧
and g := r, and note that

�⌧ (w) = �⌧ (w)�
µ⌧+1

2⇡⌧
(kwk

2
2 � kw⌧+1k

2
2). (83)

To see that �⌧ is the Bregman divergence of r⌧ , we apply the (sub)differential optimality condition to

w⌧+1 := P1/µ⌧+1
r (⇡⌧w

⇤
⌧+1/µ⌧+1) = argmin

w

1
2kw � ⇡⌧w

⇤
⌧+1/µ⌧+1k

2
2 +

1
µ⌧+1

r(w), (84)

so that

w⇤
⌧+1 2

µ⌧+1

⇡⌧
w⌧+1 +

1
⇡⌧

rr(w⌧+1) = rr⌧ (w⌧+1) (85)

and hence

�⌧ (w) = r⌧ (w)� r⌧ (w⌧+1)� hw �w⌧+1,rr⌧ (w⌧+1)i . (86)

Clearly, r⌧ is convex if r is convex, in which case �⌧ � 0.

Theorem 5.1. Fix any w, the iterates in (31) satisfy:
tX

⌧=s

⌘⌧ [hw⌧�w, er`(w⌧)i+r(w⌧)�r(w)] �s�1(w)��t(w)+

tX

⌧=s

�⌧ (w⌧), (32)

where �⌧ (w) := r⌧ (w)� r⌧ (w⌧+1)�
⌦
w �w⌧+1,w⇤

⌧+1

↵
is the Bregman divergence induced by

the (possibly nonconvex) function r⌧ (w) :=
1
⇡⌧

r(w) +
1
2kwk

2
2.

19

Proof. Simply set µt = ⇡t�1 in Theorem A.3 above.

Corollary 5.2. For convex ` and any w, the iterates in (31) satisfy:

min
⌧=s,...,t

E[f(w⌧)�f(w)]
1Pt

⌧=s ⌘⌧
·E

⇥
�s�1(w)��t(w)+

Xt

⌧=s

�⌧ (w⌧)
⇤
. (33)

If r is also convex, then

min
⌧=s,...,t

E[f(w⌧)�f(w)]
1Pt

⌧=s ⌘⌧
·E

⇥
�s�1(w)+

Xt

⌧=s

⌘
2
⌧
2 ker`(w⌧)k

2
2

⇤
, (34)

and

E
⇥
f(w̄t)�f(w)

⇤

1Pt
⌧=s ⌘⌧

·E
⇥
�s�1(w)+

Xt

⌧=s

⌘
2
⌧
2 ker`(w⌧)k

2
2

⇤
, (35)

where wt =

Pt
⌧=s ⌘⌧w⌧Pt

⌧=s ⌘⌧
.

Proof. We first apply the expectation with respect to random sampling to (32) which reduces the left
hand side to

E

"
tX

⌧=s

⌘⌧ [hw⌧�w, er`(w⌧)i+r(w⌧)�r(w)]

#
= E

"
tX

⌧=s

⌘⌧ [hw⌧�w,r`(w⌧)i+r(w⌧)�r(w)]

#

(87)

� E

"
tX

⌧=s

⌘⌧ [`(w⌧)�`(w)+r(w⌧)�r(w)]

#

(88)

= E

"
tX

⌧=s

⌘⌧ [f(w⌧)�f(w)]

#
, (89)

where we used the convexity of `. We then obtain (33) by using

min
⌧=s,...,t

E [f(w⌧)�f(w)]
1

P
t

⌧=s
⌘⌧

E

"
tX

⌧=s

⌘⌧ [f(w⌧)�f(w)]

#
. (90)

The right-hand sides of (34) and (35) are obtained by setting µ⌧ = ⇡⌧�1 and upper bounding the
Bregman divergence:

�⌧ (w⌧) = r⌧ (w⌧)� r⌧ (w⌧+1)�
⌦
w⌧ �w⌧+1,w

⇤
⌧+1

↵
(91)

= r⇤
⌧
(w⇤

⌧+1)� r⇤
⌧
(w⇤

⌧
)�

⌦
w⇤

⌧+1 �w⇤
⌧
,w⌧

↵
(by duality of Bregman divergence)

(92)

