A Regularizing Optimal Transport with f-Divergences

Name	$f(v)$	$f^{*}(v)$	$f^{* \prime}$	$\operatorname{Dom}\left(f^{*}(v)\right)$
Kullback-Leibler	$v \log (v)$	$\exp (v-1)$	$\exp (v-1)$	$v \in \mathbb{R}$
Reverse KL	$-\log (v)$	$\log \left(-\frac{1}{v}\right)-1$	$-\frac{1}{v}$	$v<0$
Pearson χ^{2}	$(v-1)^{2}$	$\frac{v^{2}}{4}+v$	$\frac{v}{2}+1$	$v \in \mathbb{R}$
Squared Hellinger	$(\sqrt{v}-1)^{2}$	$\frac{v}{1-v}$	$(1-v)^{-2}$	$v<1$
Jensen-Shannon	$-(v+1) \log \left(\frac{1+v}{2}\right)+v \log v$	$\frac{e^{x}}{2-e^{x}}$	$\frac{2 x}{e^{x}-2}+x-\log \left(2-e^{x}\right)$	$v<\log (2)$
GAN	$v \log (v)-(v+1) \log (v+1)$	$-v-\log \left(e^{-v}-1\right)$	$\left(e^{-y}-1\right)^{-1}$	$v<0$

Table 3: A list of f-Divergences, their Fenchel-Legendre conjugates, and the derivative of their conjugates. These functions determine the corresponding dual regularizers $H_{f}^{*}(v)$ and compatibility functions $M_{f}(v)$. We take definitions of each divergence from [21]. Note that there are many equivalent formulations as each $f(v)$ is defined only up to additive $c(t-1), c \in \mathbb{R}$, and the resulting optimization problems are defined only up to shifting and scaling the objective.

Here are some general properties of f-Divergences which are also used in Section We provide examples of f-Divergences in Table 3. The specific forms of $H_{f}^{*}(v)$ and $M_{f}(v)$ are determined by $f(v), f^{*}(v)$, and $f^{* \prime}(v)$, which can in turn be used to formulate Algorithms 1 and 2 for each divergence.
Definition A. 1 (f-Divergences). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be convex with $f(1)=0$ and let p, q be probability measures such that p is absolutely continuous with respect to q. The corresponding f-Divergence is defined $D_{f}(p \| q)=\mathbb{E}_{q}\left[f\left(\frac{d p(x)}{d q(x)}\right)\right]$ where $\frac{d p(x)}{d q(x)}$ is the Radon-Nikodym derivative of p w.r.t. q.
Proposition A. 2 (Strong Convexity of D_{f}). Let \mathcal{X} be a countable compact metric space. Fix $q \in \mathcal{M}_{+}(\mathcal{X})$ and let $\mathcal{P}_{q}(\mathcal{X})$ be the set of probability measures on \mathcal{X} that are absolutely continuous with respect to q and which have bounded density over \mathcal{X}. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be α-strongly convex with corresponding f-Divergence $D_{f}(p \| q)$. Then, the function $H_{f}(p):=D_{f}(p \| q)$ defined over $p \in \mathcal{P}_{q}(\mathcal{X})$ is α-strongly convex in 1-norm: for $p_{0}, p_{1} \in \mathcal{P}_{q}(\mathcal{X})$,

$$
\begin{equation*}
H_{f}\left(p_{1}\right) \geq H_{f}\left(p_{0}\right)+\left\langle\nabla_{p} H_{f}\left(p_{0}\right), p_{1}-p_{0}\right\rangle+\frac{\alpha}{2}\left|p_{1}-p_{0}\right|_{1}^{2} . \tag{2}
\end{equation*}
$$

Proof. Define the measure $p_{t}=t p_{1}+(1-t) p_{0}$. Then H_{f} satisfies the following convexity inequality (Melbourne [20], Proposition 2).

$$
H_{f}\left(p_{t}\right) \leq t H_{f}\left(p_{1}\right)+(1-t) H_{f}\left(p_{0}\right)-\alpha\left(t\left|p_{1}-p_{t}\right|_{\mathrm{TV}}^{2}+(1-t)\left|p_{0}-p_{t}\right|_{\mathrm{TV}}^{2}\right)
$$

By assumption that \mathcal{X} is countable, $|p-q|_{\mathrm{TV}}=\frac{1}{2}|p-q|_{1}$. It follows that,

$$
\begin{aligned}
H_{f}\left(p_{1}\right) & \geq H_{f}\left(p_{0}\right)+\frac{H_{f}\left(p_{0}+t\left(p_{1}-p_{0}\right)\right)-H_{f}\left(p_{0}\right)}{t}+\frac{\alpha}{2}\left(\left|p_{1}-p_{t}\right|_{1}^{2}+\left(t^{-1}-1\right)\left|p_{0}-p_{t}\right|_{1}^{2}\right) \\
& \geq H_{f}\left(p_{0}\right)+\frac{H_{f}\left(p_{0}+t\left(p_{1}-p_{0}\right)\right)-H_{f}\left(p_{0}\right)}{t}+\frac{\alpha}{2}\left|p_{1}-p_{t}\right|_{1}^{2}
\end{aligned}
$$

and, taking the limit $t \rightarrow 0$, the inequality (2) follows.

For the purposes of solving empirical regularized optimal transport, the technical conditions of Proposition A. 2 hold. Additionally, note that α-strong convexity of f is sufficient but not necessary for strong convexity of H_{f}. For example, entropy regularization uses $f_{\mathrm{KL}}(v)=v \log (v)$ which is not strongly convex over its domain, \mathbb{R}_{+}, but which yields a regularizer $H_{\mathrm{KL}}(p)=\mathrm{KL}(p \| q)$ that is 1 -strongly convex in l_{1} norm when q is uniform. This follows from Pinksker's inequality as shown in [22]. Also, if f is α-strongly convex over a subinterval [a, b] of its domain, then Proposition A. 2 holds under the additional assumption that $a \leq \frac{d p(x)}{d q(x)}(x) \leq b$ uniformly over $x \in \mathcal{X}$.

