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Appendix A Proofs & Derivations

A.1 Finite- and Infinite-Horizon Variational Objectives

In this section, we present detailed derivations and proofs for the results in Sections 3.1 and Section 3.2.

Proposition 1 (Fixed-Time Outcome-Driven Variational Objective). Let qT̃ 0:t|S0
(τ̃0:t | s0) be as defined

in Equation (3). Then, given any initial state s0, termination time t?, and outcome g,

DKL(qT̃ 0:t|S0
(· | s0) ‖ pT̃ 0:t|S0,St?

(· | s0,g)) = log p(g | s0)− F̄(π, s0,g), (A.1)

where

F̄(π, s0,g) =̇ EqT̃ 0:t|S0
(τ̃0:t | s0)

[
log pd(g | st,at)−

t−1∑
t′=0

DKL(π(· | st′) || p(· | st′))
]
, (A.2)

and since log p(g|s0) is constant in π,

arg min
π∈Π

DKL(qT̃ 0:t|S0
(· | s0) ‖ pT̃ 0:t|S0,St?

(· | s0,g)) = arg max
π∈Π

F̄(π, s0,g). (A.3)

Proof. To find an approximation to the posterior pT̃ 0:t|S0,St?
(· | s0,g), we can use variational inference. To do

so, we consider the trajectory distribution under pT̃ 0:t|S0,St?
(· | s0,g), which by Bayes’ Theorem is given by

pT̃ 0:t|S0,St?
(τ̃0:t | s0,g) =

pd(g | st,at)p(at | st)
∏t−1
t′=0 pd(st′+1 | st,at)p(at′ | st′)
p(g | s0)

, (A.4)

where t = t? − 1, and we denote the state–action trajectory realization from action a0 to at by
τ̃0:t =̇ {a0, s1,a1, ..., st,at}. Inferring an approximation to the posterior distribution pT̃ 0:t|S0,St?

(· | s0,g)

then becomes equivalent to finding a variational distribution qT̃ 0:T |S0
(· | s0), which induces a trajectory distri-

bution qT̃ 0:t|S0
(· | s0) that minimizes the KL divergence from qT̃ 0:t|S0

(· | s0) to pT̃ 0:t|S0,St?
(· | s0,g):

min
q∈Q̄

DKL(qT̃ 0:t|S0
(· | s0) ‖ pT̃ 0:t|S0,St?

(· | s0,g)). (A.5)
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If we find a distribution qT̃ 0:t|S0
(· | s0) for which the resulting KL divergence is zero, then qT̃ 0:t|S0

(· | s0) is
the exact posterior. If the KL divergence is positive, then qT̃ 0:t|S0

(· | s0) is an approximate posterior. To solve
the variational problem in Equation (A.5), we can define a factorized variational family

qT̃ 0:t|S0
(τ̃0:t | s0) =̇ π(at | st)

t−1∏
t′=0

qSt′+1|St′ ,At′ (st′+1 | st′ ,at′)π(at′ | st′), (A.6)

where A0:t and S1:t are latent variables over which to infer an approximate posterior distribution, and the
product is from t = 0 to t = t? − 1 to exclude the conditional distribution over the (observed) state St+1 = g
from the variational distribution.

Returning to the variational problem in Equation (A.5), we can now write

DKL(qT̃ 0:t|S0
(· | s0) ‖ pT̃ 0:t|S0,St?

(· | s0,g))

=

∫
At+1

∫
St
qT̃ 0:t|S0

(τ̃0:t | s0) log
qT̃ 0:t|S0

(τ̃0:t | s0)

pT̃ 0:t|S0,St?
(τ̃0:t|s0,g)

ds1:tda0:t

= −F̄(π, s0,g) + log p(g|s0),

(A.7)

where
F̄(π, s0,g)

=̇ EqT̃ 0:t|S0
(τ̃0:t | s0)

[
log pd(g | st,at) + log p(at | st)− log π(at | st)

+

t−1∑
t′=0

log p(at′ | st′) + log pd(st′+1 | st′ ,at′)− log π(at′ | st′)− log qSt′+1|St′ ,At′ (st′+1 | st′ ,at′)

]
(A.8)

and

log p(g|s0) = log

∫
At+1

∫
St
pd(g | st,at)pT̃ 0:t|S0

(τ̃0:t | s0)ds1:tda0:t (A.9)

is a log-marginal likelihood. Following Haarnoja et al. [16], we define the variational distribution over next
states to be the the true transition dynamics, that is, qSt+1|St,At(st+1 | st,at) = pd(st+1 | st,at), so that

qT̃ 0:t|S0
(τ̃0:t | s0) =̇ π(at | st)

t−1∏
t′=0

pd(st′+1 | st′ ,at′)π(at′ | st′). (A.10)

We can then simplify F̄(π, s0,g) to

F̄(π, s0,g) = EqT̃ 0:t|S0
(τ̃0:t | s0)

[
log pd(g | st,at) +

t∑
t′=0

DKL(π(· | st′) ‖ p(· | st′))

]
. (A.11)

Since log p(g|s0) is constant in π, solving the variational optimization problem in Equation (A.5) is equivalent
to maximizing the variational objective with respect to π ∈ Π, where Π is a family of policy distributions.

Corollary 1 (Fixed-Time Outcome-Driven Reward Function). The objective in Equation (4) corresponds to
KL-regularized reinforcement learning with a time-varying reward function given by

r(st′ ,at′ ,g, t
′) =̇ I{t′ = t} log pd(g | st′ ,at′).

Proof. Let

r(st′ ,at′ ,g, t
′) =̇ I{t′ = t} log pd(g | st′ ,at′) (A.12)

and note that the objective

F̄(π, s0,g) = EqT̃ 0:T |S0
(· | s0)

[
log pd(g | st,at) +

t∑
t=0

DKL(π(· | st) ‖ p(· | st))

]
(A.13)

can equivalently written as

F̄(π, s0,g) = EqT̃ 0:T |S0
(· | s0)

[
t∑

t′=0

r(st′ ,at′ ,g, t
′) +

t∑
t′=0

DKL(π(· | st′) ‖ p(· | st′))

]
(A.14)

= EqT̃ 0:T |S0
(· | s0)

[
t∑

t′=0

r(st′ ,at′ ,g, t
′) + DKL(π(· | st′) ‖ p(· | st′))

]
, (A.15)

which, as shown in Haarnoja et al. [16], can be written in the form of Equation (1).
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Proposition 3 (Unknown-time Outcome-Driven Variational Objective). Let qT̃ 0:T ,T |S0
(τ̃0:t, t | s0) =

qT̃ 0:T |T,S0
(τ̃0:t | t, s0)qT (t), let qT (t) be a variational distribution defined on t ∈ N0, and let

qT̃ 0:T |T,S0
(τ̃0:t | t, s0) be as defined in Equation (3). Then, given any initial state s0 and outcome g, we

have that
DKL(qT̃ 0:T ,T |S0

(· | s0) ‖ pT̃ 0:T ,T |S0,ST?
(· | s0,g)) = log p(g|s0)−F(π, qT , s0,g), (A.16)

where
F(π, qT , s0,g)

=̇

∞∑
t=0

qT (t)EqT̃ 0:T |T,S0
(τ̃0:t | t,s0)

[
log pd(g | st,at)− DKL(qT̃ 0:T ,T |S0

(· | s0) || pT̃ 0:T ,T |S0
(· | s0))

]
(A.17)

and log p(g | s0) is constant in π and qT .

Proof. In general, solving the variational problem
min
q∈Q

DKL(qT̃ 0:T ,T |S0
(· | s0) ‖ pT̃ 0:T ,T |S0,ST?

(· | s0,g)) (A.18)

from Section 3.2 in closed form is challenging, but as in the fixed-time setting, we can take advantage of the fact
that, by choosing a variational family parameterized by

qT̃ 0:T |T,S0
(τ̃0:t | t, s0) =̇ π(at | st)

t−1∏
t′=0

pd(st′+1 | st′ ,at′)π(at′ | st′), (A.19)

with π ∈ Π, we can follow the same steps as in the proof for Proposition 1 and show that given any initial state
s0 and outcome g,

DKL(qT̃ 0:T ,T |S0
(· | s0) ‖ pT̃ 0:T ,T |S0,ST?

(· | s0,g))) = log p(g | s0)−F(π, qT , s0,g), (A.20)
where
F(π, qT , s0,g)

=̇

∞∑
t=0

qT (t)EqT̃ 0:T |T,S0
(τ̃0:t | t,s0)

[
log pd(g | st,at)− DKL(qT̃ 0:T ,T |S0

(· | s0) ‖ pT̃ 0:T ,T |S0
(· | s0))

]
,

(A.21)

where qT̃ 0:T ,T |S0
(τ̃0:t, t | s0) =̇ qT̃ 0:T |T,S0

(τ̃0:t | t, s0)qT (t), and hence, solving the variational problem
in Equation (6) is equivalent to maximizing F(π, qT , s0,g) with respect to π and qT .