1

2
kw⇤

⌧
�w⇤

⌧+1k
2
2 (by 1-smoothness of r⇤) (93)

=
⌘2
t

2
ker`(wt)k

2
2, (94)

where we have used the well-known fact that the Fenchel conjugate of a (1/L)-strongly convex
function is L-smooth (in our case L = 1). Lastly, the left-hand side of (35) is obtained by applying
the convexity of f :

"
tX

⌧=s

⌘⌧

#
f(w̄t)

tX

⌧=s

⌘⌧f(w⌧), where w̄t =

Pt
⌧=s ⌘⌧w⌧Pt

⌧=s ⌘⌧
. (95)

20

A.3.1 Discussion of Theorem A.3

Recall the Bregman divergence from Theorem A.3:
�⌧ (w) = r⌧ (w)� r⌧ (w⌧+1)�

⌦
w �w⌧+1,w

⇤
⌧+1

↵
, r⌧ (w) =

1
⇡⌧

r(w) +
µ⌧+1

2⇡⌧
kwk

2
2. (96)

When r is �0-strongly convex, r⌧ is �0+µ⌧+1

⇡⌧
-strongly convex, and hence

�⌧ (w⌧)
⇡⌧

2(�0+µ⌧+1)
kw⇤

⌧+1 �w⇤
⌧
k
2
2 =

⇡⌧⌘
2
⌧

2(�0+µ⌧+1)
ker`(w⌧)k

2
2, (97)

where we used the duality of the Bregman divergence and the smoothness of r⇤
⌧

. Dividing both sides
of (81) by

P
t

⌧=s
⌘⌧ we obtain the upper bound:

UB :=

⇡s�1

�0+µs
kw⇤

�w⇤
s
k
2
2 +

P
t

⌧=s

⇥
⇡⌧⌘

2
⌧

�0+µ⌧+1
ker`(w⌧)k

2
2 + (

µ⌧+1

⇡⌧
�

µ⌧

⇡⌧�1
)(kwk

2
2 � kw⌧k

2
2)
⇤

2
P

t

⌧=s
⌘⌧

,

(98)

where w⇤ := rrs�1(w) and we have dropped the non-positive term ��t(w). Suppose8 µt+1

⇡t
is

non-decreasing w.r.t. t, we can thus drop some non-positive terms to further simplify:

UB

⇡s�1

�0+µs
kw⇤

�w⇤
s
k
2
2 +

µt+1

⇡t
kwk

2
2 +

P
t

⌧=s

⇥
⇡⌧⌘

2
⌧

�0+µ⌧+1
ker`(w⌧)k

2
2

⇤

2
P

t

⌧=s
⌘⌧

, (99)

To minimize the upper bound, we consider two cases:

• �0 = 0, in which case let us choose µ⌧+1 = c
p
⌘⌧⇡⌧ = c

p
�⌧ (recall that we reparame-

terized ⌘⌧ = �⌧/⇡⌧ from GCG), where c is an absolute constant. Then, the upper bound
reduces to

⇡s�1

µs
kw⇤

�w⇤
s
k
2
2 +

c⌘tp
�t
kwk

2
2 +

P
t

⌧=s
⌘⌧
p
�⌧k

er`(w⌧)k
2
2/c

2
P

t

⌧=s
⌘⌧

, (100)

where recall that ⇡t =
1

1+
Pt

⌧=1 ⌘⌧
. When the gradient r` is bounded, we may choose

�t =
⌘t

1+
Pt

⌧=1 ⌘⌧
= O(1/t) and 1Pt

⌧=1 ⌘⌧
= O(1/

p
t) (101)

so that the upper bound diminishes9 at the rate of O(1/
p
t). This result makes intuitive

sense, since we know the optimal step size �t in GCG is ⇥(1/t). Also, it reveals that the
smoothing parameter µt = O(1/

p
t), matching the rate of the upper bound (i.e., progress

on the original problem). Interestingly, the choice in (101) can be realized in multiple
ways. In fact, ⌘t = ⌘0t�p for any p 2 [0, 1

2] suffices, In particular, choosing p = 0 leads
to the constant step size ⌘t ⌘ ⌘0. However, note that these choices are in some sense
equivalent, since they all lead to �t = O(1/t) and µt = O(1/

p
t) hence the underlying

GCG progresses similarly.
• �0 > 0, in which case we can further relax the upper bound to:

UB

⇡s�1

�0+µs�1
kw⇤

�w⇤
s
k
2
2 +

µt+1

⇡t
kwk

2
2 +

P
t

⌧=s

⇥
⇡⌧⌘

2
⌧

�0
ker`(w⌧)k

2
2

⇤

2
P

t

⌧=s
⌘⌧

, (102)

and now we may choose µ⌧+1 = c⌘⌧⇡⌧ = c�⌧ , which approaches 0 significantly faster
than before. With this choice, the upper bound reduces to

⇡s�1

�0+µs�1
kw⇤

�w⇤
s
k
2
2 + c⌘tkwk

2
2 +

P
t

⌧=s
⌘⌧�⌧

⇥
ker`(w⌧)k

2
2/�0

⇤

2
P

t

⌧=s
⌘⌧

. (103)

Again, we may set �t as in (101), and we can choose constant ⌘t ⌘ ⌘0. The major difference
is that we may now decrease the smoothing parameter µt much more aggressively.

8This assumption can be easily satisfied. In fact, we can just set µt+1 = ⇡t (as in the main paper), which
would simplify the discussion quite a bit.

9Note that by choosing s / t, the averaged sequence
Pt

⌧=s ⌘⌧
p
�⌧Pt

⌧=s ⌘⌧
 max

⌧=s,...,t

p
�⌧ diminishes similarly in

order as
p
�t.

21

B Implementation and Experiment Details

B.1 CIFAR-10

B.1.1 Model and Quantization Details

Similar to Bai et al. [5], we use ResNets for which we quantize all weights. BatchNormalization layers
and activations are kept at full precision. The basic ResNet implementation is taken from https:
//github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py.

B.1.2 Data Augmentation

We follow the data augmentation strategy from Bai et al. [5]: padding by four pixels on each side,
randomly cropping to 32-by-32 pixels, horizontally flipping with probability one half. Finally,
the images are normalized by subtracting (0.4914, 0.4822, 0.4465) and subsequently dividing by
(0.247, 0.243, 0.261).

B.1.3 Pretrained Full Precision Model Setup

We pretrain two single full precision models for 200 epochs using the standard optimization setup:
SGD with 0.9 momentum and 1e�4 weight decay. The initial learning rate is 0.1 which is multiplied
by 0.1 at epoch 100 and 150. We use batch size 128.

B.1.4 Fine-Tuning Setup

All methods are initialized with the last checkpoint of the full precision models.

For BinaryConnect, we train with the recommended strategy from Courbariaux et al. [11]: Adam with
learning rate 0.01 and multiplication of the learning rate by 0.1 at epoch 81 and 122. For ProxQuant
we use Adam with fixed learning rate of 0.01 as in Bai et al. [5]. We did not perform hyperparameter
search over the optimization setup for ProxConnect but rather just used the optimization setup from
BinaryConnect as the methods are very similar. We use batch size 128.

Similar to Bai et al. [5], we perform a hard quantization at epoch 200: all weights are projected to
their closet quantization points. As in Bai et al. [5], we then train BatchNormalization layers for
another 100 epochs.

B.1.5 End-To-End Setup

For simplicity and to avoid an expensive hyperparameter search, we followed the above full precision
optimization setup for all methods. Similar to the fine-tuning setup, we perform a hard quantization
at epoch 200 and keep training BatchNormalization layers for another 100 epochs. We use batch size
128.

B.1.6 Compute and Resources

We run all CIFAR-10 experiments on our internal cluster with GeForce GTX 1080 Ti. We use one
GPU per experiment. The total amount of GPU hours is summarized in Table 5.

Table 5: Compute for CIFAR-10 experiments measured in hours per single GeForce GTX 1080 Ti
GPU.

Architecture Run time # of total experiments Total run time

ResNet20 1.5 181 271.5
ResNet56 3 181 543

B.1.7 Additional Results

As mentioned in Section 6.1, we perform a small grid search over ⇢0. After an initial exploration
stage, we found good regions of ⇢0 for ProxQuant and ProxConnect. Since ProxQuant and

22

https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py
https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py

reverseProxConnect are quite similar, in particular in the small ⇢ regime, we simply used the ⇢0 from
ProxQuant for reverseProxConnect. See below the results for all ⇢0 settings.