B Proofs

For convenience, we repeat the main assumptions and statements of theorems alongside their proofs. First, we prove the following properties about f-divergences.
Proposition, 2.4-Regularization with f-Divergences. Consider the empirical setting of Definition 2.1 Let $f(v): \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable α-strongly convex function with convex conjugate $f^{*}(v)$. Set $f^{* \prime}(v)=\partial_{v} f^{*}(v)$. Define the violation function $V(x, y ; \varphi, \psi)=\varphi(x)+\psi(y)-c(x, y)$. Then,

1. The D_{f} regularized primal problem $K_{\lambda}(\pi)$ is $\lambda \alpha$-strongly convex in l_{1} norm. With respect to dual variables $\varphi \in \mathbb{R}^{\mid \mathcal{X |}}$ and $\psi \in \mathbb{R}^{|\mathcal{Y}|}$, the dual problem $J_{\lambda}(\varphi, \psi)$ is concave, unconstrained, and $\frac{1}{\lambda \alpha}$-strongly smooth in l_{∞} norm. Strong duality holds: $K_{\lambda}(\pi) \geq J_{\lambda}(\varphi, \psi)$ for all π, φ, ψ, with equality for some triple $\pi^{*}, \varphi^{*}, \psi^{*}$.
2. $J_{\lambda}(\varphi, \psi)$ takes the form

$$
J_{\lambda}(\varphi, \psi)=\mathbb{E}_{\mu}[\varphi(x)]+\mathbb{E}_{\sigma}[\psi(y)]-\mathbb{E}_{\mu \times \sigma}\left[H_{f}^{*}(V(x, y ; \varphi, \psi))\right]
$$

where $H_{f}^{*}(v)=\lambda f^{*}\left(\lambda^{-1} v\right)$.
3. The optimal solutions $\left(\pi^{*}, \varphi^{*}, \psi^{*}\right)$ satisfy

$$
\pi^{*}(x, y)=M_{f}(V(x, y ; \varphi, \psi)) \mu(x) \sigma(y)
$$

where $M_{f}(x, y)=f^{* \prime}\left(\lambda^{-1} v\right)$.

Proof. By assumption that f is differentiable, $K_{\lambda}(\pi)$ is continuous and differentiable with respect to $\pi \in \mathcal{M}_{+}(\mathcal{X} \times \mathcal{Y})$. By Proposition A.2, it is $\lambda \alpha$-strongly convex in l_{1} norm. By the Fenchel-Moreau theorem, $K_{\lambda}(\pi)$ therefore has a unique minimizer π^{*} satisfying strong duality, and by [10, Theorem 6], the dual problem is $\frac{1}{\lambda \alpha}$-strongly smooth in l_{∞} norm.
The primal and dual are related by the Lagrangian $\mathcal{L}(\pi, \varphi, \psi)$,

$$
\begin{equation*}
\mathcal{L}(\varphi, \psi, \pi)=\mathbb{E}_{\pi}[c(x, y)]+\lambda H_{f}(\pi)+\mathbb{E}_{\mu}[\varphi(x)]-\mathbb{E}_{\pi}[\varphi(x)]+\mathbb{E}_{\sigma}[\varphi(y)]-\mathbb{E}_{\pi}[\psi(y)] \tag{3}
\end{equation*}
$$

which has $K_{\lambda}(\pi)=\max _{\varphi, \psi} \mathcal{L}(\varphi, \psi, \pi)$ and $J_{\lambda}(\varphi, \psi)=\min _{\pi} \mathcal{L}(\varphi, \psi, \pi)$. In the empirical setting, π, μ, σ may be written as finite dimensional vectors with coordinates $\pi_{x, y}, \mu_{x}, \sigma_{y}$ for $x, y \in \mathcal{X} \times \mathcal{Y}$. Minimizing the π terms of J_{λ},

$$
\begin{aligned}
\min _{\pi \in \mathcal{M}(\mathcal{X} \times \mathcal{Y})} & \left\{\mathbb{E}_{\pi}[c(x, y)-\varphi(x)-\psi(y)]+\lambda \mathbb{E}_{\mu \times \sigma}\left[f\left(\frac{d \pi(x, y)}{d \mu(x) d \sigma(y)}\right)\right]\right\} \\
& =\sum_{x, y \in \mathcal{X} \times \mathcal{Y}}-\max _{\pi_{x, y} \geq 0}\left\{\pi_{x, y} \cdot(\varphi(x)+\psi(y)-c(x, y))-\lambda \mu_{x} \sigma_{y} f\left(\frac{\pi_{x, y}}{\mu_{x} \sigma_{y}}\right)\right\} \\
& =\sum_{x, y \in \mathcal{X} \times \mathcal{Y}}-h_{x, y}^{*}(\varphi(x)+\psi(y)-c(x, y))
\end{aligned}
$$

where $h_{x, y}^{*}$ is the convex conjugate of $\left(\lambda \mu_{x} \sigma_{y}\right) \cdot f\left(p /\left(\mu_{x} \sigma_{y}\right)\right)$ w.r.t. the argument p. For general convex $f(p)$, it is true that $[\lambda f(p)]^{*}(v)=\lambda f^{*}\left(\lambda^{-1} v\right)$ [3, Chapter 3]. Applying twice,

$$
\left[\left(\lambda \mu_{x} \sigma_{y}\right) \cdot f\left(p /\left(\mu_{x} \sigma_{y}\right)\right)\right]^{*}(v)=\lambda\left[\left(\mu_{x} \sigma_{y}\right) f\left(p /\left(\mu_{x} \sigma_{y}\right)\right)\right]^{*}\left(\lambda^{-1} v\right)=\left(\lambda \mu_{x} \sigma_{y}\right) \cdot f^{*}(v / \lambda)
$$

