A Regularizing Optimal Transport with *f*-Divergences

Name	f(v)	$f^*(v)$	<i>f*'</i>	$\mathrm{Dom}(f^*(v))$
Kullback-Leibler	$v \log(v)$	$\exp(v-1)$	$\exp(v-1)$	$v \in \mathbb{R}$
Reverse KL	$-\log(v)$	$\log(-\frac{1}{v}) - 1$	$-\frac{1}{v}$	v < 0
Pearson χ^2	$(v-1)^2$	$\frac{v^2}{4} + v$	$\frac{v}{2} + 1$	$v \in \mathbb{R}$
Squared Hellinger	$(\sqrt{v}-1)^2$	$\frac{v}{1-v}$	$(1-v)^{-2}$	v < 1
Jensen-Shannon	$-(v+1)\log(\frac{1+v}{2}) + v\log v$	$\frac{e^x}{2-e^x}$	$\frac{2x}{e^x - 2} + x - \log(2 - e^x)$	$v < \log(2)$
GAN	$v\log(v) - (v+1)\log(v+1)$	$-v - \log(e^{-v} - 1)$	$(e^{-y}-1)^{-1}$	v < 0

Table 3: A list of f-Divergences, their Fenchel-Legendre conjugates, and the derivative of their conjugates. These functions determine the corresponding dual regularizers $H_f^*(v)$ and compatibility functions $M_f(v)$. We take definitions of each divergence from [21]. Note that there are many equivalent formulations as each f(v) is defined only up to additive $c(t-1), c \in \mathbb{R}$, and the resulting optimization problems are defined only up to shifting and scaling the objective.

Here are some general properties of f-Divergences which are also used in Section B. We provide examples of f-Divergences in Table 3. The specific forms of $H_f^*(v)$ and $M_f(v)$ are determined by f(v), $f^*(v)$, and $f^{*'}(v)$, which can in turn be used to formulate Algorithms 1 and 2 for each divergence.

Definition A.1 (*f*-Divergences). Let $f : \mathbb{R} \to \mathbb{R}$ be convex with f(1) = 0 and let p, q be probability measures such that p is absolutely continuous with respect to q. The corresponding *f*-Divergence is defined $D_f(p||q) = \mathbb{E}_q[f(\frac{dp(x)}{dq(x)})]$ where $\frac{dp(x)}{dq(x)}$ is the Radon-Nikodym derivative of p w.r.t. q.

Proposition A.2 (Strong Convexity of D_f). Let \mathcal{X} be a countable compact metric space. Fix $q \in \mathcal{M}_+(\mathcal{X})$ and let $\mathcal{P}_q(\mathcal{X})$ be the set of probability measures on \mathcal{X} that are absolutely continuous with respect to q and which have bounded density over \mathcal{X} . Let $f : \mathbb{R} \to \mathbb{R}$ be α -strongly convex with corresponding f-Divergence $D_f(p||q)$. Then, the function $H_f(p) \coloneqq D_f(p||q)$ defined over $p \in \mathcal{P}_q(\mathcal{X})$ is α -strongly convex in 1-norm: for $p_0, p_1 \in \mathcal{P}_q(\mathcal{X})$,

$$H_f(p_1) \ge H_f(p_0) + \langle \nabla_p H_f(p_0), p_1 - p_0 \rangle + \frac{\alpha}{2} |p_1 - p_0|_1^2.$$
⁽²⁾

Proof. Define the measure $p_t = tp_1 + (1-t)p_0$. Then H_f satisfies the following convexity inequality (Melbourne [20], Proposition 2).

$$H_f(p_t) \le tH_f(p_1) + (1-t)H_f(p_0) - \alpha \left(t|p_1 - p_t|_{\mathrm{TV}}^2 + (1-t)|p_0 - p_t|_{\mathrm{TV}}^2\right)$$

By assumption that \mathcal{X} is countable, $|p - q|_{\text{TV}} = \frac{1}{2}|p - q|_1$. It follows that,

$$H_{f}(p_{1}) \geq H_{f}(p_{0}) + \frac{H_{f}(p_{0} + t(p_{1} - p_{0})) - H_{f}(p_{0})}{t} + \frac{\alpha}{2} \left(|p_{1} - p_{t}|_{1}^{2} + (t^{-1} - 1)|p_{0} - p_{t}|_{1}^{2} \right)$$
$$\geq H_{f}(p_{0}) + \frac{H_{f}(p_{0} + t(p_{1} - p_{0})) - H_{f}(p_{0})}{t} + \frac{\alpha}{2} |p_{1} - p_{t}|_{1}^{2}$$

and, taking the limit $t \to 0$, the inequality (2) follows.

For the purposes of solving empirical regularized optimal transport, the technical conditions of Proposition A.2 hold. Additionally, note that α -strong convexity of f is sufficient but not necessary for strong convexity of H_f . For example, entropy regularization uses $f_{\text{KL}}(v) = v \log(v)$ which is not strongly convex over its domain, \mathbb{R}_+ , but which yields a regularizer $H_{\text{KL}}(p) = \text{KL}(p||q)$ that is 1-strongly convex in l_1 norm when q is uniform. This follows from Pinksker's inequality as shown in [22]. Also, if f is α -strongly convex over a subinterval [a, b] of its domain, then Proposition A.2 holds under the additional assumption that $a \leq \frac{dp(x)}{dq(x)}(x) \leq b$ uniformly over $x \in \mathcal{X}$.