ProxConnect is reasonably stable with respect to the choice of ⇢0 for both fine-tuning and
end-to-end training. ProxQuant and reverseProxConnect, on the other hand, are very sensitive to
the choice of ⇢0 for end-to-end training. ProxConnect reduces to BinaryConnect for large ⇢, and
therefore it is in line with our experiments that ProxConnect should be stable with respect to ⇢0,
particularly choosing ⇢0 too large should not be an issue.

Table 6: Additional results for fine-tuning ProxQuant.

Model Quantization ⇢0 = 5e�7 ⇢0 = 1e�6 ⇢0 = 2e�6

ResNet20
Binary 89.68 (0.10) 89.94 (0.10) 89.34 (0.33)
Ternary 91.03 (0.07) 91.46 (0.05) 91.11 (0.10)

Quaternary 91.10 (0.06) 91.13 (0.18) 91.43 (0.17)

ResNet56
Binary 92.25 (0.08) 92.33 (0.06) 92.16 (0.14)
Ternary 92.52 (0.90) 93.07 (0.02) 92.71 (0.16)

Quaternary 92.49 (0.03) 92.82 (0.13) 92.80 (0.15)

Table 7: Additional results for fine-tuning reverseProxConnect.

Model Quantization ⇢0 = 5e�7 ⇢0 = 1e�6 ⇢0 = 2e�6

ResNet20
Binary 89.88 (0.23) 89.98 (0.17) 89.91 (0.24)
Ternary 91.30 (0.05) 91.36 (0.03) 91.47 (0.15)

Quaternary 91.05 (0.12) 91.43 (0.05) 91.42 (0.07)

ResNet56
Binary 92.18 (0.06) 92.35 (0.02) 92.47 (0.29)
Ternary 92.84 (0.09) 92.85 (0.12) 92.84 (0.17)

Quaternary 92.66 (0.20) 92.88 (0.17) 92.91 (0.22)

Table 8: Additional results for fine-tuning ProxConnect.

Model Quantization ⇢0 = 5e�3 ⇢0 = 1e�2 ⇢0 = 2e�2

ResNet20
Binary 89.63 (0.26) 90.29 (0.07) 90.31 (0.21)
Ternary 91.31 (0.07) 91.37 (0.18) 91.13 (0.27)

Quaternary 91.62 (0.21) 91.55 (0.10) 91.81 (0.14)

ResNet56
Binary 92.41 (0.13) 92.62 (0.09) 92.65 (0.16)
Ternary 93.17 (0.04) 93.25 (0.12) 93.22 (0.06)

Quaternary 93.41 (0.11) 93.42 (0.12) 93.28 (0.06)

23

Table 9: Additional results end-to-end training ProxQuant.

Model Quantization ⇢0 = 1e�7 ⇢0 = 1e�6 ⇢0 = 1e�5

ResNet20
Binary 81.59 (0.75) 81.49 (0.41) 71.90 (0.75)
Ternary 28.22 (1.70) 41.08 (2.95) 47.98 (1.06)

Quaternary 84.58 (0.15) 85.29 (0.07) 75.08 (0.16)

ResNet56
Binary 86.13 (1.71) 80.25 (0.51) 68.31 (2.21)
Ternary 21.93 (2.43) 41.11 (2.12) 50.54 (3.01)

Quaternary 87.81 (1.30) 83.57 (1.70) 72.58 (2.23)

Table 10: Additional results end-to-end training reverseProxConnect.

Model Quantization ⇢0 = 1e�7 ⇢0 = 1e�6 ⇢0 = 1e�5

ResNet20
Binary 81.82 (0.32) 80.84 (0.40) 72.10 (1.01)
Ternary 26.49 (2.82) 40.78 (0.39) 47.17 (1.94)

Quaternary 85.05 (0.27) 84.82 (0.32) 75.61 (0.54)

ResNet56
Binary 86.25 (1.50) 81.58 (0.92) 67.53 (2.74)
Ternary 21.51 (1.12) 42.95 (1.57) 36.34 (18.68)

Quaternary 87.30 (1.02) 84.72 (1.31) 73.36 (1.36)

Table 11: Additional results end-to-end training ProxConnect.