so that

$$
\begin{aligned}
\min _{\pi \in \mathcal{M}_{+}(\mathcal{X} \times \mathcal{Y})} & \mathbb{E}_{\pi}[c(x, y)-\varphi(x)-\psi(y)]+\lambda \mathbb{E}_{\mu \times \sigma}\left[f\left(\frac{d \pi(x, y)}{d \mu(x) d \sigma(y)}\right)\right] \\
& =\sum_{x, y \in \mathcal{X} \times \mathcal{Y}} \mu_{x} \sigma_{y} \lambda f^{*}\left(\lambda^{-1} v\right) \\
& =-\mathbb{E}_{\mu \times \sigma}\left[H_{f}^{*}(V(x, y ; \varphi, \psi))\right]
\end{aligned}
$$

for $H_{f}^{*}(v)=\lambda f^{*}\left(\lambda^{-1} v\right)$. The claimed form of $J_{\lambda}(\varphi, \psi)$ follows.

Additionally, for general convex $f(p)$, it is true that $\partial_{v} f^{*}(v)=\arg \max _{p}\{\langle v, p\rangle-f(p)\}$, [3, Chapter 3]. For φ^{*}, ψ^{*} maximizing $J_{\lambda}(\varphi, \psi)$, it follows by strong duality that

$$
\begin{aligned}
\pi_{x, y}^{*} & =\underset{\pi \in \mathcal{M}_{+}(\mathcal{X} \times \mathcal{Y})}{\arg \min } \mathcal{L}\left(\varphi^{*}, \psi^{*}, \pi\right) \\
& =\nabla_{V} \mathbb{E}_{\mu \times \sigma}\left[H_{f}^{*}\left(V\left(x, y ; \varphi^{*}, \psi^{*}\right)\right)\right]=M_{f}\left(V\left(x, y ; \varphi^{*}, \psi^{*}\right)\right) \mu_{x} \sigma_{y}
\end{aligned}
$$

as claimed.

We proceed to proofs of the theorems stated in Section 4
Assumption, 4.1 - Approximate Linearity. Let $f_{\theta}(x)$ be a neural network and set $\mathcal{K}_{\theta}(x)=$ $\left[J_{\theta}^{f}(x)\right]\left[J_{\theta}^{f}(x)\right]^{T}$ where $J_{\theta}^{f}(x)$ is the Jacobian of $f_{\theta}(x)$ with respect to θ. Let Θ be a set of feasible weights, for example those reachable by gradient descent. Then $f_{\theta}(x)$ must satisfy,

1. There exists $R \gg 0$ so that $\Theta \subseteq B(0, R)$, where $B(0, R)$ is the Euclidean ball of radius R.
2. There exist $\rho_{M}>\rho_{m}>0$ such that for $\theta \in \Theta$ and for all data points $\left\{X_{i}\right\}_{i=1}^{N}$,

$$
\rho_{M} \geq \lambda_{\max }\left(\mathcal{K}_{\theta}\left(X_{i}\right)\right) \geq \lambda_{\min }\left(\mathcal{K}_{\theta}\left(X_{i}\right)\right) \geq \rho_{m}>0
$$

3. For $\theta \in \Theta$ and for all data points $\left\{X_{i}\right\}_{i=1}^{N}$, the Hessian matrix $D_{\theta}^{2} f_{\theta}\left(x_{i}\right)$ is bounded in spectral norm:

$$
\left\|D_{\theta}^{2} f_{\theta}\left(x_{i}\right)\right\| \leq \frac{\rho_{M}}{C_{h}}
$$

where $C_{h} \gg 0$ depends only on R, N, and the regularization λ.
The constant C_{h} may depend on the dataset size N, the upper bound of ρ_{M} for eigenvalues of the NTK, the regularization parameter λ, and it may also depend indirectly on the bound R.
Theorem, 4.2-Optimizing Neural Nets. Suppose $J_{\lambda}(\varphi, \psi)$ is $\frac{1}{s}$-strongly smooth in l_{∞} norm. Let $\varphi_{\theta}, \psi_{\theta}$ be neural networks satisfying Assumption 4.1 for the dataset $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}, N=|\mathcal{X}| \cdot|\mathcal{Y}|$.
Then gradient descent of $J_{\lambda}\left(\varphi_{\theta}, \psi_{\theta}\right)$ with respect to θ at learning rate $\eta=\frac{\lambda}{2 \rho_{M}}$ converges to an ϵ-approximate global maximizer of J_{λ} in at $\operatorname{most}\left(\frac{2 \kappa R^{2}}{s}\right) \epsilon^{-1}$ iterations, where $\kappa=\frac{\rho_{M}}{\rho_{m}}$.

Proof. For indices i, let $S_{\theta_{i}}=\left(\varphi_{\theta_{i}}, \psi_{\theta_{i}}\right)$ so that Assumption4.1 applies with S_{θ} in place of f_{θ}.
Lemma B. 1 (Smoothness). $J_{\lambda}\left(S_{\theta}\right)$ is $\frac{2 \rho_{M}}{s}$-strongly smooth in l_{2} norm with respect to θ :

$$
J_{\lambda}\left(S_{\theta_{2}}\right) \leq J_{\lambda}\left(S_{\theta_{1}}\right)+\left\langle\nabla_{\theta} J_{\lambda}\left(S_{\theta_{1}}\right), S_{\theta_{2}}-S_{\theta_{1}}\right\rangle+\frac{\rho_{M}}{\lambda}\left\|\theta_{2}-\theta_{1}\right\|_{2}^{2}
$$

Proof. It is assumed that $J_{\lambda}(S)$ is $\left(\frac{1}{s}, l_{\infty}\right)$-strongly smooth and that $K_{\lambda}(\pi)$ is $\left(s, l_{1}\right)$-strongly convex. Note that $\left(\frac{1}{s}, l_{2}\right)$-strong smoothness is weakest in the sense that it is implied via norm equivalence by $\left(\frac{1}{s}, l_{q}\right)$-strong smoothness for $2 \leq q \leq \infty$.