B Proofs

For convenience, we repeat the main assumptions and statements of theorems alongside their proofs. First, we prove the following properties about f-divergences.

Proposition, 2.4 – Regularization with *f*-Divergences. Consider the empirical setting of Definition 2.1 Let $f(v) : \mathbb{R} \to \mathbb{R}$ be a differentiable α -strongly convex function with convex conjugate $f^*(v)$. Set $f^{*'}(v) = \partial_v f^*(v)$. Define the violation function $V(x, y; \varphi, \psi) = \varphi(x) + \psi(y) - c(x, y)$. Then,

- 1. The D_f regularized primal problem $K_{\lambda}(\pi)$ is $\lambda \alpha$ -strongly convex in l_1 norm. With respect to dual variables $\varphi \in \mathbb{R}^{|\mathcal{X}|}$ and $\psi \in \mathbb{R}^{|\mathcal{Y}|}$, the dual problem $J_{\lambda}(\varphi, \psi)$ is concave, unconstrained, and $\frac{1}{\lambda \alpha}$ -strongly smooth in l_{∞} norm. Strong duality holds: $K_{\lambda}(\pi) \geq J_{\lambda}(\varphi, \psi)$ for all π, φ, ψ , with equality for some triple π^*, φ^*, ψ^* .
- 2. $J_{\lambda}(\varphi, \psi)$ takes the form

$$J_{\lambda}(\varphi,\psi) = \mathbb{E}_{\mu}[\varphi(x)] + \mathbb{E}_{\sigma}[\psi(y)] - \mathbb{E}_{\mu \times \sigma}[H_{f}^{*}(V(x,y;\varphi,\psi))]$$

where $H_f^*(v) = \lambda f^*(\lambda^{-1}v)$.

3. The optimal solutions $(\pi^*, \varphi^*, \psi^*)$ satisfy

$$\pi^*(x,y) = M_f(V(x,y;\varphi,\psi))\mu(x)\sigma(y)$$

where
$$M_f(x, y) = f^{*'}(\lambda^{-1}v)$$
.

Proof. By assumption that f is differentiable, $K_{\lambda}(\pi)$ is continuous and differentiable with respect to $\pi \in \mathcal{M}_+(\mathcal{X} \times \mathcal{Y})$. By Proposition A.2 it is $\lambda \alpha$ -strongly convex in l_1 norm. By the Fenchel-Moreau theorem, $K_{\lambda}(\pi)$ therefore has a unique minimizer π^* satisfying strong duality, and by [10]. Theorem 6], the dual problem is $\frac{1}{\lambda \alpha}$ -strongly smooth in l_{∞} norm.

The primal and dual are related by the Lagrangian $\mathcal{L}(\pi, \varphi, \psi)$,

$$\mathcal{L}(\varphi,\psi,\pi) = \mathbb{E}_{\pi}[c(x,y)] + \lambda H_f(\pi) + \mathbb{E}_{\mu}[\varphi(x)] - \mathbb{E}_{\pi}[\varphi(x)] + \mathbb{E}_{\sigma}[\varphi(y)] - \mathbb{E}_{\pi}[\psi(y)]$$
(3)

which has $K_{\lambda}(\pi) = \max_{\varphi,\psi} \mathcal{L}(\varphi,\psi,\pi)$ and $J_{\lambda}(\varphi,\psi) = \min_{\pi} \mathcal{L}(\varphi,\psi,\pi)$. In the empirical setting, π, μ, σ may be written as finite dimensional vectors with coordinates $\pi_{x,y}, \mu_x, \sigma_y$ for $x, y \in \mathcal{X} \times \mathcal{Y}$. Minimizing the π terms of J_{λ} ,

$$\min_{\pi \in \mathcal{M}(\mathcal{X} \times \mathcal{Y})} \left\{ \mathbb{E}_{\pi} [c(x, y) - \varphi(x) - \psi(y)] + \lambda \mathbb{E}_{\mu \times \sigma} \left[f\left(\frac{d\pi(x, y)}{d\mu(x)d\sigma(y)}\right) \right] \right\} \\
= \sum_{x, y \in \mathcal{X} \times \mathcal{Y}} - \max_{\pi_{x, y} \ge 0} \left\{ \pi_{x, y} \cdot (\varphi(x) + \psi(y) - c(x, y)) - \lambda \mu_{x} \sigma_{y} f\left(\frac{\pi_{x, y}}{\mu_{x} \sigma_{y}}\right) \right\} \\
= \sum_{x, y \in \mathcal{X} \times \mathcal{Y}} - h_{x, y}^{*}(\varphi(x) + \psi(y) - c(x, y))$$

where $h_{x,y}^*$ is the convex conjugate of $(\lambda \mu_x \sigma_y) \cdot f(p/(\mu_x \sigma_y))$ w.r.t. the argument p. For general convex f(p), it is true that $[\lambda f(p)]^*(v) = \lambda f^*(\lambda^{-1}v)$ [3] Chapter 3]. Applying twice,

$$[(\lambda\mu_x\sigma_y)\cdot f(p/(\mu_x\sigma_y))]^*(v) = \lambda[(\mu_x\sigma_y)f(p/(\mu_x\sigma_y))]^*(\lambda^{-1}v) = (\lambda\mu_x\sigma_y)\cdot f^*(v/\lambda)$$

so that

$$\min_{\pi \in \mathcal{M}_{+}(\mathcal{X} \times \mathcal{Y})} \mathbb{E}_{\pi} [c(x, y) - \varphi(x) - \psi(y)] + \lambda \mathbb{E}_{\mu \times \sigma} \left[f\left(\frac{d\pi(x, y)}{d\mu(x)d\sigma(y)}\right) \right]$$
$$= \sum_{x, y \in \mathcal{X} \times \mathcal{Y}} \mu_{x} \sigma_{y} \lambda f^{*}(\lambda^{-1}v)$$
$$= -\mathbb{E}_{\mu \times \sigma} [H_{f}^{*}(V(x, y; \varphi, \psi))]$$

for $H_f^*(v) = \lambda f^*(\lambda^{-1}v)$. The claimed form of $J_\lambda(\varphi, \psi)$ follows.