Model Quantization ⇢0 = 5e�3 ⇢0 = 1e�2 ⇢0 = 2e�2

ResNet20
Binary 89.72 (0.13) 89.92 (0.26) 89.65 (0.15)
Ternary 84.09 (0.16) 83.54 (0.36) 82.84 (0.34)

Quaternary 90.17 (0.14) 90.12 (0.33) 89.91 (0.09)

ResNet56
Binary 91.26 (0.59) 90.45 (0.83) 89.29 (0.45)
Ternary 84.36 (0.75) 83.46 (1.14) 82.54 (1.38)

Quaternary 91.00 (0.50) 90.76 (0.54) 91.70 (0.14)

24

B.2 ImageNet

B.3 Model and Quantization Details

We use ResNet18 as our model, for which we quantize all weights except for the first con-
volutional layer and the last fully-connected layer. Other components such as BatchNormal-
ization layers, activations and biases are kept at full-precision. The ResNet implementation is
borrowed from PyTorch’s torchvision package: https://github.com/pytorch/vision/blob/
882e11db8138236ce375ea0dc8a53fd91f715a90/torchvision/models/resnet.py.

B.4 Data Augmentation

Common data augmentation strategy is followed from https://github.com/pytorch/
examples/blob/c002856901eaf9be112feb9b14a9d5c3e779da74/imagenet/main.py#
L204-L231. At training time, the images are randomly resized and cropped to 224-by-224 pixels,
followed by a random horizontal flip. At inference time, images are first resized to 256-by-256
pixels, then center cropped to 224-by-224 pixels. Finally, the images are normalized by subtracting
(0.485, 0.456, 0.406) and subsequently dividing by (0.229, 0.224, 0.224).

B.5 Pretrained Full Precision Model Setup

We use the ResNet18 checkpoint provided by torchvision as our pretrained model: https://
download.pytorch.org/models/resnet18-f37072fd.pth.

B.6 Fine-Tuning Setup

All fine-tuned models are initialized from the pretrained model described in the previous section.

As advised by Alizadeh et al. [2], we use Adam as the optimizer to fine-tune the models. We
use Adam with default parameters, initial learning rate 1e�4 and batch size 256. The models are
fine-tuned for 50 epochs. The learning rate is divided by 10 at epoch 15 and 30. We perform hard
quantization at epoch 45 and train the remaining full-precision layers for the last 5 epochs, mostly to
let BatchNormalization layers stabilize.

B.7 End-To-End Setup

For the end-to-end setup, the models are trained from scratch mimicking the training setup of the
full-precision pretrained model. The quantized ResNet18 is trained for 90 epochs using SGD with
a starting learning rate of 0.1, momentum of 0.9 and weight decay of 1e�4. The learning rate is
multiplied by 0.1 at epoch 30 and 60. We use batch size 256. We perform hard quantization at epoch
80 and train the remaining full-precision layers for the last 10 epochs.

B.8 Compute and Resources

We run all experiments on our internal cluster with Tesla V100. We use one GPU per experiment.
The total amount of GPU hours is summarized in Table 12.

Table 12: Compute for ImageNet experiments measured in hours per single Tesla V100 GPU.

Approach Run time # of total experiments Total run time

End-To-End 27 9 243
Fine-Tuning 12 9 108

25

https://github.com/pytorch/vision/blob/882e11db8138236ce375ea0dc8a53fd91f715a90/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/882e11db8138236ce375ea0dc8a53fd91f715a90/torchvision/models/resnet.py
https://github.com/pytorch/examples/blob/c002856901eaf9be112feb9b14a9d5c3e779da74/imagenet/main.py%23L204-L231
https://github.com/pytorch/examples/blob/c002856901eaf9be112feb9b14a9d5c3e779da74/imagenet/main.py%23L204-L231
https://github.com/pytorch/examples/blob/c002856901eaf9be112feb9b14a9d5c3e779da74/imagenet/main.py%23L204-L231
https://download.pytorch.org/models/resnet18-f37072fd.pth
https://download.pytorch.org/models/resnet18-f37072fd.pth