$$
\begin{aligned}
J_{\lambda}\left(S_{2}\right) & \leq J_{\lambda}\left(S_{1}\right)+\left\langle\nabla_{S} J_{\lambda}\left(S_{1}\right), S_{2}-S_{1}\right\rangle+\frac{1}{2 s}\left|S_{2}-S_{1}\right|_{q}^{2} \\
\Longrightarrow J_{\lambda}\left(S_{2}\right) & \leq J_{\lambda}\left(S_{1}\right)+\left\langle\nabla_{S} J_{\lambda}\left(S_{1}\right), S_{2}-S_{1}\right\rangle+\frac{1}{2 s}\left\|S_{2}-S_{1}\right\|_{2}^{2}
\end{aligned}
$$

A symmetric property holds for $\left(s, l_{2}\right)$-strong convexity of $K_{\lambda}(\pi)$ which is implied by $\left(s, l_{p}\right)$-strong convexity, $1 \leq p \leq 2$. By Assumption 4.1 .

$$
\begin{equation*}
J_{\lambda}\left(S_{\theta_{2}}\right)-J_{\lambda}\left(S_{\theta_{1}}\right)-\left\langle\nabla_{S} J_{\lambda}\left(S_{\theta_{1}}\right), S_{\theta_{2}}-S_{\theta_{1}}\right\rangle \leq \frac{1}{2 s}\left\|S_{\theta_{2}}-S_{\theta_{1}}\right\|_{2}^{2} \leq \frac{\rho_{M}}{2 s}\left\|\theta_{2}-\theta_{1}\right\|_{2}^{2} \tag{4}
\end{equation*}
$$

To establish smoothness, it remains to bound $\left\langle\nabla_{S} J_{\lambda}\left(S_{\theta_{1}}\right), S_{\theta_{2}}-S_{\theta_{1}}\right\rangle$. Set $v=\nabla_{S} J_{\lambda}\left(S_{\theta_{1}}\right) \in \mathbb{R}^{n}$ and consider the first-order Taylor expansion in θ of $\left\langle v, S_{\theta}\right\rangle$ evaluated at $\theta=\theta_{2}$. Applying Lagrange's form of the remainder, there exists $0<c<1$ such that

$$
\begin{aligned}
\left\langle v, S_{\theta_{2}}\right\rangle= & \left\langle v, S_{\theta_{1}}\right\rangle+\left\langle v, J_{\theta}^{S}\left(S_{\theta_{2}}-S_{\theta_{1}}\right)\right\rangle \\
& +\frac{1}{2} \sum_{i=1}^{n} v_{i}\left(\theta_{2}-\theta_{1}\right)^{T}\left[D_{\theta}^{2}\left(S_{\theta_{1}}\left(x_{i}\right)+c\left(S_{\theta_{2}}\left(x_{i}\right)-S_{\theta_{1}}\left(x_{i}\right)\right)\right)\right]\left(\theta_{2}-\theta_{1}\right)
\end{aligned}
$$

and so by Cauchy-Schwartz,

$$
\left\langle v, S_{\theta_{2}}-S_{\theta_{1}}\right\rangle \leq\left\langle v, J_{\theta}^{S}\left(S_{\theta_{2}}-S_{\theta_{1}}\right)\right\rangle+\frac{\left\|D_{\theta}^{2}\right\|}{2} \sqrt{N}\|v\|_{2}\left\|\theta_{2}-\theta_{1}\right\|_{2}^{2} \leq \frac{\rho_{M}}{2 s}\left\|\theta_{2}-\theta_{1}\right\|_{2}^{2}
$$

The final inequality follows by taking $C_{h} \geq \lambda \sqrt{N} \sup _{v}\|v\|_{2}$. This supremum is bounded by assumption that $\Theta \subseteq B(0, R)$. Plugging in $v=\nabla_{S} J_{\lambda}\left(S_{\theta_{1}}\right)$, we have

$$
\begin{aligned}
\left\langle\nabla_{S} J_{\lambda}\left(S_{\theta_{1}}\right), S_{\theta_{2}}-S_{\theta_{1}}\right\rangle & \leq\left\langle\nabla_{S} J_{\lambda}\left(S_{\theta_{1}}\right), J_{\theta}^{S}\left(S_{\theta_{2}}-S_{\theta_{1}}\right)\right\rangle+\frac{\rho_{M}}{2 s}\left\|\theta_{2}-\theta_{1}\right\|_{2}^{2} \\
& =\left\langle\nabla_{\theta} J_{\lambda}\left(S_{\theta_{1}}\right), \theta_{2}-\theta_{1}\right\rangle+\frac{\rho_{M}}{2 s}\left\|\theta_{2}-\theta_{1}\right\|_{2}^{2}
\end{aligned}
$$

Returning to 44, we have

$$
J_{\lambda}\left(S_{\theta_{2}}\right)-J_{\lambda}\left(S_{\theta_{1}}\right) \leq\left\langle\nabla_{\theta} J_{\lambda}\left(S_{\theta_{1}}\right), \theta_{2}-\theta_{1}\right\rangle+\frac{\rho_{M}}{s}\left\|\theta_{2}-\theta_{1}\right\|_{2}^{2}
$$

from which Lemma B. 1 follows.
Lemma B. 2 (Gradient Descent). Gradient descent over the parameters θ with learning rate $\eta=\frac{s}{2 \rho_{M}}$ converges in T iterations to parameters θ_{t} satisfying $J_{\lambda}\left(S_{\theta_{t}}\right)-J_{\lambda}\left(S^{*}\right) \leq\left(\frac{2 \kappa R^{2}}{s}\right) \frac{1}{T}$ where $\kappa=\frac{\rho_{M}}{\rho_{m}}$ is the condition number.