A.2 Recursive Variational Objective & Outcome-Driven Bellman Backup Operator

Proposition 4 (Factorized Unknown-Time Outcome-Driven Variational Objective). Let qT̃ 0:T ,T
(τ̃0:t, t | s0) =

qT̃ 0:T |T,S0
(τ̃0:t | t, s0)qT (t), let qT (t) = q∆t+1(∆t+1 = 1)

∏t
t′=1 q∆t′ (∆t′ = 0) be a variational distribu-

tion defined on t ∈ N0, and let qT̃ 0:T |T,S0
(τ̃0:t | t, s0) be as defined in Equation (3). Then, given any initial

state s0 and outcome g, Equation (A.17) can be rewritten as

F(π, qT , s0,g) = EqT̃ 0 |S0
(τ̃0 | s0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)(
r(st,at,g; q∆)− DKL(π(· | st) ‖ p(· | st))

)]
(A.22)

where
r(st,at,g; q∆) =̇ q∆t+1(∆t+1 = 1) log pd(g | st,at)− DKL(q∆t+1 ‖ p∆t+1), (A.23)

Proof. Consider the variational objective F(π, qT , s0,g) in Equation (A.17):
F(π, qT , s0,g)

=
∞∑
t=0

qT (t)EqT̃ 0:T |T,S0
(τ̃0:t | t,s0)

[
log pd(g | st,at)− DKL(qT̃ 0:T ,T |S0

(· | s0) ‖ pT̃ 0:T ,T |S0
(· | s0))

]
(A.24)

=

∞∑
t=0

qT (t)EqT̃ 0:T |T,S0
(τ̃0:t | t,s0)

[
log pd(g | st,at)− log

qT̃ 0:T |T,S0
(τ̃0:t | t, s0)qT (t)

pT̃ 0:T |T,S0
(τ̃0:t | t, s0)pT (t)

dτ̃0:t

]
(A.25)

=
∞∑
t=0

qT (t)EqT̃ 0:T |T,S0
(τ̃0:t | t,s0)

[
log pd(g | st,at)− log

qT̃ 0:T |T,S0
(τ̃0:t | t, s0)

pT̃ 0:T |T,S0
(τ̃0:t | t, s0)

]
−
∞∑
t=0

qT (t) log
qT (t)

qT (t)
.

(A.26)
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Noting that
∑∞
t=0 qT (t) log qT (t)

qT (t)
= DKL(qT ‖ pT ), we can write

F(π, qT , s0,g)

=

∞∑
t=0

qT (t)EqT̃ 0:T |T,S0
(τ̃0:t | t,s0)

[
log pd(g | st,at)− log

qT̃ 0:T |T,S0
(τ̃0:t | t, s0)

pT̃ 0:T |T,S0
(τ̃0:t | t, s0)

]
− DKL(qT ‖ pT )

(A.27)

=

∞∑
t=0

qT (t)EqT̃ 0:T |T,S0
(τ̃0:t | t,s0)

[
log pd(g | st,at)

]
−
∞∑
t=0

qT (t)EqT̃ 0:T |T,S0
(τ̃0:t | t,s0)

[
log

qT̃ 0:T |T,S0
(τ̃0:t | t, s0)

pT̃ 0:T |T,S0
(τ̃0:t | t, s0)

]
− DKL(qT ‖ pT ).

(A.28)

Further noting that for an infinite-horizon trajectory distribution

qT̃ t′ |St′
(τ̃t′ | st′) =̇

∞∏
t=t′

pd(st+1 | st,at)π(at | st), (A.29)

trajectory realization τ̃t+1 =̇ {τt′}∞t′=t+1, and any joint probability density f(st,at),

∞∑
t=0

qT (t)EqT̃ 0:T |T,S0
(τ̃0:t | t,s0)

[
f(st,at)

]
(A.30)

=

∞∑
t=0

(∫
qT̃ T+1|S0

(τ̃t+1 | s0)

(∫
St×At+1

qT̃ 0:t|S0
(τ̃0:t | s0)qT (t)f(st,at)dτ̃0:t

)
dτ̃t+1

)
, (A.31)

=

∞∑
t=0

(
EqT̃ 0:T |T,S0

(τ̃0:t | t,s0)

[
qT (t)f(st,at)

]
·
(∫

qT̃ T+1|S0
(τ̃t+1 | s0)dτ̃t+1

)
︸ ︷︷ ︸

=1

)
(A.32)

=

∞∑
t=0

((∫
St×At+1

q(τ̃0:t | s0)qT (t)f(st,at)dτ̃0:t

)
·
(∫

qT̃ T+1|S0
(τ̃t+1 | s0)dτ̃t+1

)
︸ ︷︷ ︸

=1

)
(A.33)

=

∞∑
t=0

∫
qT̃ 0|S0

(τ̃0 | s0)qT (t)f(st,at)dτ̃0 (A.34)

=

∫
qT̃ 0|S0

(τ̃0 | s0)

∞∑
t=0

qT (t)f(st,at)dτ̃0, (A.35)

we can express Equation (A.28) in terms of the infinite-horizon state–action trajectory
qT̃ 0|S0

(τ̃0 | s0) =̇
∏∞
t=0 pd(st+1 | st,at)π(at | st) as

F(π, qT , s0,g)

=

∫
qT̃ 0|S0

(τ̃0 | s0)

∞∑
t=0

qT (t) log p(g | st,at)dτ̃

−
∞∑
t=0

qT (t)DKL(qT̃ 0:T |T,S0
(· | t, s0) ‖ pT̃ 0:T |T,S0

(· | t, s0))− DKL(qT ‖ pT )

(A.36)

= EqT̃ 0|S0
(τ̃0 | s0)

[ ∞∑
t=0

qT (t)
(

log p(g | st,at)

− DKL(qT̃ 0:T |T,S0
(· | t, s0) ‖ pT̃ 0:T |T,S0

(· | t, s0))
)]
− DKL(qT ‖ pT ).

(A.37)
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Using Lemma 5 and the definition of qT (t) in Equation (7), we can rewrite this objective as

F(π, qT , s0,g)

= EqT̃ 0|S0
(τ̃0 | s0)

[ ∞∑
t=0

( t∏
t′=1

q∆t′ (∆t′ = 0)
)
q∆t′ (∆t′ = 1)

(
log p(g | st,at)

− DKL(qT̃ 0:T |T,S0
(· | t, s0) ‖ pT̃ 0:T |T,S0

(· | t, s0))
)]
−
∞∑
t=0

( t∏
t′=1

q∆t′ (∆t′ = 0)
)
DKL(q∆t+1 || p∆t+1)

(A.38)

= EqT̃ 0|S0
(τ̃0 | s0)

[
∞∑
t=0

(
t∏

t′=1

q(∆t′ = 0)

)
·
(
q(∆t+1 = 1)

(
log p(g | st,at)− DKL(qT̃ 0:T |T,S0

(· | t, s0) ‖ pT̃ 0:T |T,S0
(· | t, s0))

)
− DKL(q∆t+1 ‖ p∆t+1)

)]
,

(A.39)

with

DKL(q∆t+1 ‖ p∆t+1)

= q∆t+1(∆t+1 = 0) log
q∆t+1(∆t+1 = 0)

p∆t+1(∆t+1 = 0)
+ (1− q∆t+1(∆t+1 = 0)) log

1− q∆t+1(∆t+1 = 0)

1− p∆t+1(∆t+1 = 0)
.

(A.40)

Next, to re-express DKL(qT̃ 0:T |T,S0
(· | t, s0) ‖ pT̃ 0:T |T,S0

(· | t, s0)) as a sum over Kullback-Leibler divergences
between distributions over single action random variables, we note that

DKL(qT̃ 0:T |T,S0
(· | t, s0) ‖ pT̃ 0:T |T,S0

(· | t, s0))

=

∫
St×At+1

qT̃ 0:T |T,S0
(τ̃0:t | t, s0) log

qT̃ 0:T |T,S0
(τ̃0:t | t, s0)

pT̃ 0:T |T,S0
(τ̃0:t | t, s0)

dτ̃0:t

(A.41)

=

∫
St×At+1

qT̃ 0:T |T,S0
(τ̃0:t | t, s0) log

∏t
t′=1 π(at′ | st′)∏t
t′=1 p(at′ | st′)

dτ̃0:t (A.42)

=

∫
St×At+1

qT̃ 0:T |T,S0
(τ̃0:t | t, s0)

t∑
t′=0

log
π(at′ | st′)
p(at′ | st′)

dτ̃0:t (A.43)

= EqT̃ 0|S0
(τ̃0 | s0)

[
t∑

t′=0

∫
A
π(at′ | st′) log

π(at′ | st′)
p(at′ | st′)

dat′

]
(A.44)

= EqT̃ 0|S0
(τ̃0 | s0)

[
t∑

t′=0

DKL(π(· | st′) ‖ p(· | st′))

]
, (A.45)

where we have used the same marginalization trick as above to express the expression in terms of an infinite-
horizon trajectory distribution, which allows us to express Equation (A.39) as

F(π, qT , s0,g)

= EqT̃ 0|S0
(τ̃0 | s0)

[
∞∑
t=0

(
t∏

t′=1

q(∆t′ = 0)

)

·
(
q∆t+1(∆t+1 = 1)

(
log p(g | st,at)− EqT̃ 0|S0

(τ̃0 | s0)

[
t∑

t′=0

DKL(π(· | st′) ‖ p(· | st′))

])

− DKL(q∆t+1 ‖ p∆t+1)

)]
.