Additionally, for general convex f(p), it is true that $\partial_v f^*(v) = \arg \max_p \{\langle v, p \rangle - f(p)\}$, [3, Chapter 3]. For φ^* , ψ^* maximizing $J_\lambda(\varphi, \psi)$, it follows by strong duality that

$$\pi_{x,y}^* = \operatorname*{arg\,min}_{\pi \in \mathcal{M}_+(\mathcal{X} \times \mathcal{Y})} \mathcal{L}(\varphi^*, \psi^*, \pi)$$
$$= \nabla_V \mathbb{E}_{\mu \times \sigma} [H_f^*(V(x, y; \varphi^*, \psi^*))] = M_f(V(x, y; \varphi^*, \psi^*)) \mu_x \sigma_y.$$

as claimed.

We proceed to proofs of the theorems stated in Section 4.

Assumption, [4.1] – Approximate Linearity. Let $f_{\theta}(x)$ be a neural network and set $\mathcal{K}_{\theta}(x) = [J^{f}_{\theta}(x)][J^{f}_{\theta}(x)]^{T}$ where $J^{f}_{\theta}(x)$ is the Jacobian of $f_{\theta}(x)$ with respect to θ . Let Θ be a set of feasible weights, for example those reachable by gradient descent. Then $f_{\theta}(x)$ must satisfy,

- 1. There exists $R \gg 0$ so that $\Theta \subseteq B(0, R)$, where B(0, R) is the Euclidean ball of radius R.
- 2. There exist $\rho_M > \rho_m > 0$ such that for $\theta \in \Theta$ and for all data points $\{X_i\}_{i=1}^N$, $\rho_M \ge \lambda_{max}(\mathcal{K}_{\theta}(X_i)) \ge \lambda_{min}(\mathcal{K}_{\theta}(X_i)) \ge \rho_m > 0.$
- 3. For $\theta \in \Theta$ and for all data points $\{X_i\}_{i=1}^N$, the Hessian matrix $D_{\theta}^2 f_{\theta}(x_i)$ is bounded in spectral norm:

$$\|D_{\theta}^2 f_{\theta}(x_i)\| \le \frac{\rho_M}{C_h}$$

where $C_h \gg 0$ depends only on R, N, and the regularization λ .

The constant C_h may depend on the dataset size N, the upper bound of ρ_M for eigenvalues of the NTK, the regularization parameter λ , and it may also depend indirectly on the bound R.

Theorem, 4.2 – Optimizing Neural Nets. Suppose $J_{\lambda}(\varphi, \psi)$ is $\frac{1}{s}$ -strongly smooth in l_{∞} norm. Let $\varphi_{\theta}, \psi_{\theta}$ be neural networks satisfying Assumption 4.1 for the dataset $\{(x_i, y_i)\}_{i=1}^N$, $N = |\mathcal{X}| \cdot |\mathcal{Y}|$.

Then gradient descent of $J_{\lambda}(\varphi_{\theta}, \psi_{\theta})$ with respect to θ at learning rate $\eta = \frac{\lambda}{2\rho_M}$ converges to an ϵ -approximate global maximizer of J_{λ} in at most $\left(\frac{2\kappa R^2}{s}\right)\epsilon^{-1}$ iterations, where $\kappa = \frac{\rho_M}{\rho_m}$.

Proof. For indices i, let $S_{\theta_i} = (\varphi_{\theta_i}, \psi_{\theta_i})$ so that Assumption 4.1 applies with S_{θ} in place of f_{θ} . Lemma B.1 (Smoothness). $J_{\lambda}(S_{\theta})$ is $\frac{2\rho_M}{s}$ -strongly smooth in l_2 norm with respect to θ :

$$J_{\lambda}(S_{\theta_2}) \leq J_{\lambda}(S_{\theta_1}) + \langle \nabla_{\theta} J_{\lambda}(S_{\theta_1}), S_{\theta_2} - S_{\theta_1} \rangle + \frac{\rho_M}{\lambda} \|\theta_2 - \theta_1\|_2^2.$$

Proof. It is assumed that $J_{\lambda}(S)$ is $(\frac{1}{s}, l_{\infty})$ -strongly smooth and that $K_{\lambda}(\pi)$ is (s, l_1) -strongly convex. Note that $(\frac{1}{s}, l_2)$ -strong smoothness is *weakest* in the sense that it is implied via norm equivalence by $(\frac{1}{s}, l_q)$ -strong smoothness for $2 \le q \le \infty$.

$$J_{\lambda}(S_{2}) \leq J_{\lambda}(S_{1}) + \langle \nabla_{S} J_{\lambda}(S_{1}), S_{2} - S_{1} \rangle + \frac{1}{2s} |S_{2} - S_{1}|_{q}^{2}$$

$$\implies J_{\lambda}(S_{2}) \leq J_{\lambda}(S_{1}) + \langle \nabla_{S} J_{\lambda}(S_{1}), S_{2} - S_{1} \rangle + \frac{1}{2s} ||S_{2} - S_{1}||_{2}^{2}$$