Proof. Fix θ_{0} and set $\theta_{t+1}=\theta_{t}-\eta \nabla_{\theta} J_{\lambda}\left(S_{\theta}\right)$. The step size η is chosen so that by Lemma B. 1 $J_{\lambda}\left(S_{t}\right)-J_{\lambda}\left(S_{t+1}\right) \geq \frac{s}{2 \rho_{M}}\left\|\nabla_{\theta} J_{\lambda}\left(S_{\theta_{t}}\right)\right\|_{2}^{2}$.

By convexity, $J_{\lambda}\left(S^{*}\right) \geq J_{\lambda}\left(S_{\theta_{t}}\right)+\left\langle\nabla_{S} J_{\lambda}\left(S_{\theta_{t}}\right), S^{*}-S_{\theta_{t}}\right\rangle$, so that

$$
\left\|\nabla_{\theta} J_{\lambda}\left(S_{\theta_{t}}\right)\right\|_{2}^{2} \geq \rho_{m}\left\|\nabla_{S} J_{\lambda}\left(S_{\theta_{t}}\right)\right\|_{2}^{2} \geq\left(J_{\lambda}\left(S_{\theta_{t}}\right)-J_{\lambda}\left(S^{*}\right)\right)^{2}\left(\frac{\rho_{m}}{\left\|S_{\theta_{t}}-S^{*}\right\|_{2}^{2}}\right)
$$

Setting $\Delta_{t}=J_{\lambda}\left(S_{\theta_{t}}\right)-J_{\lambda}\left(S^{*}\right)$, this implies $\Delta_{t} \geq \Delta_{t+1}+\Delta_{t}^{2}\left(\frac{s \rho_{m}}{2 \rho_{M}\left\|S_{\theta_{t}}-S^{*}\right\|_{2}^{2}}\right)$ and thus $\Delta_{t} \leq$ $\left[T\left(\frac{s \rho_{m}}{2 \rho_{M}\left\|S_{\theta_{t}}-S^{*}\right\|_{2}^{2}}\right)\right]^{-1}$. The claim follows from $\left\|S_{\theta_{t}}-S^{*}\right\|_{2}<R$.

Theorem 4.2 follows immediately from Lemmas B. 1 and B. 2
Theorem, 4.3-Stability of Regularized OT Problem. Suppose $K_{\lambda}(\pi)$ is s-strongly convex in l_{1} norm and let $\mathcal{L}(\varphi, \psi, \pi)$ be the Lagrangian of the regularized optimal transport problem. For $\hat{\varphi}, \hat{\psi}$ which are ϵ-approximate maximizers of $J_{\lambda}(\varphi, \psi)$, the pseudo-plan $\hat{\pi}=M_{f}(V(x, y ; \hat{\varphi}, \hat{\psi})) \mu(x) \sigma(y)$ satisfies

$$
\left|\hat{\pi}-\pi^{*}\right|_{1} \leq \sqrt{\frac{2 \epsilon}{s}} \leq \frac{1}{s}\left|\nabla_{\hat{\pi}} \mathcal{L}(\hat{\varphi}, \hat{\psi}, \hat{\pi})\right|_{1}
$$

Proof. For indices i, denote by S_{i} the tuple $\left(\varphi_{i}, \psi_{i}, \pi_{i}\right)$. The regularized optimal transport problem has Lagrangian $\mathcal{L}(\varphi, \psi, \pi)$ given by

$$
\mathcal{L}(\varphi, \psi, \pi)=\mathbb{E}_{\pi}[c(x, y)]+\lambda H_{f}(\pi)+\mathbb{E}_{\mu}[\varphi(x)]-\mathbb{E}_{\pi}[\varphi(x)]+\mathbb{E}_{\sigma}[\varphi(y)]-\mathbb{E}_{\pi}[\psi(y)]
$$

Because $\mathcal{L}(\varphi, \psi, \pi)$ is a sum of $K_{\lambda}(\pi)$ and linear terms, the Lagrangian inherits s-strong convexity w.r.t. the argument π :

$$
\mathcal{L}\left(S_{2}\right) \geq \mathcal{L}\left(S_{1}\right)+\left\langle\nabla \mathcal{L}\left(S_{1}\right), S_{2}-S_{1}\right\rangle+\frac{s}{2}\left|\pi_{2}-\pi_{1}\right|_{1}^{2}
$$

Letting $S^{*}=\left(\varphi^{*}, \psi^{*}, \pi^{*}\right)$ be the optimal solution and $\hat{S}=(\hat{\varphi}, \hat{\psi}, \hat{\pi})$ be an ϵ-approximation, it follows that

$$
\begin{equation*}
\epsilon \geq \mathcal{L}(\hat{S})-\mathcal{L}\left(S^{*}\right) \geq \frac{s}{2}\left|\hat{\pi}-\pi^{*}\right|_{1}^{2} \Longrightarrow\left|\hat{\pi}-\pi^{*}\right| \leq \sqrt{\frac{2 \epsilon}{s}} \tag{5}
\end{equation*}
$$

Additionally, note that strong convexity implies a Polyak-Łojasiewicz (PL) inequality w.r.t. $\hat{\pi}$.

$$
\begin{equation*}
s\left(\mathcal{L}(\hat{S})-\mathcal{L}\left(S^{*}\right)\right) \leq \frac{1}{2}\left|\nabla_{\pi} \mathcal{L}(\hat{S})\right|_{1}^{2} \tag{6}
\end{equation*}
$$

The second inequality follows from (5) and the PL inequality (6).

