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Figure 2: Visualization of singleton absorbing MDP technique

We provide a visualization (Figure 2) for understanding the singleton absorbing MDP technique at the
beginning of Appendix. 2(a), 2(c) demonstrate the infinite horizon case and 2(b), 2(d) demonstrate
the finite horizon case. In particular, it should be a H-dimensional hypercube [0, H]H (that contains
V̂ ?1 , . . . , V̂

?
h ) instead of only the square [0, H] × [0, H] (V̂ ?1 , V̂

?
2 ). This is only for the ease of

visualization.

The standard absorbing MDP technique Agarwal et al. [2020], Cui and Yang [2020] leverages a set of
absorbing MDPs to cover the range of value functions (following the standard covering principle) to
make sure V̂ ? is close to one of the element (absorbing MDP) in the set (Figure 2(a),2(b)). The size of
the covering set (i.e. the covering number) grows exponentially in H 2(b) in the finite horizon setting
and this is due to the fact that there are V̂ ?1 , V̂

?
2 , . . . , V̂

?
H quantities to cover. This results in the metric

entropy (the log of the covering number) to blow up by a factor of H and incurs suboptimality. On
the other hand, by the nifty chosen singleton absorbing MDP V̂ ?h,u? (Figure 2(c),2(d)), we completely
get rid of the covering issue (covering the H-dimensional space requires exponential in H size),
maintain the independence and control the error propagation (

∥∥∥V̂ ? − V̂ ?u?∥∥∥∞ is sufficiently small).
See Section B for all the technical details.

A Discussion on Related works

Offline reinforcement learning. Information-theoretical considerations for offline RL are first pro-
posed for infinite horizon discounted setting via Fitted Q-Iteration (FQI) type function approximation
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algorithms [Chen and Jiang, 2019, Le et al., 2019, Xie and Jiang, 2021, 2020] which can be traced
back to [Munos, 2003, Szepesvári and Munos, 2005, Antos et al., 2008a,b]. Later, Xie and Jiang
[2021] considers the offline RL under only the realizability assumption and Liu et al. [2020b] consid-
ers the offline RL without good exploration. Those are all challenging problems but with they only
provide suboptimal polynomial complexity in terms of (1− γ)−1.

For the finite horizon case, Yin et al. [2021a] first achieves Õ(H3/dmε
2) complexity under non-

stationary transition but their results cannot be further improved in the stationary setting. Concurrent
to our work, a recently released work Yin et al. [2021b] designs the offline variance reduction
algorithm for achieving the optimal Õ(H2/dmε

2) rate. Their result is for a specific algorithm that
uses data splitting while our results work for any algorithms that returns a nearly empirically optimal
policy via a uniform convergence guarantee. Our results on the offline task-agnostic and the reward-
free settings are entirely new. Another concurrent work Ren et al. [2021] considers the horizon-free
setting but does not provide uniform convergence guarantee. Even more recently, Rashidinejad

et al. [2021] considers the single concentrability coefficient C? := maxs,a
dπ
?

(s,a)
dµ(s,a) and obtains

the sample complexity Õ[(1− γ)−5SC?/ε2]. Concurrently, Yin and Wang [2021] first derives the
instance-dependent offline RL bounds, but their result is for time-inhomogeneous MDPs.

In the linear MDP case, Jin et al. [2020c] studies the pessimism-based algorithms for offline policy
optimization under the weak compliance assumption and Wang et al. [2021], Zanette [2021] provide
some negative results (exponential lower bound) for offline RL with linear MDP structure.