A symmetric property holds for (s, l_2) -strong convexity of $K_{\lambda}(\pi)$ which is implied by (s, l_p) -strong convexity, $1 \le p \le 2$. By Assumption 4.1.

$$J_{\lambda}(S_{\theta_2}) - J_{\lambda}(S_{\theta_1}) - \langle \nabla_S J_{\lambda}(S_{\theta_1}), S_{\theta_2} - S_{\theta_1} \rangle \le \frac{1}{2s} \|S_{\theta_2} - S_{\theta_1}\|_2^2 \le \frac{\rho_M}{2s} \|\theta_2 - \theta_1\|_2^2.$$
(4)

To establish smoothness, it remains to bound $\langle \nabla_S J_\lambda(S_{\theta_1}), S_{\theta_2} - S_{\theta_1} \rangle$. Set $v = \nabla_S J_\lambda(S_{\theta_1}) \in \mathbb{R}^n$ and consider the first-order Taylor expansion in θ of $\langle v, S_\theta \rangle$ evaluated at $\theta = \theta_2$. Applying Lagrange's form of the remainder, there exists 0 < c < 1 such that

$$\langle v, S_{\theta_2} \rangle = \langle v, S_{\theta_1} \rangle + \langle v, J_{\theta}^S(S_{\theta_2} - S_{\theta_1}) \rangle$$

+
$$\frac{1}{2} \sum_{i=1}^n v_i (\theta_2 - \theta_1)^T [D_{\theta}^2(S_{\theta_1}(x_i) + c(S_{\theta_2}(x_i) - S_{\theta_1}(x_i)))](\theta_2 - \theta_1)$$

and so by Cauchy-Schwartz,

$$\langle v, S_{\theta_2} - S_{\theta_1} \rangle \le \langle v, J_{\theta}^S (S_{\theta_2} - S_{\theta_1}) \rangle + \frac{\|D_{\theta}^2\|}{2} \sqrt{N} \|v\|_2 \|\theta_2 - \theta_1\|_2^2 \le \frac{\rho_M}{2s} \|\theta_2 - \theta_1\|_2^2.$$

The final inequality follows by taking $C_h \ge \lambda \sqrt{N} \sup_v \|v\|_2$. This supremum is bounded by assumption that $\Theta \subseteq B(0, R)$. Plugging in $v = \nabla_S J_\lambda(S_{\theta_1})$, we have

$$\begin{split} \langle \nabla_S J_\lambda(S_{\theta_1}), S_{\theta_2} - S_{\theta_1} \rangle &\leq \langle \nabla_S J_\lambda(S_{\theta_1}), J_\theta^S(S_{\theta_2} - S_{\theta_1}) \rangle + \frac{\rho_M}{2s} \|\theta_2 - \theta_1\|_2^2 \\ &= \langle \nabla_\theta J_\lambda(S_{\theta_1}), \theta_2 - \theta_1 \rangle + \frac{\rho_M}{2s} \|\theta_2 - \theta_1\|_2^2. \end{split}$$

Returning to (4), we have

$$J_{\lambda}(S_{\theta_2}) - J_{\lambda}(S_{\theta_1}) \le \langle \nabla_{\theta} J_{\lambda}(S_{\theta_1}), \theta_2 - \theta_1 \rangle + \frac{\rho_M}{s} \|\theta_2 - \theta_1\|_2^2$$

from which Lemma **B.1** follows.

Lemma B.2 (Gradient Descent). Gradient descent over the parameters θ with learning rate $\eta = \frac{s}{2\rho_M}$ converges in T iterations to parameters θ_t satisfying $J_{\lambda}(S_{\theta_t}) - J_{\lambda}(S^*) \leq \left(\frac{2\kappa R^2}{s}\right) \frac{1}{T}$ where $\kappa = \frac{\rho_M}{\rho_m}$ is the condition number.

Proof. Fix θ_0 and set $\theta_{t+1} = \theta_t - \eta \nabla_{\theta} J_{\lambda}(S_{\theta})$. The step size η is chosen so that by Lemma B.1, $J_{\lambda}(S_t) - J_{\lambda}(S_{t+1}) \ge \frac{s}{2\rho_M} \|\nabla_{\theta} J_{\lambda}(S_{\theta_t})\|_2^2$.

By convexity, $J_{\lambda}(S^*) \geq J_{\lambda}(S_{\theta_t}) + \langle \nabla_S J_{\lambda}(S_{\theta_t}), S^* - S_{\theta_t} \rangle$, so that

$$\|\nabla_{\theta} J_{\lambda}(S_{\theta_{t}})\|_{2}^{2} \ge \rho_{m} \|\nabla_{S} J_{\lambda}(S_{\theta_{t}})\|_{2}^{2} \ge (J_{\lambda}(S_{\theta_{t}}) - J_{\lambda}(S^{*}))^{2} \left(\frac{\rho_{m}}{\|S_{\theta_{t}} - S^{*}\|_{2}^{2}}\right)$$

Setting $\Delta_t = J_{\lambda}(S_{\theta_t}) - J_{\lambda}(S^*)$, this implies $\Delta_t \ge \Delta_{t+1} + \Delta_t^2 \left(\frac{s\rho_m}{2\rho_M \|S_{\theta_t} - S^*\|_2^2}\right)$ and thus $\Delta_t \le \left[T\left(\frac{s\rho_m}{2\rho_M \|S_{\theta_t} - S^*\|_2^2}\right)\right]^{-1}$. The claim follows from $\|S_{\theta_t} - S^*\|_2 < R$.