B. 1 Statistical Estimation of Sinkhorn Plans

We consider consider estimating an entropy regularized OT plan when $\mathcal{Y}=\mathcal{X}$. Let $\hat{\mu}, \hat{\sigma}$ be empirical distributions generated by drawing $n \geq 1$ i.i.d. samples from μ, σ respectively. Let π_{n}^{λ} be the Sinkhorn plan between $\hat{\mu}$ and $\hat{\sigma}$ at regularization λ, and let $\mathrm{D}:=\operatorname{diam}(\mathcal{X})$. For simplicity, we also assume that μ and σ are sub-Gaussian. We also assume that n is fixed. Under these assumptions, we will show that $W_{1}\left(\pi_{n}^{\lambda}, \pi^{\lambda}\right) \lesssim n^{-1 / 2}$.
The following result follows from Proposition E. 4 and E. 5 of of Luise et al. [18] and will be useful in deriving the statistical error between π_{n}^{λ} and π^{λ}. This result characterizes fast statistical convergence of the Sinkhorn potentials as long as the cost is sufficiently smooth.
Proposition B.3. Suppose that $c \in \mathcal{C}^{s+1}(\mathcal{X} \times \mathcal{X})$. Then, for any μ, σ probability measures supported on \mathcal{X}, with probability at least $1-\tau$,

$$
\left\|v-v_{n}\right\|_{\infty},\left\|u-u_{n}\right\|_{\infty} \lesssim \frac{\lambda e^{3 \mathrm{D} / \lambda} \log 1 / \tau}{\sqrt{n}}
$$

where (u, v) are the Sinkhorn potentials for μ, σ and $\left(u_{n}, v_{n}\right)$ are the Sinkhorn potentials for $\hat{\mu}, \hat{\sigma}$. Let $\pi_{n}^{\lambda}=M_{n} \mu_{n} \sigma_{n}$ and $\pi^{\lambda}=M \mu \sigma$, We recall that

$$
\begin{aligned}
M(x, y) & =\frac{1}{e} \exp \left(\frac{1}{\lambda}(\varphi(x)+\psi(y)-c(x, y))\right) \\
M_{n}(x, y) & =\frac{1}{e} \exp \left(\frac{1}{\lambda}\left(\varphi_{n}(x)+\psi_{n}(y)-c(x, y)\right)\right),
\end{aligned}
$$

We note that M and M_{n} are uniformly bounded by $e^{3 \mathrm{D} / \lambda}[18]$ and M inherits smoothness properties from φ, ψ, and c.
We can write (for some optimal, bounded, 1-Lipschitz f_{n})

$$
\begin{align*}
W_{1}\left(\pi_{n}^{\lambda}, \pi^{\lambda}\right) & =\left|\int f_{n} \pi_{n}^{\lambda}-\int f_{n} \pi^{\lambda}\right| \\
& \leq\left|\int f_{n}\left(H_{n}-H\right) \mu_{n} \sigma_{n}\right|+\left|\int f_{n} H\left(\mu_{n} \sigma_{n}-\mu \sigma\right)\right| \\
& \leq\left|f_{n}\right|_{\infty}\left|H_{n}-H\right|_{\infty}+\left|\int f_{n} H\left(\mu_{n} \sigma_{n}-\mu \sigma\right)\right| \tag{7}
\end{align*}
$$

If μ and σ are β^{2} subGaussian, then we can bound the second term with high probability:

$$
\mathbb{P}\left(\left|\frac{1}{n^{2}} \sum_{i} \sum_{j} f_{n}\left(X_{i}, Y_{j}\right) H\left(X_{i}, Y_{j}\right)-\mathbb{E}_{\mu \times \sigma} f_{n}(X, Y) H(X, Y)\right|>t\right)<e^{-n^{2} \frac{t^{2}}{2 \beta^{2}}}
$$

Setting $t=\sqrt{2} \log (\delta) \beta / n$ in this expression, we get that w.p. at least $1-\delta$,

$$
\left|\frac{1}{n^{2}} \sum_{i} \sum_{j} f_{n}\left(X_{i}, Y_{j}\right) H\left(X_{i}, Y_{j}\right)-\mathbb{E}_{\mu \times \sigma} f_{n}(X, Y) H(X, Y)\right|<\frac{\sqrt{2} \beta \log \delta}{n}
$$

Now to bound the first term in (7), we use the fact that f_{n} is 1 -Lipschitz and bounded by D. For the optimal potentials φ and ψ in the original Sinkhorn problem for μ and σ, we use the result of Proposition B. 3 to yield

$$
\begin{aligned}
\left|H_{n}(x, y)-H(x, y)\right| & =\left|\frac{1}{e} \exp \left(\frac{1}{\lambda}\left(\varphi_{n}(x)+\psi_{n}(y)-c(x, y)\right)\right)-\frac{1}{e} \exp \left(\frac{1}{\lambda}(\varphi(x)+\psi(y)-c(x, y))\right)\right| \\
& \left.=\frac{1}{e} \left\lvert\, \exp \left(\frac{1}{\lambda}(\varphi(x)+\psi(y)-c(x, y))\right)\left(1-\exp \left(\frac{\varphi(x)-\varphi_{n}(x)}{\lambda}\right) \exp \left(\frac{\psi(y)-\psi_{n}(y)}{\lambda}\right)\right)\right.\right) \mid \\
& \lesssim e^{3 \mathrm{D} / \lambda}\left|1-e^{\frac{2}{\lambda \sqrt{n}}}\right| \\
& \lesssim \frac{e^{3 \mathrm{D} / \lambda}}{\lambda \sqrt{n}}
\end{aligned}
$$

Thus, putting this all together,

$$
W_{1}\left(\pi_{n}^{\lambda}, \pi^{\lambda}\right) \lesssim \frac{\mathrm{D}}{\sqrt{n}}+\frac{1}{n}
$$

Interestingly, the rate of estimation of the Sinkhorn plan breaks the curse of dimensionality. It must be noted, however, that the exponential dependence of Proposition B. 3 on λ^{-1} implies we can only attain these fast rates in appropriately large regularization regimes.