Model-based approaches with minimaxity. It is known model-based methods are minimax-optimal
for online RL with regret Õ(

√
HSAT ) (e.g. Azar et al. [2017], Efroni et al. [2019]). For linear

MDP, In the generative model setting, Agarwal et al. [2020] shows model-based approach is still
minimax optimal Õ((1 − γ)−3SA/ε2) by using a s-absorbing MDP construction and this model-
based technique is later reused for other more general settings (e.g. Markov games [Zhang et al.,
2020a] and linear MDPs [Cui and Yang, 2020]) and also for improving the sample size barrier [Li
et al., 2020]. In offline RL, Yu et al. [2020], Kidambi et al. [2020] use model-based approaches
for continuous policy optimization and Yin et al. [2021a] uses the model-based methods to achieve
Õ(H3/dmε

2) complexity.

Task-agnostic and Reward-free problems. The reward-free problem is initiated in the online RL
[Jin et al., 2020a] where the agent needs to efficiently explore an MDP environment without using
any reward information. It requires high probability guarantee for learning optimal policy for any
reward function, which is strictly stronger than the standard learning task that one only needs to
learn to optimal policy for a fixed reward. Later, Kaufmann et al. [2020], Menard et al. [2020]
establish the Õ(H3S2A/ε2) complexity and Zhang et al. [2020c] further tightens the dependence to
Õ(H2S2A/ε2).9 Recently, Zhang et al. [2020b] proposes the task-agnostic setting where one needs
to use exploration data to simultaneously learn K tasks and provides a upper bound with complexity
Õ(H5SA log(K)/ε2). For linear MDP setting, Wang et al. [2020] achieves the sample complexity
Õ(d3H6/ε2) and Liu et al. [2020a] considers such problem in the online two-player Markov game.
However, although these settings remain critical in the offline regime, no statistical result has been
formally derived so far.

B Proof of optimal local uniform convergence

B.1 Model-based Offline Plug-in Estimator

Recall the model-based estimator uses empirical estimator P̂ for estimating P and the estimator is
calculated accordingly:

Q̂πh = r + P̂πh+1Qπh+1 = r + P̂ V πH+1,

where P̂ (s′|s, a) can be expressed as:

9We translate [Zhang et al., 2020c] their dimension-free result to Õ(H2S2A/ε2) under the standard assump-
tion r ∈ [0, 1].
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P̂ (s′|s, a) =

∑n
i=1

∑H
h=1 1[(s

(i)
h+1, a

(i)
h , s

(i)
h ) = (s′, s, a)]

ns,a
, ns,a =

H∑
h=1

n∑
i=1

1[(s
(i)
h , a

(i)
h ) = (s, a)].

and P̂ (s′|s, a) = 1
S , if ns,a = 0. The initial distribution is also constructed as d̂π1 (s) = ns/n.

First of all, we have by definition the Bellman optimality equation

V ?t (s) = max
a

{
r(s, a) +

∑
s′

P (s′|s, a)V ?t+1(s′)

}
, ∀s ∈ S. (3)

and similarly the empirical version

V̂ ?t (s) = max
a

{
r(s, a) +

∑
s′

P̂ (s′|s, a)V̂ ?t+1(s′)

}
, ∀s ∈ S.

The key difficulty in obtaining the optimal dependence in stationary setting is decoupling the de-
pendence of P − P̂ and V̂ ?. This issue is not encountered in the non-stationary setting due to the
possibility to estimate different transition at each time [Yin et al., 2021a], but it cannot further reduce
the sample complexity on H . Moreover, the direct use of s-absorbing MDP in Agarwal et al. [2020]
is not sharp for finite horizon stationary setting, as it requires s-absorbing MDPs with H-dimensional
cover (which has size ≈ eH and it is not optimal). We design the singleton-absorbing MDP to get rid
of the issue.

B.2 General absorbing MDP

The general absorbing MDP is defined as follows: for a fixed state s and a sequence {ut}Ht=1,
MDP Ms,{ut}Ht=1

is identical to M for all states except s, and state s is absorbing in the sense
PM

s,{ut}Ht=1

(s|s, a) = 1 for all a, and the instantaneous reward at time t is rt(s, a) = ut for all
a ∈ A. Also, we use the shorthand notation V π{s,ut} for V πs,M

s,{ut}Ht=1

and similarly for Q{s,ut} and

transition P{s,ut}. Then the following properties hold:

Lemma B.1.