(A.46)
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Rearranging and dropping redundant expectation operators, we can now express the objective as

F(π, qT , s0,g)

= EqT̃ 0|S0
(τ̃0 | s0)

[
∞∑
t=0

(
t∏

t′=1

q∆t+1(∆t′ = 0)

)

·
(
q∆t+1(∆t+1 = 1)

(
log p(g | st,at)− EqT̃ 0|S0

(τ̃0 | s0)

[
t∑

t′=0

DKL(π(· | st′) ‖ p(· | st′))

])

− DKL(q∆t+1 ‖ p∆t+1)

)]
.

(A.47)

= EqT̃ 0|S0
(τ̃0 | s0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)

·
(
q∆t+1(∆t+1 = 1) log p(g | st,at)− DKL(q∆t+1 ‖ p∆t+1)

)]

−
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)q∆t+1(∆t+1 = 1)

)
︸ ︷︷ ︸

=qT (t)

EqT̃ 0|S0
(τ̃0 | s0)

[
t∑

t′=0

DKL(π(· | st′) ‖ p(· | st′))

]
,

(A.48)

whereupon we note that the negative term can be expressed as
∞∑
t=0

qT (t)EqT̃ 0|S0
(τ̃0 | s0)

[
t∑

t′=0

DKL(π(· | st′) ‖ p(· | st′))

]

= EqT̃ 0|S0
(τ̃0 | s0)

[
∞∑
t=0

t∑
t′=0

qT (t)DKL(π(· | st′) ‖ p(· | st′))

] (A.49)

= EqT̃ 0|S0
(τ̃0 | s0)

[
∞∑
t=0

q(T ≥ t)DKL(π(· | st) ‖ p(· | st))

]
(A.50)

= EqT̃ 0|S0
(τ̃0 | s0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)
︸ ︷︷ ︸

(by Lemma 2)

DKL(π(· | st) ‖ p(· | st))

]
,

(A.51)

where the second line follows from expanding the sums and regrouping terms. By substituting the expression
in Equation (A.51) into Equation (A.48), we obtain an objective expressed entirely in terms of distributions over
single-index random variables:

F(π, qT , s0,g)

= EqT̃ 0|S0
(τ̃0 | s0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)

·
(
q∆t+1(∆t+1 = 1) log pd(g | st,at)− DKL(q∆t+1 ‖ p∆t+1)− DKL(π(· | st) ‖ p(· | st))

) ] (A.52)

= EqT̃ 0|S0
(τ̃0 | s0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)(
r(st,at,g; q∆)− DKL(π(· | st) ‖ p(· | st))

)]
, (A.53)

where we defined

r(st,at,g; q∆) =̇ q∆t+1(∆t+1 = 1) log pd(g | st,at)− DKL(q∆t+1 ‖ p∆t+1), (A.54)

which concludes the proof.

Theorem 1 (Outcome-Driven Variational Inference). Let qT (t) and qT̃ 0:t|T (τ̃0:t | t, s0) be as defined in Equa-
tion (3) and Equation (7), and define

V π(st,g; qT ) =̇ Eπ(at | st) [Qπ(st,at,g; qT )]− DKL(π(· | st) ‖ p(· | st)), (A.55)
Qπ(st,at,g; qT ) =̇ r(st,at,g; q∆) + q(∆t+1 = 0)Epd(st+1 | st,at) [V π(st+1,g;π, qT )] , (A.56)

r(st,at,g; q∆) =̇ q∆t+1(∆t+1 = 1) log pd(g | st,at)− DKL(q∆t+1 ‖ p∆t+1). (A.57)
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Then given any initial state s0 and outcome g,

DKL(qT̃ 0:T ,T |S0
(· | s0) ‖ pT̃ 0:T ,T |S0,ST?

(· | s0,g)) = −F(π, qT , s0,g) + C = −V π(s0,g; qT ) + C,

where C =̇ log p(g | s0) is independent of π and qT , and hence maximizing V π(s0,g;π, qT ) is equivalent to
minimizing Equation (6). In other words,

arg min
π∈Π,qT∈QT

{DKL(qT̃ 0:T ,T |s0
(· | s0) ‖ pT̃ 0:T ,T |S0,ST?

(· | s0,g))}

= arg max
π∈Π,qT∈QT

F(π, qT , s0,g)

= arg max
π∈Π,qT∈QT

V π(s0,g; qT ).

Proof. Consider the objective derived in Proposition 4,

F(π, qT , s0,g)

= EqT̃ 0|S0
(τ̃0 | s0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)

·
(
q∆t+1(∆t+1 = 1) log pd(g | st,at)− DKL(q∆t+1 ‖ p∆t+1)

)︸ ︷︷ ︸
=̇ r(st,at,g;q∆)

−DKL(π(at | st) ‖ p(at|st))

]
,

(A.58)

and recall that, by Proposition 2,

DKL(qT̃ 0:T ,T |S0
(· | s0) ‖ pT̃ 0:T ,T |S0,ST?

(· | s0,g)) = −F(π, qT , s0,g) + log p(g|s0). (A.59)

Therefore, to prove the result that

DKL(qT̃ 0:T ,T |S0
(· | s0) ‖ pT̃ 0:T ,T |S0,ST?

(· | s0,g)) = −V π(s0,g; qT ) + log p(g|s0),

we just need to show that F(π, qT , s0,g) = V π(s0,g; qT ) for V π(s0,g; qT ) as defined in the theorem. To do
so, we start from the objective F(π, qT , s0,g) and and unroll it for t = 0:

F(π, qT , s0,g)

= EqT̃ 0|S0
(τ̃0 | s0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)
r(st,at,g; q∆)− DKL(π(at | st) ‖ p(at|st))

]
(A.60)

= Eπ(a0 | s0)

[
r(s0,a0,g; q∆) + Eq(τ1 | s0,a0)

[
∞∑
t=1

t∏
t′=1

q∆t′ (∆t′ = 0)
(
r(st,at,g; q∆)

− DKL(π(· | st) ‖ p(· | st))
)]]
− DKL(π(· | s0) ‖ p(· | s0)).

(A.61)

With this expression at hand, we now define

Qπsum(s0,a0,g; qT )

=̇ r(s0,a0,g; q∆) + Eq(τ1|s0,a0)

[
∞∑
t=1

t∏
t′=1

q∆t′ (∆t′ = 0)
(
r(st,at,g; q∆)− DKL(π(· | st) ‖ p(· | st))

)]
,

(A.62)

and note that F(π, qT , s0,g) = Eπ(a0 | s0)[Q
π
sum(s0,a0,g; qT )]− DKL(π(· | s0) ‖ p(· | s0)) = V π(s0,g; qT ),

as per the definition of V π(s0,g; qT ). To prove the theorem from this intermediate result, we now have
to show that Qπsum(s0,a0,g; qT ) as defined in Equation (A.62) can in fact be expressed recursively as
Qπsum(st,at,g; qT ) = Qπ(s0,a0,g; qT ) with

Qπ(s0,a0,g; qT ) = r(st,at,g; q∆) + q(∆t+1 = 0)Epd(st+1 | st,at) [V π(st+1,g;π, qT )] . (A.63)
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To see that this is the case, first, unroll Qπ(s0,a0,g; qT ) for t = 1,

Qπsum(s0,a0,g; qT )

= r(s0,a0,g; q∆) + Eq(τ1|s0,a0)

[
∞∑
t=1

t∏
t′=1

q∆t′ (∆t′ = 0)
(
r(st,at,g; q∆)− DKL(π(· | st) ‖ p(· | st))

)]

(A.64)

= r(s0,a0,g; q∆) + Epd(s1|a0,a0)

[
Eq(τ1|s0,a0)

[
∞∑
t=1

t∏
t′=1

q∆t′ (∆t′ = 0)
(
r(st,at,g; q∆)

− DKL(π(· | st) ‖ p(· | st))
)]] (A.65)

= r(s0,a0,g; q∆) + Epd(s1|a0,a0)

[
Eπ(a1 | s1)

[
q∆1(∆1 = 0) (r(s1,a1,g; q∆)− DKL(π(· | s1) ‖ p(· | s1)))

+ Eq(τ2|s1,a1)

[
∞∑
t=2

t∏
t′=2

q∆t′ (∆t′ = 0)
(
r(st,at,g; q∆)− DKL(π(· | st) ‖ p(· | st))

)]]]
,

(A.66)

and note that we can rearrange this expression to obtain the recursive relationship