B. 2 Log-concavity of Sinkhorn Factor

The optimal entropy regularized Sinkhorn plan is given by

$$
\pi^{*}(x, y)=\frac{1}{e} \exp \left(\frac{1}{\lambda}\left(\varphi^{*}(x)+\psi^{*}(y)-c(x, y)\right)\right) \mu(x) \sigma(y)
$$

This implies that the conditional Sinkhorn density of $Y \mid X$ is

$$
\pi^{*}(y \mid x)=\frac{1}{e} \exp \left(\frac{1}{\lambda}\left(\varphi^{*}(x)+\psi^{*}(y)-c(x, y)\right)\right) \sigma(y) .
$$

The optimal potentials satisfy fixed point equations. In particular,

$$
\psi^{*}(y)=-\lambda \log \int \exp \left[-\frac{1}{\lambda}\left(c(x, y)-\varphi^{*}(x)\right)\right] d \mu(x)
$$

Using this result, one can prove the following lemma.
Lemma B. 4 ([1]). For the cost $\|x-y\|^{2}$, the map

$$
h(y)=\exp \left(\frac{1}{\lambda}\left(\varphi^{*}(x)+\psi^{*}(y)-\|x-y\|^{2}\right)\right)
$$

is log-concave.
Proof. The proof comes by differentiating the map. We calculate the gradient,

$$
\nabla \log h(y)=-2 \frac{y-x}{\lambda}+\frac{2}{\lambda} \frac{\int \exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right](y-x) d \mu(x)}{\int \exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right] d \mu(x)}
$$

and the Hessian,

$$
\begin{aligned}
& \nabla^{2} \log h(y)=-2 \frac{I}{\lambda} \\
& +\frac{4}{\lambda^{2}} \frac{\int \exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right](y-x) d \mu(x) \int \exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right](y-x)^{\top} d \mu(x)}{\left(\int \exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right] d \mu(x)\right)^{2}} \\
& -\frac{4}{\lambda^{2}} \frac{\int \exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right](y-x)(y-x)^{\top} d \mu(x)}{\int \exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right] d \mu(x)} \\
& +2 I / \lambda \frac{\int \exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right] d \mu(x)}{\int \exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right] d \mu(x)} \\
& =-\frac{4}{\lambda^{2}}\left(-\frac{\int \exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right](y-x) d \mu(x) \int \exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right](y-x)^{\top} d \mu(x)}{\left(\int \exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right] d \mu(x)\right)^{2}}\right. \\
& \left.+\frac{\int \exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right](y-x)(y-x)^{\top} d \mu(x)}{\int \exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right] d \mu(x)}\right)
\end{aligned}
$$

In the last term, we recognize that

$$
\rho(x)=\frac{\exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right]}{\int \exp \left[-\frac{1}{\lambda}\left(\|x-y\|^{2}-\varphi^{*}(x)\right)\right] d \mu(x)}
$$

forms a valid density with respect to μ, and thus

$$
\nabla^{2} \log h(y)=-\frac{4}{\lambda^{2}} \operatorname{Cov}_{\rho d \mu}(X-y)
$$

where we take the covariance matrix of $X-y$ with respect to the density $\rho d \mu$.

Suppose, for sake of argument, that $\sigma(y)$ is α strongly log-concave, and the function $h(y)$ is β strongly log-concave. Then, $\pi_{Y \mid X=x} \propto h(y) \sigma(y), \alpha+\beta$ strongly log-concave. In particular, standard results on the mixing time of the Langevin diffusion implies that the diffusion for $\pi_{Y \mid X=x}$ mixes faster than the diffusion for the marginal σ alone. Also, as $\lambda \rightarrow 0$, the function $h(y)$ concentrates around $\varphi_{O T}(x)+\psi_{O T}(y)-\|x-y\|^{2}$, where $\varphi_{O T}$ and $\psi_{O T}$ are the optimal transport potentials. In particular, if there exists an optimal transport map between μ and σ, then $h(y)$ concentrates around the unregularized optimal transport image $y=T(x)$.

C Experimental Details

C. 1 Network Architectures

Our method integrates separate neural networks playing the roles of unconditional score estimator, compatibility function, and barycentric projector. In our experiments each of these networks uses one of two main architectures: a fully connected network with ReLU activations, and an image-toimage architecture introduced by Song and Ermon [24] that is inspired by architectures for image segmentation.
For the first network type, we write "ReLU FCN, Sigmoid output, $w_{0} \rightarrow w_{1} \rightarrow \ldots \rightarrow w_{k} \rightarrow w_{k+1}$," for integers $w_{i} \geq 1$, to indicate a k-hidden-layer fully connected network whose internal layers use ReLU activations and whose output layer uses sigmoid activation. The hidden layers have dimension $w_{1}, w_{2}, \ldots, w_{k}$ and the network has input and output with dimension w_{0}, w_{k+1} respectively.
For the second network type, we replicate the architectures listed in Song and Ermon [24, Appendix B.1, Tables 2 and 3] and refer to them by name, for example "NCSN $32^{2} \mathrm{px}$ " or "NCSNv2 $32^{2} \mathrm{px}$."

Our implementation of these experiments may be found in the supplementary code submission.