V ?h,{s,ut}(s) =

H∑
t=h

ut.

Proof. We prove by backward induction. For h = H , under Ms,{ut}Ht=1
state s is absorbing (and by

convention V ?H+1,{s,ut} = 0) therefore

V ?H,{s,ut}(s) = max
a

{
rH,{s,ut}(s, a) +

∑
s′

P{s,ut}(s
′|s, a)V ?H+1,{s,ut}(s

′)

}
= max

a

{
rH,{s,ut}(s, a)

}
= uH

for general h, note
∑
s′ P{s,ut}(s

′|s, a)V ?h+1,{s,ut}(s
′) = 1·V ?h+1,{s,ut}(s), therefore using induction

property V ?h+1,{s,ut}(s) =
∑H
t=h+1 ut we can similarly obtain V ?h,{s,ut}(s) =

∑H
t=h ut.

Lemma B.2. Fix state s. For two different sequences {ut}Ht=1 and {u′t}Ht=1, we have

max
h

∥∥∥Q?h,{s,ut} −Q?h,{s,u′t}∥∥∥∞ ≤ H · max
t∈[H]

|ut − u′t| .
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Proof. Let π?{s,ut} be the optimal policy in M{s,ut}. Then (by convention
∏h
a=h+1 P

πa = I)

Q?h,{s,ut} −Q
?
h,{s,u′t} = Q?h,{s,ut} −max

π

H∑
i=h

(
i∏

a=h+1

Pπa{s,u′t}

)
ri,{s,u′t}

≤Q?h,{s,ut} −
H∑
i=h

(
i∏

a=h+1

P
π?a,{s,ut}
{s,u′t}

)
ri,{s,u′t} =

H∑
i=h

(
i∏

a=h+1

P
π?a,{s,ut}
{s,u′t}

)(
ri,{s,ut} − ri,{s,u′t}

)
≤

H∑
i=h

max
s,a

∥∥∥∥∥∥
(

i∏
a=h+1

P
π?a,{s,ut}
{s,u′t}

)i−h
(·|s, a)

∥∥∥∥∥∥
1

·
∥∥ri,{s,ut} − ri,{s,u′t}∥∥∞ · 1 = (H − h+ 1) ·max

t
|ut − u′t| · 1

where the first equal sign uses the definition of Q?, the second equal sign uses P{s,ut} only depends s
but not the specification of ut’s and the last equal sign comes from ri,{s,ut}(s, a) = ui for any a ∈ A
and ri,{s,ut}(s̃, a) = ri,{s,u′t}(s̃, a) for any s̃ 6= s. Lastly by symmetry we finish the proof.

B.3 Singleton-absorbing MDP

The direct of transfer of absorbing technique created in Agarwal et al. [2020] will require each ut to
fill in the range of [0, H] using evenly spaced elements. For finite horizon MDP there are H layers,
therefore the total number of H-tuples (u1, . . . , uH) has order |Us| = Poly(H)H , therefore when
apply the union bound, it will incur the additional H factor. We get rid of this issue by choosing one
single point in H-dimensional space [0, H]H . We first give the following two lemmas.

Lemma B.3. V ?t (s)− V ?t+1(s) ≥ 0, for all state s ∈ S and all t ∈ [H].