Qπsum(s0,a0,g; qT )

= r(s0,a0,g; q∆) + q∆1(∆1 = 0)Epd(s0+1 | s0,a0)

[
− DKL(π(· | s1) ‖ p(· | s1))

+ Eπ(a1 | s1)

[
r(s1,a1,g; q∆) + E

[
∞∑
t=2

(
t∏

t′=2

q∆t′ (∆t′ = 0)

)(
r(st,at,g; q∆)

− DKL(π(· | st) ‖ p(· | s))
)]]]

,

(A.67)

where the innermost expectation is taken with respect to q(τ2|s1,a1). With this result and noting that

Qπsum(s1,a1,g; qT )

= r(s1,a1,g; q∆) + E

[
∞∑
t=2

(
t∏

t′=2

q∆t′ (∆t′ = 0)

)(
r(st,at,g; q∆)− DKL(π(· | st) ‖ p(· | s))

)]
,

(A.68)

where the expectation is again taken with respect to q(τ2|s1,a1), we see that

Qπsum(s0,a0,g; qT )

= r(s0,a0,g; q∆) + q∆1(∆1 = 0)Epd(s0+1 | s0,a0)

[
Eπ(a1|s1) [Qπsum(s1,a1,g; qT )]

− DKL(π(· | s1) ‖ p(· | s1))
] (A.69)

= r(s0,a0,g; q∆) + q∆1(∆1 = 0)Epd(s1|s,a)

[
V π(s1,g; qT )

]
, (A.70)

for V(st+1,g; qT ) as defined above, as desired. In other words, we have that

F(π, qT , s0,g) = Eπ(a0 | s0)[Q
π
sum(s0,a0,g; qT )]− DKL(π(· | s0) ‖ p(· | s0)) = V π(s0,g; qT ). (A.71)

Combining this result with Proposition 2 and Proposition 4, we finally conclude that

DKL(qT̃ 0:T ,T |S0
(· | s0) ‖ pT̃ 0:T ,T |S0,ST?

(· | s0,g)) = −F(π, qT , s0,g) + C = −V π(s0,g; qT ) + C,

(A.72)

where C =̇ log p(g | s0) is independent of π and qT . Hence, maximizing V π(s0,g;π, qT ) is equivalent to
minimizing the objective in Equation (6). In other words,

arg min
π∈Π,qT∈QT

{DKL(qT̃ 0:T ,T |S0
(· | s0) ‖ pT̃ 0:T ,T |S0,ST?

(· | s0,g))}

= arg max
π∈Π,qT∈QT

F(π, qT , s0,g) = arg max
π∈Π,qT∈QT

V π(s0,g; qT ).
(A.73)

This concludes the proof.
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Corollary 2 (Fixed-Discount Outcome-Driven Variational Inference). Let qT = pT , assume that pT is a
Geometric distribution with parameter γ ∈ (0, 1). Then the inference problem in Equation (6) of finding
a goal-directed variational trajectory distribution simplifies to maximizing the following recursively defined
variational objective with respect to π:

V̄ π(s0,g; γ) =̇ Eπ(a0 | s0) [Q(s0,a0,g; γ)]− DKL(π(· | s0) ‖ p(· | s)0)), (A.74)

where

Q̄π(s0,a0,g; γ) =̇ (1− γ) log pd(g | s0,a0) + γ Epd(s1|s0,a0)

[
V(s1,g; γ)

]
. (A.75)

Proof. The result follows immediately when replacing q∆ in Theorem 1 by p∆ and noting that
DKL(p∆ ‖ p∆) = 0.

A.3 Optimal Variational Posterior over T

Proposition 2 (Optimal Variational Distribution over T ). The optimal variational distribution q?T with respect
to Equation (8) is defined recursively in terms of q?∆t+1

(∆t+1 = 0)∀t ∈ N0 by

q?∆t+1
(∆t+1 = 0;π,Qπ) = σ

(
Λ(st, π, qT , Q

π) + σ−1(p∆t+1(∆t+1 = 0)
))
, (A.76)

where

Λ(st, π, qT , Q
π) =̇ Eπ(at+1 | st+1)pd(st+1 | st,at)π(at | st)[Q

π(st+1,at+1,g; qT )− log pd(g | st,at)]

and σ(·) is the sigmoid function, that is, σ(x) = 1
e−x+1

and σ−1(x) = log x
1−x .

Proof. Consider F(π, qT , s0,g):

F(π, qT , st,g) = Eπ(at|st)[Q
π(st,at,g; qT )]

= Eπ(at|st)[r(st,at,g; q∆) + q∆t+1(∆t+1 = 0)E
[
V(st+1,g; qT )

]
].

(A.77)

Since the variational objective F(π, qT , st,g) can be expressed recursively as

V π(st,g; qT ) =̇ Eπ(at | st) [Q(st,at,g; qT )]− DKL(π(· | st) ‖ p(· | st)),
with

Qπ(st,at,g; qT ) = r(st,at,g; q∆) + q∆t+1(∆t+1 = 0)Epd(st+1 | st,at) [V π(st+1,g; qT )] ,

r(st,at,g; q∆) = q∆t+1(∆t+1 = 1) log pd(g | st,at)− DKL(q∆t+1 ‖ p∆t+1),

and since DKL(q∆t+1 ‖ p∆t+1) is strictly convex in q∆t+1(∆t+1 = 0), we can find the globally optimal
Bernoulli distribution parameters q∆t+1(∆t+1 = 0) for all t ∈ N0 recursively. That is, it is sufficient to solve
the problem

q?∆t+1
(∆t+1 = 0) =̇ arg max

q∆t+1
(∆t+1=0)

{F(π, qT , s0,g)} = arg max
q∆t+1

(∆t+1=0)

{
F(π, q∆1 , . . . , q∆t+1 , . . . , s0,g)

}
(A.78)

for a fixed t + 1. To do so, we take the derivative of F(π, q∆1 , . . . , q∆t+1 , . . . , s0,g), which—defined
recursively—is given by

Eπ(at | st) [Q(st,at,g; qT ]− DKL(π(· | st) ‖ p(· | st))
=Eπ(at | st)

[
r(st,at,g; q∆) + q∆t+1(∆t+1 = 0)Epd(st+1 | st,at) [V π(st+1,g; qT )]

]
− DKL(π(· | st) ‖ p(· | st))

(A.79)

=Eπ(at | st)

[
q∆t+1(∆t+1 = 1) log pd(g | st,at)− DKL(q∆t+1 ‖ p∆t+1)

+ q∆t+1(∆t+1 = 0)Epd(st+1 | st,at) [V π(st+1,g; qT )]

]
− DKL(π(· | st) ‖ p(· | st))

(A.80)

=Eπ(at | st)

[
(1− q∆t+1(∆t+1 = 0)) log pd(g | st,at)− DKL(q∆t+1 ‖ p∆t+1)

+ q∆t+1(∆t+1 = 0)Epd(st+1 | st,at) [V π(st+1,g; qT )]

]
− DKL(π(· | st) ‖ p(· | st)),

(A.81)

with respect to q∆t+1(∆t+1 = 0) and set it to zero, which yields

0 = −Eπ(at | st)
[
log pd(g | st,at) + Eπ(at+1 | st+1)pd(st+1 | st,at)[Q

π(st+1,at+1,g; qT )]
]

+ log
1− q?∆t+1

(∆t+1 = 0)

1− p∆t+1(∆t+1 = 0)
− log

q?∆t+1
(∆t+1 = 0)

p∆t+1(∆t+1 = 0)
.

(A.82)
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Rearranging, we get

q?∆t+1
(∆t+1 = 0)

1− q?∆t+1
(∆t+1 = 0)

= exp

(
E[Qπ(st+1,at+1,g; qT )− log pd(g | st,at)] + log

p∆t+1(∆t+1 = 0)

1− p∆t+1(∆t+1 = 0)

)
,

(A.83)

where the expectation is taken with respect to π(at+1 | st+1)pd(st+1 | st,at)π(at | st) and the Q-function
depends on q(∆t′) with t′ > t, but not on q?∆t+1

(∆t+1 = 0). Solving for q?∆t+1
(∆t+1 = 0). Solving for

q?∆t+1
(∆t+1 = 0), we obtain

q?∆t+1
(∆t+1 = 0)

=
exp(Epπpdπ(at | st)[Q

π(st+1,at+1,g; qT )− log pd(g | st,at)] + log
p∆t+1

(∆t+1=0)

1−p∆t+1
(∆t+1=0)

)

1 + exp(Epπpdπ(at | st)[Q
π(st+1,at+1,g; qT )− log pd(g | st,at)] + log

p∆t+1
(∆t+1=0)

1−p∆t+1
(∆t+1=0)

)

(A.84)

= σ
(
Epπpd [Qπ(st+1,at+1,g; qT )]− Eπ(at | st)[log pd(g | st,at)] + σ−1 (p∆t+1(∆t+1 = 0)

) )
,

(A.85)

where pπpd =̇ π(at+1 | st+1)pd(st+1 | st,at), σ(·) is the sigmoid function with σ(x) = 1
e−x+1

and
σ−1(x) = log x

1−x . This concludes the proof.