Theorem 4.2 follows immediately from Lemmas B.1 and B.2.

Theorem, 4.3 – Stability of Regularized OT Problem. Suppose $K_{\lambda}(\pi)$ is s-strongly convex in l_1 norm and let $\mathcal{L}(\varphi, \psi, \pi)$ be the Lagrangian of the regularized optimal transport problem. For $\hat{\varphi}$, $\hat{\psi}$ which are ϵ -approximate maximizers of $J_{\lambda}(\varphi, \psi)$, the pseudo-plan $\hat{\pi} = M_f(V(x, y; \hat{\varphi}, \hat{\psi}))\mu(x)\sigma(y)$ satisfies

$$|\hat{\pi} - \pi^*|_1 \le \sqrt{\frac{2\epsilon}{s}} \le \frac{1}{s} \left| \nabla_{\hat{\pi}} \mathcal{L}(\hat{\varphi}, \hat{\psi}, \hat{\pi}) \right|_1.$$

Proof. For indices *i*, denote by S_i the tuple $(\varphi_i, \psi_i, \pi_i)$. The regularized optimal transport problem has Lagrangian $\mathcal{L}(\varphi, \psi, \pi)$ given by

 $\mathcal{L}(\varphi,\psi,\pi) = \mathbb{E}_{\pi}[c(x,y)] + \lambda H_f(\pi) + \mathbb{E}_{\mu}[\varphi(x)] - \mathbb{E}_{\pi}[\varphi(x)] + \mathbb{E}_{\sigma}[\varphi(y)] - \mathbb{E}_{\pi}[\psi(y)]$

Because $\mathcal{L}(\varphi, \psi, \pi)$ is a sum of $K_{\lambda}(\pi)$ and linear terms, the Lagrangian inherits *s*-strong convexity w.r.t. the argument π :

$$\mathcal{L}(S_2) \ge \mathcal{L}(S_1) + \langle \nabla \mathcal{L}(S_1), S_2 - S_1 \rangle + \frac{s}{2} |\pi_2 - \pi_1|_1^2.$$

Letting $S^* = (\varphi^*, \psi^*, \pi^*)$ be the optimal solution and $\hat{S} = (\hat{\varphi}, \hat{\psi}, \hat{\pi})$ be an ϵ -approximation, it follows that

$$\epsilon \ge \mathcal{L}(\hat{S}) - \mathcal{L}(S^*) \ge \frac{s}{2} |\hat{\pi} - \pi^*|_1^2 \implies |\hat{\pi} - \pi^*| \le \sqrt{\frac{2\epsilon}{s}}.$$
(5)

Additionally, note that strong convexity implies a Polyak-Łojasiewicz (PL) inequality w.r.t. $\hat{\pi}$.

$$s\left(\mathcal{L}(\hat{S}) - \mathcal{L}(S^*)\right) \le \frac{1}{2} |\nabla_{\pi} \mathcal{L}(\hat{S})|_1^2.$$
(6)

The second inequality follows from (5) and the PL inequality (6).

B.1 Statistical Estimation of Sinkhorn Plans

We consider consider estimating an entropy regularized OT plan when $\mathcal{Y} = \mathcal{X}$. Let $\hat{\mu}$, $\hat{\sigma}$ be empirical distributions generated by drawing $n \geq 1$ i.i.d. samples from μ , σ respectively. Let π_n^{λ} be the Sinkhorn plan between $\hat{\mu}$ and $\hat{\sigma}$ at regularization λ , and let $\mathsf{D} := \operatorname{diam}(\mathcal{X})$. For simplicity, we also assume that μ and σ are sub-Gaussian. We also assume that n is fixed. Under these assumptions, we will show that $W_1(\pi_n^{\lambda}, \pi^{\lambda}) \leq n^{-1/2}$.

The following result follows from Proposition E.4 and E.5 of of Luise et al. [18] and will be useful in deriving the statistical error between π_n^{λ} and π^{λ} . This result characterizes fast statistical convergence of the Sinkhorn potentials as long as the cost is sufficiently smooth.

Proposition B.3. Suppose that $c \in C^{s+1}(\mathcal{X} \times \mathcal{X})$. Then, for any μ, σ probability measures supported on \mathcal{X} , with probability at least $1 - \tau$,

$$\|v - v_n\|_{\infty}, \|u - u_n\|_{\infty} \lesssim \frac{\lambda e^{3D/\lambda} \log 1/\tau}{\sqrt{n}}$$

where (u, v) are the Sinkhorn potentials for μ, σ and (u_n, v_n) are the Sinkhorn potentials for $\hat{\mu}, \hat{\sigma}$. Let $\pi_n^{\lambda} = M_n \mu_n \sigma_n$ and $\pi^{\lambda} = M \mu \sigma$, We recall that

$$M(x,y) = \frac{1}{e} \exp\left(\frac{1}{\lambda}(\varphi(x) + \psi(y) - c(x,y))\right),$$
$$M_n(x,y) = \frac{1}{e} \exp\left(\frac{1}{\lambda}(\varphi_n(x) + \psi_n(y) - c(x,y))\right),$$

We note that M and M_n are uniformly bounded by $e^{3\mathsf{D}/\lambda}$ [18] and M inherits smoothness properties from φ, ψ , and c.