Proof. Let the optimal policy for V ?t+1 be π?t+1:H , i.e. V ?t+1 = V
π?t+1:H

t+1 , then artificially construct a
policy πt:H such that πt:H−1 = π?t+1:H and πH is arbitrary, then by the definition of optimal value

V ?t (s) ≥ V πt:Ht (s) = Eπt:H
[
H∑
i=t

r(si, ai)

∣∣∣∣∣st = s

]

= Eπt:H−1

[
H−1∑
i=t

r(si, ai)

∣∣∣∣∣st = s

]
+ Eπt:H [r(sH , aH)|st = s]

= Eπ
?
t+1:H

[
H∑

i=t+1

r(si, ai)

∣∣∣∣∣st+1 = s

]
+ Eπt:H [r(sH , aH)|st = s]

≥ Eπ
?
t+1:H

[
H∑

i=t+1

r(si, ai)

∣∣∣∣∣st+1 = s

]
+ 0 = V ?t+1(s),

where the third equal sign uses exactly that P is a STATIONARY transition and definition πt:H−1 =
π?t+1:H . The last inequality uses assumption that reward is always non-negative.

Remark B.4. Lemma B.3 leverages P is stationary and above may not be true in the non-stationary
setting. This enables us to establish the following lemma, which is the key for singleton-absorbing
MDP.
Lemma B.5. Fix a state s. If we choose u?t := V ?t (s) − V ?t+1(s) ∀t ∈ [H], then we have the
following vector form equation

V ?h,{s,u?t } = V ?h,M ∀h ∈ [H].

Similarly, if we choose û?t := V̂ ?t (s)− V̂ ?t+1(s), then V̂ ?h,{s,û?t } = V̂ ?h,M , ∀h ∈ [H].

Proof. We focus on the first claim. Note by Lemma B.3 the assignment of u?t (:= rt,{s,u?t }) is
well-defined. Next recall V ?h,M is the optimal value under true MDP M and V ?h,{s,u?t } is the optimal
value under the assimilating MDP Ms,{u?t }Ht=1

. We prove by backward induction.
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For h = H , note by convention V ?H+1 = 0, therefore u?H = V ?H(s)−V ?H+1(s) = V ?H(s)−0 = V ?H(s)
and Bellman optimality equation becomes

V ?H(s̃) = max
a
{r(s̃, a)} , ∀s̃ ∈ S.

Under Ms,{u?t }Ht=1
, for state s by Lemma B.1 we have V ?H,{s,u?t }(s) = u?H = V ?H(s), for other states

s̃ 6= s, reward in Ms,{u?t }Ht=1
= M so we also have V ?H,{s,u?t }(s̃) = V ?H(s̃) for all s̃ 6= s.

Now for general h, for state s by Lemma B.1

V ?h,{s,u?t }(s) =

H∑
t=h

u?t =

H∑
t=h

(
V ?t (s)− V ?t+1(s)

)
= V ?h (s),

for state s̃ 6= s, by Bellman optimality equation

V ?h,{s,u?t }(s̃) = max
a

{
r{s,u?t }(s̃, a) +

∑
s′

P{s,u?t }(s
′|s̃, a)V ?h+1,{s,u?t }(s

′)

}

= max
a

{
r(s̃, a) +

∑
s′

P (s′|s̃, a)V ?h+1,{s,u?t }(s
′)

}

= max
a

{
r(s̃, a) +

∑
s′

P (s′|s̃, a)V ?h+1(s′)

}
= V ?h (s̃),

where the second equal sign uses when s̃ 6= s, Ms,{u?t }Ht=1
is identical to M and the third equal sign

uses induction assumption that element-wisely V ?h+1,{s,u?t }
= V ?h+1. Similar result can be derived

for û? version and this completes the proof.

The singleton MDP we used is exactly Ms,{u?t }Ht=1
(or M̂s,{u?t }Ht=1

).

B.4 Proof for local uniform convergence

Recall the local policy class

Πl :=
{
π : s.t.

∥∥∥V̂ πh − V̂ π̂?h ∥∥∥
∞
≤ εopt ,∀h ∈ [H]

}
.

For ease of exposition, we denote N := mins,a ns,a. Note N itself is a random variable, therefore
for the rest of proof we first conditional on N . Later we shall remove the conditional on N (see
Section B.7).