Remark 1. As can be seen from Proposition 2, the optimal approximation to the poste-
rior over T trades off short-term rewards via Eπ(at | st)[r(st,at,g; q∆)], long-term rewards via
Eπ(at+1 | st+1)pd(st+1 | st,at)[Q

π(st+1,at+1,g; qT )], and the prior log-odds of not achieving the outcome at a

given point in time conditioned on the outcome not having been achieved yet,
p∆t+1

(∆t+1=0)

1−p∆t+1
(∆t+1=0)

.

A.4 Outcome-Driven Policy Iteration

Theorem 2 (Variational Outcome-Driven Policy Iteration). Assume |A| <∞ and that the MDP is ergodic.

1. Outcome-Driven Policy Evaluation (ODPE): Given policy π and a function Q0 : S ×A× S → R, define
Qi+1 = T πQi. Then the sequence Qi converges to the lower bound in Theorem 1.

2. Outcome-Driven Policy Improvement (ODPI): The policy

π+ = arg max
π′∈Π

{
Eπ′(at | st) [Qπ(st,at,g; qT )]− DKL(π′(· | st) || p(· | st))

}
(A.86)

and the variational distribution over T recursively defined in terms of

q+(∆t+1 = 0 | s0;π,Qπ)

= σ
(
Eπ(at+1 | st+1)pd(st+1 | st,at)[Q

π(st+1,at+1,g; qT )]− Eπ(at | st)[log pd(g | st,at)]

+ σ−1 (p∆t+1(∆t+1 = 0)
) ) (A.87)

improve the variational objective. In other words, F(π+, qT , s0) ≥ F(π, qT , s0) and F(π, q+
T , s0) ≥

F(π, qT , s0) for all s0 ∈ S.

3. Alternating between ODPE and ODPI converges to a policy π? and a variational distribution over T , q?T ,
such that Qπ

?

(s,a,g; q?T ) ≥ Qπ(s,a,g; qT ) for all (π, qT ) ∈ Π×QT and any (s,a) ∈ S ×A.

Proof. Parts of this proof are adapted from the proof given in Haarnoja et al. [16], modified for the Bellman
operator proposed in Definition 1.

1. Outcome-Driven Policy Evaluation (ODPE): Instead of absorbing the entropy term into the Q-function, we
can define an entropy-augmented reward as

rπ(st,at,g; q∆) =̇ q∆t+1(∆t+1 = 1) log pd(g | st,at)− DKL(q∆t+1 ‖ p∆t+1)

+ q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)[DKL(π(· | st+1) ‖ p(· | st+1))].
(A.88)

We can then write an update rule according to Definition 1 as

Q̃(st,at,g; qT )← rπ(st,at,g; q∆)

+ q∆t+1(∆t+1 = 0)Eπ(at+1 | st+1)pd(st+1 | st,at)[Q̃(st+1,at+1,g; qT )],
(A.89)
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where q∆t+1(∆t+1 = 0) ≤ 1. This update is similar to a Bellman update [43], but with a discount
factor given by q∆t+1(∆t+1 = 0). In general, this discount factor q∆t+1(∆t+1 = 0) can be computed
dynamically based on the current state and action, such as in Equation (11). As discussed in White [53], this
Bellman operator is still a contraction mapping so long as the Markov chain induced by the current policy is
ergodic and there exists a state such that q∆t+1(∆t+1 = 0) < 1. The first condition is true by assumption.
The second condition is true since q∆t+1(∆t+1 = 0) is given by Equation (11), which is always strictly
between 0 and 1. Therefore, we apply convergence results for policy evaluation with transition-dependent
discount factors [53] to this contraction mapping, and the result immediately follows.

2. Outcome-Driven Policy Improvement (ODPI): Let πold ∈ Π and let Qπold and V πold be the outcome-driven
state and state-action value functions from Definition 1, let qT be some variational distribution over T , and
let πnew be given by

πnew(at|st) = arg max
π′∈Π

{
Eπ′(at | st) [Qπold (st,at,g; qT )]− DKL(π′(· | st) ‖ p(· | st))

}
(A.90)

= arg max
π′∈Π

Jπold (π
′(at, st), qT ). (A.91)

Then, it must be true that Jπold (πold(at|st); qT ) ≤ Jπold (πnew(at|st); qT ), since one could set
πnew = πold ∈ Π. Thus,

Eπnew(at|st) [Qπold (st,at,g; qT )]− DKL(πnew(· | st) ‖ p(· | st))
≥ Eπold(at|st) [Qπold (st,at,g; qT )]− DKL(πold(· | st) ‖ p(· | st)),

(A.92)

and since
V πold (st,g; qT ) = Eπold(at|st) [Qπold (st,at,g; qT )]− DKL(πold(· | st) ‖ p(· | st)), (A.93)

we get
Eπnew(at|st) [Qπold (st,at,g; qT )]− DKL(πnew(· | st) ‖ p(· | st)) ≥ V πold (st,g; qT ). (A.94)

We can now write the Bellman equation as
Qπold (st,at,g; qT )

= q∆t+1(∆t+1 = 1) log pd(g | st,at) + q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)[V
πold (st+1,g; qT )]

(A.95)

≤ q∆t+1(∆t+1 = 1) log pd(g | st,at)
+ q∆t+1(∆t+1 = 0)Ep(st′ |st,at)[Eπnew(at′ |st′ ) [Qπold (st′ ,at′ ,g; qT )]

− DKL(πnew(· | st′) ‖ p(· | st′))],
(A.96)

...
≤ Qπnew (st,at,g; qT ) (A.97)

where we defined t′ =̇ t+ 1, repeatedly applied the Bellman backup operator defined in Definition 1 and
used the bound in Equation (A.94). Convergence follows from Outcome-Driven Policy Evaluation above.

3. Locally Optimal Variational Outcome-Driven Policy Iteration: Define πi to be a policy at iteration i. By
ODPI for a given qT , the sequence of state-action value functions {Qπ

i

(qT )}∞i=1 is monotonically increasing
in i. Since the reward is finite and the negative KL divergence is upper bounded by zero, Qπ(qT ) is upper
bounded for π ∈ Π and the sequence {πi}∞i=1 converges to some π?. To see that π? is an optimal policy, note
that it must be the case that Jπ?(π?(at|st); qT ) > Jπ?(π(at | st); qT ) for any π ∈ Π with π 6= π?. By the
argument used in ODPI above, it must be the case that the outcome-driven state-action value of the converged
policy is higher than that of any other non-converged policy in Π, that is, Qπ

?

(st,at; qT ) > Qπ(st,at; qT )
for all π ∈ Π and any qiT ∈ QT and (s,a) ∈ S ×A. Therefore, given qT , π? must be optimal in Π, which
concludes the proof.

4. Globally Optimal Variational Outcome-Driven Policy Iteration: Let πi be a policy and let qiT be variational
distributions over T at iteration i. By Locally Optimal Variational Outcome-Driven Policy Iteration, for a
fixed qiT with qiT = qjT∀i, j ∈ N0, the sequence of {(πi, qiT )}∞i=1 increases the objective Equation (A.16)
at each iteration and converges to a stationary point in πi, where Qπ

?

(st,at; q
i
T ) > Qπ(st,at; q

i
T ) for all

π ∈ Π and any qiT ∈ QT and (s,a) ∈ S ×A. Since the objective in Equation (A.16) is concave in qT ,
it must be the case that for, q?

i

T ∈ QT , the optimal variational distribution over T at iteration i, defined
recursively by

q?
i

(∆t+1 = 0;πi, Qπ
i

) = σ
(
Eπ(at+1 | st+1)pd(st+1 | st,at)[Q

πi(st+1,at+1,g; qT (πi, Qπ
i

))]

− Eπ(at | st)[log pd(g | st,at)] + σ−1(p∆t+1(∆t+1 = 0)
)
,
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for t ∈ N0, Qπ(st,at; q
?
T ) > Qπ(st,at; qT ) for all π ∈ Π and any (s,a) ∈ S ×A. Note that qT is

defined implicitly in terms of πi and Qπ
i

, that is, the optimal variational distribution over T at iteration
i is defined as a function of the policy and Q-function at iteration i. Hence, it must then be true that for
Qπ

?

(st,at; q
?
T ) > Qπ

?

(st,at; qT ) for all q?T (π?, Qπ
?

) ∈ QT and for any π? ∈ Π and (s,a) ∈ S ×A.
In other words, for an optimal policy and corresponding Q-function, there exists an optimal variational
distribution over T that maximizes the Q-function, given the optimal policy. Repeating locally optimal
variational outcome-driven policy iteration under the new variational distribution q?T (π?, Qπ

?

) will yield an
optimal policy π?? and computing the corresponding optimal variational distribution, q??T (π??, Qπ

??

) will
further increase the variational objective such that for π??) ∈ Π and q??T (π??, Qπ

??