We can write (for some optimal, bounded, 1-Lipschitz f_n)

$$W_{1}(\pi_{n}^{\lambda},\pi^{\lambda}) = \left| \int f_{n}\pi_{n}^{\lambda} - \int f_{n}\pi^{\lambda} \right|$$

$$\leq \left| \int f_{n}(H_{n} - H)\mu_{n}\sigma_{n} \right| + \left| \int f_{n}H(\mu_{n}\sigma_{n} - \mu\sigma) \right|$$

$$\leq \left| f_{n} \right|_{\infty} |H_{n} - H|_{\infty} + \left| \int f_{n}H(\mu_{n}\sigma_{n} - \mu\sigma) \right|.$$
(7)

If μ and σ are β^2 subGaussian, then we can bound the second term with high probability:

$$\mathbb{P}\left(\left|\frac{1}{n^2}\sum_{i}\sum_{j}f_n(X_i,Y_j)H(X_i,Y_j) - \mathbb{E}_{\mu\times\sigma}f_n(X,Y)H(X,Y)\right| > t\right) < e^{-n^2\frac{t^2}{2\beta^2}}.$$

Setting $t = \sqrt{2} \log(\delta) \beta / n$ in this expression, we get that w.p. at least $1 - \delta$,

$$\left|\frac{1}{n^2}\sum_{i}\sum_{j}f_n(X_i,Y_j)H(X_i,Y_j) - \mathbb{E}_{\mu\times\sigma}f_n(X,Y)H(X,Y)\right| < \frac{\sqrt{2\beta\log\delta}}{n}.$$

Now to bound the first term in (7), we use the fact that f_n is 1-Lipschitz and bounded by D. For the optimal potentials φ and ψ in the original Sinkhorn problem for μ and σ , we use the result of Proposition [B.3] to yield

$$\begin{split} |H_n(x,y) - H(x,y)| &= \left| \frac{1}{e} \exp\left(\frac{1}{\lambda} (\varphi_n(x) + \psi_n(y) - c(x,y))\right) - \frac{1}{e} \exp\left(\frac{1}{\lambda} (\varphi(x) + \psi(y) - c(x,y))\right) \right| \\ &= \frac{1}{e} \left| \exp\left(\frac{1}{\lambda} (\varphi(x) + \psi(y) - c(x,y))\right) \left(1 - \exp\left(\frac{\varphi(x) - \varphi_n(x)}{\lambda}\right) \exp\left(\frac{\psi(y) - \psi_n(y)}{\lambda}\right)\right) \right) \\ &\lesssim e^{3\mathsf{D}/\lambda} |1 - e^{\frac{2}{\lambda\sqrt{n}}}| \\ &\lesssim \frac{e^{3\mathsf{D}/\lambda}}{\lambda\sqrt{n}}. \end{split}$$

Thus, putting this all together,

$$W_1(\pi_n^{\lambda}, \pi^{\lambda}) \lesssim rac{\mathsf{D}}{\sqrt{n}} + rac{1}{n}.$$

Interestingly, the rate of estimation of the Sinkhorn plan breaks the curse of dimensionality. It must be noted, however, that the exponential dependence of Proposition B.3 on λ^{-1} implies we can only attain these fast rates in appropriately large regularization regimes.

B.2 Log-concavity of Sinkhorn Factor

The optimal entropy regularized Sinkhorn plan is given by

$$\pi^*(x,y) = \frac{1}{e} \exp\left(\frac{1}{\lambda} \left(\varphi^*(x) + \psi^*(y) - c(x,y)\right)\right) \mu(x)\sigma(y).$$

This implies that the conditional Sinkhorn density of Y|X is

$$\pi^*(y|x) = \frac{1}{e} \exp\left(\frac{1}{\lambda} \left(\varphi^*(x) + \psi^*(y) - c(x,y)\right)\right) \sigma(y).$$

The optimal potentials satisfy fixed point equations. In particular,

$$\psi^*(y) = -\lambda \log \int \exp\left[-\frac{1}{\lambda} \left(c(x,y) - \varphi^*(x)\right)\right] d\mu(x).$$

Using this result, one can prove the following lemma. Lemma B.4 ([1]). For the cost $||x - y||^2$, the map

$$h(y) = \exp\left(\frac{1}{\lambda} \left(\varphi^*(x) + \psi^*(y) - \|x - y\|^2\right)\right)$$

is log-concave.

Proof. The proof comes by differentiating the map. We calculate the gradient,

$$\nabla \log h(y) = -2\frac{y-x}{\lambda} + \frac{2}{\lambda} \frac{\int \exp\left[-\frac{1}{\lambda}\left(\|x-y\|^2 - \varphi^*(x)\right)\right](y-x)d\mu(x)}{\int \exp\left[-\frac{1}{\lambda}\left(\|x-y\|^2 - \varphi^*(x)\right)\right]d\mu(x)}$$