C. 2 Image Sampling Parameter Sheets

MNIST \leftrightarrow USPS: details for qualitative transportation experiments between MNIST and USPS in Figure 3 are given in Table 4
CelebA, Blur-CelebA \rightarrow CelebA: we sample $64^{2} \mathrm{px}$ CelebA images. The Blur-CelebA dataset is composed of CelebA images which are first resized to $32^{2} \mathrm{px}$ and then resized back to $64^{2} \mathrm{px}$, creating a blurred effect. The FID computations in Table ?? used a shared set of training parameters given in Table 5. The sampling parameters for each FID computation are given in Table 6
Synthetic Data: details for the synthetic data experiment shown in Figure 2 are given in Table 7

Problem Aspect	Hyperparameters	Numbers and details
Source	Dataset	USPS [19]
	Preprocessing	None
Target	Dataset	MNIST [13]
	Preprocessing	Nearest neighbor resize to $16^{2} \mathrm{px}$.
Score Estimator	Architecture	NCSN $32^{2} \mathrm{px}$, applied as-is to $16^{2} \mathrm{px}$ images.
	Loss	Denoising Score Matching
	Optimization	Adam, $\operatorname{lr}=10^{-4}, \beta_{1}=0.9, \beta_{2}=0.999$. No EMA of model parameters.
	Training	40000 training iterations, 128 samples per minibatch.
Compatibility	Architecture	ReLU network with ReLU output activation, $256 \rightarrow 1024 \rightarrow 1024 \rightarrow 1$
	Regularization	χ^{2} Regularization, $\lambda=0.001$.
	Optimization	Adam, $\operatorname{lr}=10^{-6}, \beta_{1}=0.9, \beta_{2}=0.999$
	Training	5000 training iterations, 1000 samples per minibatch.
Barycentric Projection	Architecture	ReLU network with sigmoid output activation, $256 \rightarrow 1024 \rightarrow 1024 \rightarrow 256$ Input pixels are scaled to $[-1,1]$ by $x \mapsto 2 x-1$.
	Optimization	Adam, $\operatorname{lr}=10^{-6}, \beta_{1}=0.9, \beta_{2}=0.999$
	Training	5000 training iterations, 1000 samples per minibatch.
Sampling	Annealing Schedule	7 noise levels decaying geometrically, $\sigma_{0}=0.2154, \ldots, \sigma_{6}=0.01$
	Step size	$\epsilon=5 \cdot 10^{-6}$
	Steps per noise level	$T=20$
	Denoising? [9]	Yes
	χ^{2} SoftPlus threshold	$\alpha=1000$

Table 4: Data and model details for the USPS \rightarrow MNIST qualitative experiment shown in Figure 3 For MNIST \rightarrow USPS, we use the same configuration with source and target datasets swapped.

Problem Aspect	Hyperparameters	Numbers and details
Source	Dataset	CelebA or Blur-CelebA [17]
	Preprocessing	140^{2} px center crop. If Blur-CelebA: nearest neighbor resize to $32^{2} \mathrm{px}$. Nearest neighbor resize to $64^{2} \mathrm{px}$. Horizontal flip with probability 0.5 .
Target	Dataset	CelebA [17]
	Preprocessing	140^{2} px center crop. Nearest neighbor resize to $64^{2} \mathrm{px}$. Horizontal flip with probability 0.5 .
Score Estimator	Architecture	NCSNv2 $64{ }^{2} \mathrm{px}$.
	Loss	Denoising Score Matching
	Optimization	Adam, $\operatorname{lr}=10^{-4}, \beta_{1}=0.9, \beta_{2}=0.999$. Parameter EMA at rate 0.999.
	Training	210000 training iterations, 128 samples per minibatch.
Compatibility	Architecture	ReLU network with ReLU output activation, $3 \cdot 64^{2} \rightarrow 2048 \rightarrow \ldots \rightarrow 2048 \rightarrow 1$ (8 hidden layers).
	Regularization	Varies in χ^{2} reg., $\lambda \in\{0.1,0.1,0.001\}$, and KL reg., $\lambda \in\{0.1,0.01,0.005\}$.
	Optimization	Adam, $\operatorname{lr}=10^{-6}, \beta_{1}=0.9, \beta_{2}=0.999$
	Training	5000 training iterations, 1000 samples per minibatch.
Barycentric Projection	Architecture	NCSNv2 $64^{2} \mathrm{px}$ applied as-is for image generation.
	Optimization	Adam, $\mathrm{lr}=10^{-7}, \beta_{1}=0.9, \beta_{2}=0.999$
	Training	20000 training iterations, 64 samples per minibatch.

Table 5: Training details for the CelebA, Blur-CelebA \rightarrow CelebA FID experiment (Figure 2).

Problem	Noise (σ_{1}, σ_{k})	Step Size	Steps	Denoising? [9]	χ^{2} SoftPlus Param.
$\chi^{2}, \lambda=0.1$	(9, 0.01)	$15 \cdot 10^{-7}$	$k=500$	Yes	$\alpha=10$
$\chi^{2}, \lambda=0.01$	-11-				
$\chi^{2}, \lambda=0.001$	- 11 -				
KL, $\lambda=0.1$	$(90,0.1)$	$15 \cdot 10^{-7}$	$k=500$	Yes	-
$\mathrm{KL}, \lambda=0.01$	$-11-$				
KL, $\lambda=0.005$	$(90,0.1)$	$1 \cdot 10^{-7}$	$k=500$	Yes	-

Table 6: Sampling details for the CelebA, Blur-CelebA \rightarrow CelebA FID experiment (Figure 2).

Problem Aspect	Hyperparameters	Numbers and details
Source	Dataset	Gaussian in \mathbb{R}^{784}, Mean and covariance are that of MNIST
	Preprocessing	None
Target	Dataset	Unit gaussian in \mathbb{R}^{784}.
	Preprocessing	None
Score Estimator	Architecture	None (score is given by closed form)
Compatibility	Architecture	ReLU network with ReLU output activation, $784 \rightarrow 2048 \rightarrow 2048 \rightarrow 2048 \rightarrow 2048 \rightarrow 1$
	Regularization	KL Regularization, $\lambda \in\{1,0.5,0.25\}$.
	Optimization	Adam, $\operatorname{lr}=10^{-6}, \beta_{1}=0.9, \beta_{2}=0.999$
	Training	5000 training iterations, 1000 samples per minibatch.
Sampling	Annealing Schedule	No annealing.
	Step size	$\epsilon=5 \cdot 10^{-3}$
	Mixing steps	$T=1000$
	Denoising? [9]	Not applicable.

Table 7: Sampling and model details for the synthetic experiment shown in Figure 2