) ∈ QT , we have that

Qπ
??

(st,at; q
??
T ) > Qπ

??

(st,at; q
?
T ) > Qπ

?

(st,at; q
?
T ) > Qπ

?

(st,at; qT ) (A.98)

for any π? ∈ Π and (s,a) ∈ S ×A. Hence, global optimal variational outcome-driven policy iteration
increases the variational objective at every step. Since the objective is upper bounded (by virtue of the
rewards being finite and the negative KL divergence being upper bounded by zero) and the sequence of
{(πi, qiT )}∞i=1 increases the objective Equation (A.16) at each iteration, by the monotone convergence
theorem, the objective value converges to a supremum and since the objective function is concave the
supremum is unique. Hence, since the supremum is unique and obtained via global optimal variational
outcome–driven policy iteration on (π, qT ) ∈ Π × QT , the sequence of {(πi, qiT )}∞i=1 converges to a
unique stationary point (π?, q?T ) ∈ Π×QT , where Qπ

?

(st,at; q
?
T ) > Qπ(st,at; q

i
T ) for all π ∈ Π and

any qiT ∈ QT and (s,a) ∈ S ×A.

Corollary 3 (Optimality of Variational Outcome Driven Policy Iteration). Variational Outcome-Driven Policy
Iteration on (π, qT ) ∈ Π×QT results in an optimal policy at least as good or better than any optimal policy
attainable from policy iteration on π ∈ Π alone.

Remark 2. The convergence proof of ODPE assumes a transition-dependent discount factor [53], because the
variational distribution used in Equation (11) depends on the next state and action as well as on the desired
outcome.

A.5 Lemmas

Lemma 1. Let q(T = t) =̇ q(T = t|T ≥ t)
∏t
i=1 q(T 6= i − 1|T ≥ i − 1) be a discrete probability

distribution with support N0. Then for any t ∈ N0, we have that

q(T ≥ t) =

∞∑
i=t

q(T = i|T ≥ i)
i∏

j=1

q(T 6= j − 1|T ≥ j − 1) =

t∏
i=1

q(T 6= i− 1|T ≥ i− 1). (A.99)

Proof. We proof the statement by induction on t.

Base case: For t = 0, q(T ≥ 0) = 1 by definition of the empty product.

Inductive case: Note that q(T ≤ t) =
∏t
i=1 q(T = i− 1|T ≥ i− 1). Show that

q(T ≥ t) =
t∏
i=1

q(T 6= i− 1|T ≥ i− 1) =⇒ q(T ≥ t+ 1) =

t+1∏
i=1

q(T 6= i− 1|T ≥ i− 1). (A.100)

Consider q(T ≥ t + 1) =
∑∞
i=t+1 q(T = i|T ≥ i)

∏i
j=1 q(T 6= j − 1|T ≥ j − 1). To proof the inductive

hypothesis, we need to show that the following equality is true:

∞∑
i=t+1

q(T = i|T ≥ i)
i∏

j=1

q(T 6= j − 1|T ≥ j − 1) =

t+1∏
i=1

q(T 6= i− 1|T ≥ i− 1) (A.101)

⇐⇒
∞∑
i=t

q(T = i|T ≥ i)
i∏

j=1

q(T 6= j − 1|T ≥ j − 1)− q(T = t|T ≥ t)
t∏

j=1

q(T 6= j − 1|T ≥ j − 1)

= q(T 6= t|T ≥ t)
t∏
i=1

q(T 6= i− 1|T ≥ i− 1).

(A.102)
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By the inductive hypothesis,

q(T ≥ t) =

∞∑
i=t

q(T = i|T ≥ i)
i∏

j=1

q(T 6= j − 1|T ≥ j − 1) =

t∏
i=1

q(T 6= i− 1|T ≥ i− 1), (A.103)

and so

Equation (A.102)⇐⇒
t∏
j=1

q(T 6= j|T ≥ j)− q(T 6= t+ 1|T ≥ t+ 1)

t∏
j=1

q(T = j|T ≥ j) (A.104)

= q(T 6= t|T ≥ t)
t∏
i=1

q(T 6= i− 1|T ≥ i− 1). (A.105)

Factoring out
∏t
i=1 q(T 6= i− 1|T ≥ i− 1), we get

⇐⇒
t∏

j=1

q(T 6= j − 1|T ≥ j − 1) (1− q(T = t|T ≥ t))︸ ︷︷ ︸
=q(T 6=t|T≥t)

= q(T 6= t|T ≥ t)
t∏

j=1

q(T = j − 1|T ≥ j − 1)

(A.106)

⇐⇒ q(T 6= t|T ≥ t)
t∏

j=1

q(T 6= j − 1|T ≥ j − 1) = q(T 6= t|T ≥ t)
t∏

j=1

q(T 6= j − 1|T ≥ j − 1),

(A.107)
which proves the inductive hypothesis.

Lemma 2. Let qT (t) and pT (t) be discrete probability distributions with support N0, let ∆t be a Bernoulli
random variable, with success defined as T = t + 1 given that T ≥ t, and let q∆t be a discrete probability
distribution over ∆t for t ∈ N\{0}, so that

q∆t+1(∆t+1 = 0) =̇ q(T 6= t |T ≥ t)
q∆t+1(∆t+1 = 1) =̇ q(T = t |T ≥ t).

(A.108)

Then we can write q(T = t) = q∆t+1(∆t+1 = 1)
∏t
i=1 q∆i(∆i = 0) for any t ∈ N0 and have that

q(T ≥ t) =

∞∑
i=t

q∆i+1(∆i+1 = 1)

i∏
j=1

q∆j (∆j = 0) =

t∏
i=1

q∆i(∆i = 0). (A.109)

Proof. By Lemma 1, we have that for any t ∈ N0

q(T ≥ t) =

∞∑
i=t

q(T = i|T ≥ i)
i∏

j=1

q(T 6= j − 1|T ≥ j − 1) =

t∏
i=1

q(T 6= i− 1|T ≥ i− 1). (A.110)

The result follows by replacing q(T = i|T ≥ i) by q∆i+1(∆i+1 = 1), q(T 6= j − 1|T ≥ j − 1) by
q∆j (∆j = 0), and q(T 6= i− 1|T ≥ i− 1) by q∆i(∆i = 0).

Lemma 3. Let qT (t) and pT (t) be discrete probability distributions with support N0. Then for any k ∈ N0,

Et∼q(T |T≥k)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
= f(q, p, k) + q(T 6= k |T ≥ k)Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k + 1)

p(T = t |T ≥ k + 1)

]
.

(A.111)

Proof. Consider Et∼q(T |T≥k)

[
log q(T=t |T≥k)

p(T=t |T≥k)

]
and note that by the law of total expectation we can rewrite

it as

Et∼q(T |T≥k)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
= q(T = k |T ≥ k)Et∼q(T |T=k)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
+ q(T 6= k |T ≥ k)Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

] (A.112)

= q(T = k |T ≥ k) log
q(T = k |T ≥ k)

p(T = k |T ≥ k)
+ q(T 6= k |T ≥ k)Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
.

(A.113)
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For all values of T ≥ k + 1, we have that

q(T = t |T ≥ k) = q(T = t |T ≥ k + 1)q(T 6= k |T ≥ k) (A.114)
p(T = t |T ≥ k) = p(T = t |T ≥ k + 1)p(T 6= k |T ≥ k) (A.115)

and so we can rewrite the expectation in Equation (A.113) as

Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
= Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)
+ log

q(T 6= k |T ≥ k)

p(T 6= k |T ≥ k)

]
(A.116)

= Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
+ log

q(T 6= k |T ≥ k)

p(T 6= k |T ≥ k)
(A.117)

Combining Equation (A.117) with Equation (A.113), we have

Et∼q(T |T≥k)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
= q(T = k |T ≥ k) log

q(T = k |T ≥ k)

p(T = k |T ≥ k)
+ q(T 6= k |T ≥ k) log

q(T 6= k |T ≥ k)

p(T 6= k |T ≥ k)︸ ︷︷ ︸
=̇ f(q,p,k)

+ q(T 6= k |T ≥ k)Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k + 1)

p(T = t |T ≥ k + 1)

]
,

(A.118)

which concludes the proof.

Lemma 4. Let qT (t) and pT (t) be discrete probability distributions with support N0. Then the KL divergence
from qT to pT can be written as

DKL(qT || pT ) =

∞∑
t=0

q(T ≥ t)f(qT , pT , t) (A.119)

where f(qT , pT , t) is shorthand for

f(qT , pT , t) = q(T = t |T ≥ t) log
q(T = t |T ≥ t)
p(T = t |T ≥ t) + q(T 6= t |T ≥ t) log

q(T 6= t |T ≥ t)
p(T 6= t |T ≥ t) . (A.120)

Proof. Note that q(T = k) denotes the probability that the distribution q assigns to the event T = k and q(T ≥
m) denotes the tail probability, that is, q(T ≥ m) =

∑∞
t=m q(T = t). We will write q(T |T ≥ m) to denote

the conditional distribution of q given T ≥ m, that is, q(T = k|T ≥ m) = 1[k ≥ m]q(T = k)/q(T ≥ m).
We will use analogous notation for p.