For any π̂ ∈ Πl, by (empirical) Bellman equation we have element-wisely:

Q̂π̂h −Qπ̂h = rh + P̂ π̂h+1Q̂π̂h+1 − rh − P π̂h+1Qπ̂h+1

=
(
P̂ π̂h+1 − P π̂h+1

)
Q̂π̂h+1 + P π̂h+1

(
Q̂π̂h+1 −Qπ̂h+1

)
=
(
P̂ − P

)
V̂ π̂h+1 + P π̂h+1

(
Q̂π̂h+1 −Qπ̂h+1

)
= . . . =

H∑
t=h

Γπ̂h+1:t

(
P̂ − P

)
V̂ π̂t+1

≤
H∑
t=h

Γπ̂h+1:t

∣∣∣(P̂ − P) V̂ π̂?t+1

∣∣∣︸ ︷︷ ︸
(?)

+

H∑
t=h

Γπ̂h+1:t

∣∣∣(P̂ − P)(V̂ π̂t+1 − V̂ π̂
?

t+1

)∣∣∣︸ ︷︷ ︸
(??)

where Γπh+1:t =
∏t
i=h+1 P

πi is multi-step state-action transition and Γh+1:h := I .
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B.5 Analyzing (??)

Term (??) can be readily bounded using the following lemma.
Lemma B.6. Fix N > 0, we have with probability 1− δ, for all t = 1, ...,H − 1

H∑
t=h

Γπ̂h+1:t

∣∣∣(P̂ − P )(V̂ π̂
?

h+1 − V̂ π̂h+1)
∣∣∣ ≤ Cεopt ·

√
H2S log(SA/δ)

N
· 1

where C absorb the higher order term and absolute constants.

Proof. First, by vector induced matrix norm10 we have∥∥∥∥∥
H∑
t=h

Γπ̂h+1:t ·
∣∣∣(P̂ − P )(V̂ π̂

?

t+1 − V̂ π̂t+1)
∣∣∣∥∥∥∥∥
∞

≤ H · sup
t

∥∥∥Γπ̂h+1:t

∥∥∥
∞

∥∥∥|(P̂ − P )(V̂ π̂
?

t+1 − V̂ π̂t+1)|
∥∥∥
∞

≤ H · sup
t

∥∥∥|(P̂ − P )(V̂ π̂
?

t+1 − V̂ π̂t+1)|
∥∥∥
∞

= H · sup
t,s,a

∣∣∣(P̂ − P )(·|s, a)(V̂ π̂
?

t+1 − V̂ π̂t+1)
∣∣∣

≤ H · sup
t,s,a

∥∥∥(P̂ − P )(·|s, a)
∥∥∥

1
·
∥∥∥V̂ π̂?t+1 − V̂ π̂t+1

∥∥∥
∞
· 1

where the second inequality uses multi-step transition Γπt+1:h−1 is row-stochastic. Note given N ,
therefore by Lemma J.9 and a union bound we have with probability 1− δ,

sup
s,a

∥∥∥(P̂ − P )(·|s, a)
∥∥∥

1
≤ C(

√
S log(SA/δ)

N
),

(where C absorb the higher order term and absolute constants) and using definition of Πl we have
supt

∥∥∥V̂ π̂?t − V̂ π̂t
∥∥∥
∞
≤ εopt . This indicates

sup
t,s,a

∥∥∥(P̂ − P )(·|s, a)
∥∥∥

1
·
∥∥∥V̂ π̂?t+1 − V̂ π̂t+1

∥∥∥
∞
· 1 ≤ C(εopt

√
S log(SA/δ)

N
· 1),

where 1 ∈ RS is all-one vector. Then multiple by H to get the stated result.

B.6 Analyzing (?)