and the Hessian,

$$\begin{split} \nabla^{2} \log h(y) &= -2\frac{1}{\lambda} \\ &+ \frac{4}{\lambda^{2}} \frac{\int \exp\left[-\frac{1}{\lambda} \left(\|x-y\|^{2} - \varphi^{*}(x)\right)\right] (y-x) d\mu(x) \int \exp\left[-\frac{1}{\lambda} \left(\|x-y\|^{2} - \varphi^{*}(x)\right)\right] (y-x)^{\top} d\mu(x)}{(\int \exp\left[-\frac{1}{\lambda} \left(\|x-y\|^{2} - \varphi^{*}(x)\right)\right] (y-x)(y-x)^{\top} d\mu(x)} \\ &- \frac{4}{\lambda^{2}} \frac{\int \exp\left[-\frac{1}{\lambda} \left(\|x-y\|^{2} - \varphi^{*}(x)\right)\right] (y-x)(y-x)^{\top} d\mu(x)}{\int \exp\left[-\frac{1}{\lambda} \left(\|x-y\|^{2} - \varphi^{*}(x)\right)\right] d\mu(x)} \\ &+ 2I/\lambda \frac{\int \exp\left[-\frac{1}{\lambda} \left(\|x-y\|^{2} - \varphi^{*}(x)\right)\right] d\mu(x)}{\int \exp\left[-\frac{1}{\lambda} \left(\|x-y\|^{2} - \varphi^{*}(x)\right)\right] d\mu(x)} \\ &= -\frac{4}{\lambda^{2}} \left(-\frac{\int \exp\left[-\frac{1}{\lambda} \left(\|x-y\|^{2} - \varphi^{*}(x)\right)\right] (y-x) d\mu(x) \int \exp\left[-\frac{1}{\lambda} \left(\|x-y\|^{2} - \varphi^{*}(x)\right)\right] (y-x)^{\top} d\mu(x)}{\left(\int \exp\left[-\frac{1}{\lambda} \left(\|x-y\|^{2} - \varphi^{*}(x)\right)\right] d\mu(x)^{2}} \\ &+ \frac{\int \exp\left[-\frac{1}{\lambda} \left(\|x-y\|^{2} - \varphi^{*}(x)\right)\right] (y-x) (y-x)^{\top} d\mu(x)}{\int \exp\left[-\frac{1}{\lambda} \left(\|x-y\|^{2} - \varphi^{*}(x)\right)\right] d\mu(x)} \right) \end{split}$$

In the last term, we recognize that

$$\rho(x) = \frac{\exp\left[-\frac{1}{\lambda}\left(\|x-y\|^2 - \varphi^*(x)\right)\right]}{\int \exp\left[-\frac{1}{\lambda}\left(\|x-y\|^2 - \varphi^*(x)\right)\right]d\mu(x)}$$

forms a valid density with respect to μ , and thus

$$\nabla^2 \log h(y) = -\frac{4}{\lambda^2} \mathsf{Cov}_{\rho d\mu}(X - y)$$

where we take the covariance matrix of X - y with respect to the density $\rho d\mu$.

Suppose, for sake of argument, that $\sigma(y)$ is α strongly log-concave, and the function h(y) is β strongly log-concave. Then, $\pi_{Y|X=x} \propto h(y)\sigma(y)$, $\alpha + \beta$ strongly log-concave. In particular, standard results on the mixing time of the Langevin diffusion implies that the diffusion for $\pi_{Y|X=x}$ mixes faster than the diffusion for the marginal σ alone. Also, as $\lambda \to 0$, the function h(y) concentrates around $\varphi_{OT}(x) + \psi_{OT}(y) - ||x - y||^2$, where φ_{OT} and ψ_{OT} are the optimal transport potentials. In particular, if there exists an optimal transport map between μ and σ , then h(y) concentrates around the unregularized optimal transport image y = T(x).

C Experimental Details

C.1 Network Architectures

Our method integrates separate neural networks playing the roles of *unconditional score estimator*, *compatibility function*, and *barycentric projector*. In our experiments each of these networks uses one of two main architectures: a fully connected network with ReLU activations, and an image-to-image architecture introduced by Song and Ermon [24] that is inspired by architectures for image segmentation.

For the first network type, we write "ReLU FCN, Sigmoid output, $w_0 \rightarrow w_1 \rightarrow \ldots \rightarrow w_k \rightarrow w_{k+1}$," for integers $w_i \ge 1$, to indicate a k-hidden-layer fully connected network whose internal layers use ReLU activations and whose output layer uses sigmoid activation. The hidden layers have dimension w_1, w_2, \ldots, w_k and the network has input and output with dimension w_0, w_{k+1} respectively.

For the second network type, we replicate the architectures listed in Song and Ermon [24]. Appendix B.1, Tables 2 and 3] and refer to them by name, for example "NCSN 32^2 px" or "NCSNv2 32^2 px."

Our implementation of these experiments may be found in the supplementary code submission.

C.2 Image Sampling Parameter Sheets

MNIST \leftrightarrow **USPS**: details for qualitative transportation experiments between MNIST and USPS in Figure 3 are given in Table 4.

CelebA, Blur-CelebA \rightarrow **CelebA**: we sample 64^2 px CelebA images. The Blur-CelebA dataset is composed of CelebA images which are first resized to 32^2 px and then resized back to 64^2 px, creating a blurred effect. The FID computations in Table ?? used a shared set of training parameters given in Table 5. The sampling parameters for each FID computation are given in Table 6.

Synthetic Data: details for the synthetic data experiment shown in Figure 2 are given in Table 7.