By the definition of the KL divergence and using the fact that, since the support is lowerbounded by T = 0,
q(T = 0) = q(T = 0 |T ≥ 0), we have

DKL(qT ‖ pT ) = Et∼q(T )

[
log

q(T = t)

p(T = t)

]
= Et∼q(T |T≥0)

[
log

q(T = t |T ≥ 0)

p(T = t |T ≥ 0)

]
. (A.121)
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Using Lemma 3 with k = 0, 1, 2, 3, . . . , we can expand the above expression to get

DKL(qT ‖ pT ) (A.122)

= f(qT , pT , 0) + q(T 6= 0 |T ≥ 0)Et∼q(T |T≥1)

[
log

q(T = t |T ≥ 1)

p(T = t |T ≥ 1)

]
(A.123)

= f(q, p, 0) + q(T 6= 0 |T ≥ 1)f(qT , pT , 1)

+ q(T 6= 0 |T ≥ 0)q(T 6= 1 |T ≥ 1)Et∼q(T |T≥2)

[
log

q(T = t |T ≥ 2)

p(T = t |T ≥ 2)

]
(A.124)

= 1︸︷︷︸
=q(T≥0)

·f(q, p, 0)

+ q(T 6= 0 |T ≥ 0)︸ ︷︷ ︸
=q(T≥1)

f(q, p, 1)

+ q(T 6= 0 |T ≥ 0)q(T 6= 1 |T ≥ 1)︸ ︷︷ ︸
=q(T≥2)

f(qT , pT , 2)

+ q(T 6= 0 |T ≥ 0)q(T 6= 1 |T ≥ 1)q(T 6= 2 |T ≥ 2)︸ ︷︷ ︸
=q(T≥3)

Et∼q(T |T≥3)

[
log

q(T = t |T ≥ 3)

p(T = t |T ≥ 3)

]
(A.125)

=

∞∑
t=0

q(T ≥ t)f(qT , pT , t), (A.126)

where f(qT , pT , t) is shorthand for

f(qT , pT , t) = q(T = t |T ≥ t) log
q(T = t |T ≥ t)
p(T = t |T ≥ t) + q(T 6= t |T ≥ t) log

q(T 6= t |T ≥ t)
p(T 6= t |T ≥ t) . (A.127)

and we used the fact that, by Lemma 1,

q(T ≥ t) =

t∏
k=1

q(T 6= k − 1 |T ≥ k − 1). (A.128)

This completes the proof.

Lemma 5. Let qT (t) and pT (t) be discrete probability distributions with support N0, let ∆t be a Bernoulli
random variable, with success defined as T = t given that T ≥ t, and let q∆t and p∆t be discrete probability
distributions over ∆t for t ∈ N0\{0}, so that

q∆t+1(∆t+1 = 0) =̇ q(T 6= t |T ≥ t) q∆t+1(∆t+1 = 1) =̇ q(T = t |T ≥ t) (A.129)

p∆t+1(∆t+1 = 0) =̇ p(T 6= t |T ≥ t) p∆t+1(∆t+1 = 1) =̇ p(T = t |T ≥ t). (A.130)

Then the KL divergence from qT to pT can be written as

DKL(qT || pT ) =

∞∑
t=0

( t∏
k=1

q∆t(∆t = 0)
)
DKL(q∆t+1 || p∆t+1) (A.131)

Proof. The result follows from Lemma 4, Equation (A.128), Equation (A.129), and the definition of f .

In detail, from Lemma 1, and Equation (A.129) we have that

q(T ≥ t) =

t∏
k=1

q(T 6= k − 1 |T ≥ k − 1) =

t∏
k=1

q∆k (∆k = 0). (A.132)

From the definition of f(qT , pT , t), we have

f(qT , pT , t) = q(T = t |T ≥ t) log
q(T = t |T ≥ t)
p(T = t |T ≥ t) + q(T 6= t |T ≥ t) log

q(T 6= t |T ≥ t)
p(T 6= t |T ≥ t) (A.133)

= q∆t+1(∆t+1 = 0) log
q∆t+1(∆t+1 = 0)

p∆t+1(∆t+1 = 0)
+ q(∆t+1 = 1) log

q∆t+1(∆t+1 = 1)

p∆t+1(∆t+1 = 1)
(A.134)

= DKL(q∆t+1 ‖ p∆t+1). (A.135)

Combining Equation (A.132), Equation (A.135), and Equation (A.119) completes the proof.
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Appendix B Additional Experiments

B.1 Further Ablation Study Results

We show the full ablation learning curves in Figure 5. We see that ODAC consistently performs the best, and that
ODAC with a fixed model also performs well. However, on a few tasks, and in particular the Fetch Push and
Sawyer Faucet tasks, we see that using a fixed qT hurts the performance, suggesting that our derived formula
in Equation (11) results in better empirical performance.
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Figure 5: Ablation results across all six environments. We see that using our derived qT optimality equation is
important for best performance across all six tasks and that ODAC is not sensitive to the quality of the dynamics
model.
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Figure 6: The inferred q∆t+1(∆t+1 = 0) versus time during an example trajectory in the Ant environment. As
the ant robot falls over, q∆t+1(∆t+1 = 0) drops in value. We see that the optimal posterior q?∆t+1

(∆t+1 = 0)
given in Proposition 2 automatically assigns a high likelihood of terminating when this irrecoverable state is first
reached, effectively acting as a dynamic discount factor.

B.2 Comparisons under Oracle Goal Sampling
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Figure 7: Comparison of different methods for desired outcomes g
sampled uniformly from the set of admissible states.

For exploration, Andrychowicz et al. [2]
explore the benefits of HER either using a
single, fixed goal during exploration (see
Section 4.3 of Andrychowicz et al. [2]) or
using oracle goal sampling, that is, during
exploration, a new goal is sampled each
episode from a uniform distribution over
the set of all reachable goals in the envi-
ronment. As such, oracle goal sampling
requires knowledge of the environment to
sample several reachable goals. For exam-
ple, in the 2D box experiment (Figure 3a),
points inside the grey block in the center
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are not reachable goal states, and this additional information must be available when performing oracle goal
sampling.

To demonstrate the impact of sampling the desired outcome g during exploration, we evaluate ODAC and related
methods on the Fetch task when using oracle goal sampling. As shown in Figure 7, the performances of UVD
and ODAC are similar and both outperform other methods. These results suggest that UVD depends more heavily
on sampling outcomes from the set of desired outcomes than ODAC. The significant decrease in performance
when the desired outcome g is fixed may be due to the fact that uniformly sampling g implicitly provides a
curriculum for learning. For example, in the Box 2D environment, goal states sampled above the box can train
the agent to move around the obstacle, making it easier to learn how to reach the other side of the box. Without
this guidance, prior methods often “get stuck” on the other side of the box. In contrast, ODAC consistently
performs well in this more challenging setting, suggesting that the log-likelihood signal provides good guidance
to the policy.

As shown in Figure 4, ODAC performs well on both this setting and the harder setting where the desired outcome
g was fixed during exploration, suggesting that ODAC does not rely as heavily on the uniform sampling of g to
learn a good policy than do other methods.

B.3 Comparison to Model-Based Planning

ODAC learns a dynamics model but does not use it for planning and instead relies on the derived Bellman updates
to obtain a policy. However, a natural question is whether or not the method would benefit from using this model
to perform model-based planning, as in Janner et al. [21]. We assess this by comparing ODAC with model-based
baseline that uses a 1-step look-ahead. In particular, we follow the training procedure in Janner et al. [21] with
k = 1. To ensure a fair comparison, we use the exact same dynamics model architecture as in ODAC and match
the update-to-environment step ratio to be 4-to-1 for both methods.

Table 2 shows the final distance to the goal (best results in bold). Using the same dynamics model, ODAC, which
does not use the dynamics model to perform planning and only uses it to compute rewards, outperforms the
model-based planning method. While a better model might lead to better performance for the model-based
baseline, these results suggest that ODAC is not sensitive to model quality to the same degree as model-based
planning methods.

Table 2: Normalized final distances (lower is better) across four random seeds, multiplied by a factor of 100.