Problem Aspect	Hyperparameters	Numbers and details		
Source	Dataset	USPS [19]		
	Preprocessing	None		
Target	Dataset	MNIST [13]		
	Preprocessing	Nearest neighbor resize to 16^2 px.		
	Architecture	NCSN 32^2 px, applied as-is to 16^2 px images.		
Score Estimator	Loss	Denoising Score Matching		
Score Estimator	Ontimization	Adam, $lr = 10^{-4}$, $\beta_1 = 0.9$, $\beta_2 = 0.999$.		
	Optimization	No EMA of model parameters.		
	Training	40000 training iterations,		
	Training	128 samples per minibatch.		
	A 1 1 /	ReLU network with ReLU output activation,		
	Architecture	$256 \rightarrow 1024 \rightarrow 1024 \rightarrow 1$		
Compatibility	Regularization	χ^2 Regularization, $\lambda = 0.001$.		
	Optimization	Adam, lr = 10^{-6} , $\beta_1 = 0.9$, $\beta_2 = 0.999$		
	Training	5000 training iterations,		
	Tanning	1000 samples per minibatch.		
	Architecture	ReLU network with sigmoid output activation,		
Barycentric		$256 \rightarrow 1024 \rightarrow 1024 \rightarrow 256.$		
Projection		Input pixels are scaled to $[-1, 1]$ by $x \mapsto 2x - 1$.		
Tojection	Optimization	Adam, lr = 10^{-6} , $\beta_1 = 0.9$, $\beta_2 = 0.999$		
	Training	5000 training iterations,		
		1000 samples per minibatch.		
	Annealing Schedule	7 noise levels decaying geometrically,		
Sampling		$\sigma_0 = 0.2154, \dots, \sigma_6 = 0.01.$		
	Step size	$\epsilon = 5 \cdot 10^{-6}$		
	Steps per noise level	T = 20		
	Denoising? [9]	Yes		
	χ^2 SoftPlus threshold	$\alpha = 1000$		

Table 4: Data and model details for the **USPS** \rightarrow **MNIST** qualitative experiment shown in Figure 3. For **MNIST** \rightarrow **USPS**, we use the same configuration with source and target datasets swapped.

Problem Aspect	Hyperparameters	Numbers and details	
Source	Dataset	CelebA or Blur-CelebA [17]	
Source		140^2 px center crop.	
	Preprocessing	If Blur-CelebA: nearest neighbor resize to 32^2 px.	
		Nearest neighbor resize to 64^2 px.	
		Horizontal flip with probability 0.5.	
Torgot	Dataset	CelebA [17]	
Target		140^2 px center crop.	
	Preprocessing	Nearest neighbor resize to 64^2 px.	
		Horizontal flip with probability 0.5.	
	Architecture	NCSNv2 64 ² px.	
Score Estimator	Loss	Denoising Score Matching	
Score Estimator	Optimization	Adam, $lr = 10^{-4}$, $\beta_1 = 0.9$, $\beta_2 = 0.999$.	
		Parameter EMA at rate 0.999.	
	Training	210000 training iterations,	
		128 samples per minibatch.	
	Architecture	ReLU network with ReLU output activation,	
		$3 \cdot 64^2 \rightarrow 2048 \rightarrow \ldots \rightarrow 2048 \rightarrow 1$ (8 hidden layers).	
Compatibility	Regularization	Varies in χ^2 reg., $\lambda \in \{0.1, 0.1, 0.001\},\$	
		and KL reg., $\lambda \in \{0.1, 0.01, 0.005\}$.	
	Optimization	Adam, lr = 10^{-6} , $\beta_1 = 0.9$, $\beta_2 = 0.999$	
	Training	5000 training iterations,	
		1000 samples per minibatch.	
Barycentric	Architecture	NCSNv2 64 ² px applied as-is for image generation.	
	Optimization	Adam, $lr = 10^{-7}$, $\beta_1 = 0.9$, $\beta_2 = 0.999$	
Projection	Training	20000 training iterations,	
		64 samples per minibatch.	

Table 5: Training details for the **CelebA**, **Blur-CelebA** \rightarrow **CelebA** FID experiment (Figure 2).

Problem	Noise (σ_1, σ_k)	Step Size	Steps	Denoising? 9	χ^2 SoftPlus Param.
$\chi^2, \lambda = 0.1$	(9, 0.01)	$15 \cdot 10^{-7}$	k = 500	Yes	$\alpha = 10$
$\chi^2, \lambda = 0.01$	I				
$\chi^2, \lambda = 0.001$	I				
KL, $\lambda = 0.1$	(90, 0.1)	$15\cdot 10^{-7}$	k = 500	Yes	_
KL, $\lambda = 0.01$	I				
KL, $\lambda = 0.005$	(90, 0.1)	$1 \cdot 10^{-7}$	k = 500	Yes	-

Table 6: Sampling details for the **CelebA**, **Blur-CelebA** \rightarrow **CelebA** FID experiment (Figure 2).

Problem Aspect	Hyperparameters	Numbers and details	
Source	Detect	Gaussian in \mathbb{R}^{784} ,	
	Dataset	Mean and covariance are that of MNIST	
	Preprocessing	None	
Turnet	Dataset	Unit gaussian in \mathbb{R}^{784} .	
Target	Preprocessing	None	
Score Estimator	Architecture	None (score is given by closed form)	
	Architecture	ReLU network with ReLU output activation,	
		$784 \rightarrow 2048 \rightarrow 2048 \rightarrow 2048 \rightarrow 2048 \rightarrow 1$	
Compatibility	Regularization	KL Regularization, $\lambda \in \{1, 0.5, 0.25\}$.	
	Optimization	Adam, $lr = 10^{-6}$, $\beta_1 = 0.9$, $\beta_2 = 0.999$	
	Training	5000 training iterations,	
	ITaning	1000 samples per minibatch.	
	Annealing Schedule	No annealing.	
	Step size	$\epsilon = 5 \cdot 10^{-3}$	
Sampling	Mixing steps	T = 1000	
	Denoising? [9]	Not applicable.	

 Table 7: Sampling and model details for the synthetic experiment shown in Figure 2.