Environment ODAC (Mean + Standard Error) Dyna (Mean + Standard Error)
Box 2D 0.74 (0.091) 0.87 (0.058)
Ant 33 (27) 102 (0.83)
Sawyer Faucet 14 (6.3) 100 (5)
Fetch Push 12 (3.7) 96 (3.8)
Sawyer Push 58 (8.7) 96 (0.39)
Sawyer Window 4.4 (1.5) 116 (14)

B.4 Reward Visualization

We visualize the reward for the Box 2D environment in Figure 8. We see that over the course of training, the
reward function initially flattens out near g, making learning easier by encouraging the policy to focus on moving
just out of the top left corner of the environment. Later in training (around 16,000 steps), the policy learns to
move out of the top left corner, and we see that the reward changes to have a stronger reward gradient near g.
We also note that the reward are much more negative for being far g at the end of training: the top left region
changes from having a penalty of −1.6 to −107. Overall, these visualizations show that the reward function
automatically changes during training and provides a strong reward signal for different parts of the state space
depending on the behavior of the policy.
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Figure 8: We visualize the rewards over the course of training on a single random seed for the Box 2D
environment. To visualize the reward, we discretize the continuous state space and evaluate r(st,at,g; q∆) for
a = ~0 at different states. As shown in Figure 8c, the desired outcome g is near the bottom right and the states in
the center are invalid. After 4-8 thousand environment steps, the reward is more flat near g, and only provides a
reward gradient far from g. After 20 thousand environment steps, the reward gradient is much larger again near
the end, and the penalty for being in the top left corner has changed from −1.6 to −107.
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Appendix C Experimental Details

C.1 Environment

Ant. This Ant domain is based on the “Ant-V3” OpenAI Gym [4] environment, with three modifications: the
gear ratio is reduced from 150 to 120, the contact force sensors are removed from the state, and there is no
termination condition and the episode only terminates after a fixed amount of time. In this environment, the
state space is 23 dimensional, consistent of the XYZ coordinate of the center of the torso, the orientation of the
ant (in quaternion), and the angle and angular velocity of all 8 joints. The action space is 8-dimensional and
corresponds to the torque to apply to each joint. The desired outcome consists of the desired XYZ, orientation,
and joint angles at a position that is 5 meters down and to the right of the initial position. This desired pose is
shown in Figure 4.

Sawyer Push. In this environment, the state and goal space is 4 dimensional and the action space is 2
dimension. The state and goal consists of the XY end effector (EE) and the XY position of the puck. The object
is on a 40cm x 50cm table and starts 20 cm in front of the hand. The goal puck position is fixed to 15 cm forward
and 30 cm to the right of the initial hand position, while the goal hand position is 5cm behind and 20 cm to the
right of the initial hand position. The action is the change in position in each XY direction, with a maximum
change of 3 cm per direction at each time step. The episode horizon is 100.

Sawyer Window and Faucet. In this environment, the state and goal space is 6 dimensional and the action
space is 2 dimension. The state and goal consists of the XYZ end effector (EE) and the XYZ position of the
window or faucet end endpoint. The hand is initialized away from the window and faucet. The EE goal XYZ
position is set to the initial window or faucet position. The action is the change in position in each XYZ direction.
For the window task, the goal positions is to close the window, and for the faucet task, the goal position is to
rotate the faucet 90 degrees counter-clockwise from above.

Box 2D. In this environment, the state is a 4x4 with a 2x2 box in the middle. The policy is initialized to to
(−3.5,−2) and the desired outcome is (3.5, 2). The action is the XY velocity of the agent, with wall collisions
taken into account and maximum velocity of 0.2 in each direction. To make the environment stochastic, we add
Gaussian noise to actions with mean zero and standard deviation that’s 10% of the maximum action magnitude.

Tabular Box 2D (Figure 1). We implemented a tabular version of ODAC and applied it to the 2D environ-
ment shown in Figure 3a. We discretize the environment into an 8× 8 grid of states. The action correspond to
moving up, down, left, or right. If probability 1− ε, this action is taken. If the agent runs into a wall or boundary,
the agent stays in its current state. With probability ε = 0.1, the commanded action is ignored and a neighboring
state grid (including the current state) is uniformly sampled as the next state. The policy and Q-function are
represented with look-up tables and randomly initialized. The entropy reward is weighted by 0.01 and the time
prior pT is geometric with parameter 0.5. The dynamics model, p(0)

d is initialized to give a uniform probability
to each states for every state and action. Each iteration, we simulate data collection by updating the dynamics
model with the running average update p(t+1)

d = 0.99p
(t)
d + 0.01pd, where pd is the true dynamics and update

the policy and Q-function according to Equation (16) and Equation (14), respectively. Figure 1 shows that, in
contrast to the binary-reward setting, the learned reward provides shaping for the policy, which solves the task
within 100 iterations.

C.2 Algorithm

Pseudocode for the complete algorithm is shown in Algorithm 2.

C.3 Implementation Details

Dynamics model. For the Ant and Sawyer experiments, we train a neural network to output the mean and
standard deviation of a Laplace distribution. This distribution is then used to model the distribution over the
difference between the current state and the next state, which we found to be more reliable than predicting the
next state. So, the overall distribution is given by a Laplace distribution with learned mean µ and fixed standard
deviation σ computed via

pψ = Laplace(µ = gψ(s,a) + f(s), σ = 0.00001)

where g is the output of a network and f is a function that maps a state into a goal.

For the 2D Navigation experiment, we use a Gaussian distribution. The dynamics neural network has hidden
units of size [64, 64] with a ReLU hidden activations. For the Ant and Sawyer experiments, there is no output
activation. For the linear-Gaussiand and 2D Navigation experiments, we have a tanh output, so that the mean

33



Algorithm 2 Outcome-Driven Actor Critic

Require: Policy πθ, Q-function Qφ, dynamics model pψ, replay buffer R, and map from state to
achieved goal f .
for n = 0, . . . N − 1 episodes do

Sample initial state s0 from environment.
Sample goal g from environment.
for t = 0, . . . ,H − 1 steps do

Get action at ∼ πθ(st,g).
Get next state st+1 ∼ p(· | st,at).
Store (st,at, st+1,g) into replay bufferR.
Sample transition (s,a, s′,g) ∼ R.
Compute reward r = log pψ(g | s,a)− DKL(q∆(·|st,at) ‖ p(∆)).
Compute q(∆t = 0|s,a) using Equation (11).
Update Qφ using Equation (17) and data (s,a, s′,g, r).
Update πθ using Equation (18) and data (s,a,g).
Update pψ using Equation (19) and data (s,a,g).

end for
for t = 0, ...,H − 1 steps do

for i = 0, ..., k − 1 steps do
Sample future state shi , where t < hi ≤ H − 1.
Store (st,at, st+1, f(shi)) intoR.

end for
end for

end for

and standard To bound the standard deviation outputted by the network, the standard-deviation tanh is multiplied
by two with the standard deviation be between limited to between

Reward normalization. Because the different experiments have rewards of very different scale, we nor-
malize the rewards by dividing by a running average of the maximum reward magnitude. Specifically, for every
reward r in the ith batch of data, we replace the reward with

r̂ = r/Ci

where we update the normalizing coefficient Ci using each batch of reward {rb}Bb=1:

Ci+1 ← (1− λ)× Ci + λ max
b∈[1,...,B]

|rb|

and Ci is initialized to 1. In our experiments, we use λ = 0.001.

Target networks. To train our Q-function, we use the technique from Fujimoto et al. [12] in which we train
two separate Q-networks with target networks and take the minimum over two to compute the bootstrap value.
The target networks are updated using a slow, moving average of the parameters after every batch of data:

φ̄i+1 = (1− τ)φ̄i +×φi.
In our experiments, we used τ = 0.001.

Automatic entropy tuning. We use the same technique as in Haarnoja et al. [17] to weight the rewards
against the policy entropy term. Specifically, we pre-multiply the entropy term in

V̂ (s′,g) ≈ Qφ̄(s′,a′,g)− log π(a′|s′;g),

by a parameter α that is updated to ensure that the policy entropy is above a minimum threshold. The parameter
α is updated by taking a gradient step on the following function with each batch of data:

Fα(α) = −α (log π(a | s,g) +Htarget)

and whereHtarget is the target entropy of the policy. We follow the procedure in Haarnoja et al. [17] to choose
Htarget and chooseHtarget = −Daction, where Daction is the dimension of the action space.

Exploration policy. Because ODAC is an off-policy algorithm, we are free to use any exploration policy. It
may be beneficial to add For the Ant and Sawyer tasks, we simply sample current policy. For the 2D Navigation
task, at each time step, the policy takes a random action with probability 0.3 and repeats its

Evaluation policy. For evaluation, we use the mean of the learned policy for selecting actions.
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Hyperparameters. Table 4 lists the hyperparameters that were shared across the experiments. Table 3 lists
hyper-parameters specific to each environment.

Table 3: Environment specific hyper-parameters.

Environment horizon Q-function and policy network sizes (hidden units)
Box 2D 100 [64, 64]
Ant 100 [400, 300]
Fetch Push 50 [64, 64]
Sawyer Push 100 [400, 300]
Sawyer Window 100 [400, 300]
Sawyer Faucet 100 [400, 300]

Table 4: General hyperparameters used for all experiments.

Hyperparameter Value
# training batches per environment step 1
batch size 256
discount Factor 0.99
policy hidden activation ReLU
Q-function hidden activation ReLU
replay buffer size 1 million
hindsight relabeling strategy future
hindsight relabeling probability 80%
target network update speed τ 0.001
reward scale update speed λ 0.001
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