Concentration on
(
P̂ − P

)
V̂ ?h .11 Since P̂ aggregates all data from different step so that P̂ and V̂ ?h

are on longer independent, Bernstein inequality cannot be directly applied. We use the singleton-
absorbing MDP Ms,{u?t }Ht=1

to handle the case (recall u?t := V ?t (s) − V ?t+1(s) ∀t ∈ [H]). Again,
let us fix a state s and a ∈ A be any action. Also, we use Ps,a to denote row vector to avoid long

10For A a matrix and x a vector we have ‖Ax‖∞ ≤ ‖A‖∞ ‖x‖∞.
11Here we use V̂ ?h instead of V̂ ?t since we later have V̂ ?h,{s,u?t }. We avoid the same t twice in the expression

to prevent confusion.
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expression. Then we have:(
P̂s,a − Ps,a

)
V̂ ?h =

(
P̂s,a − Ps,a

)(
V̂ ?h − V̂ ?h,{s,u?t } + V̂ ?h,{s,u?t }

)
=
(
P̂s,a − Ps,a

)(
V̂ ?h − V̂ ?h,{s,u?t }

)
+
(
P̂s,a − Ps,a

)
V̂ ?h,{s,u?t }

≤
∥∥∥P̂s,a − Ps,a∥∥∥

1

∥∥∥V̂ ?h − V̂ ?h,{s,u?t }∥∥∥∞ +

√
2 log(4/δ)

N

√
Vars,a(V̂ ?h,{s,u?t }

) +
2H log(1/δ)

3N

≤
∥∥∥P̂s,a − Ps,a∥∥∥

1

∥∥∥V̂ ?h − V̂ ?h,{s,u?t }∥∥∥∞ +

√
2 log(4/δ)

N

(√
Vars,a(V̂ ?h ) +

√
Vars,a(V̂ ?h,{s,u?t }

− V̂ ?h )

)
+

2H log(1/δ)

3N

≤
∥∥∥P̂s,a − Ps,a∥∥∥

1

∥∥∥V̂ ?h − V̂ ?h,{s,u?t }∥∥∥∞ +

√
2 log(4/δ)

N

(√
Vars,a(V̂ ?h ) +

√∥∥∥V̂ ?h,{s,u?t } − V̂ ?h ∥∥∥2

∞

)
+

2H log(1/δ)

3N

=

(∥∥∥P̂s,a − Ps,a∥∥∥
1

+

√
2 log(4/δ)

N

)∥∥∥V̂ ?h − V̂ ?h,{s,u?t }∥∥∥∞ +

√
2 log(4/δ)

N

√
Vars,a(V̂ ?h ) +

2H log(1/δ)

3N

(4)

where the first inequality uses Bernstein inequality (Lemma J.3), the second inequality uses
√

Var(·)
is norm (norm triangle inequality). Now we treat

∥∥∥P̂s,a − Ps,a∥∥∥
1

and
∥∥∥V̂ ?h − V̂ ?h,{s,u?t }∥∥∥∞ sepa-

rately.

For
∥∥∥P̂s,a − Ps,a∥∥∥

1
. Indeed, by Lemma J.9 again

∥∥∥P̂s,a − Ps,a∥∥∥
1
≤ Õ(

√
S log(S/δ)

N ) and by a union
bound we obtain w.p., 1− δ

sup
s,a

∥∥∥P̂s,a − Ps,a∥∥∥
1
≤ C

√
S log(SA/δ)

N
. (5)

where C absorbs the higher order term and constants.

For
∥∥∥V̂ ?h − V̂ ?h,{s,u?t }∥∥∥∞. Note if we set û?t = V̂ ?t (s)− V̂ ?t+1(s), then by Lemma B.5

V̂ ?h = V̂ ?h,{s,û?t }

Next since V̂ ?h,{s,û?t }(s̃) = maxa Q̂
?
h,{s,û?t }

(s̃, a) ∀s̃ ∈ S , by generic inequality |max f −max g| ≤
max |f − g|, we have |V̂ ?h,{s,û?t }(s̃) − V̂ ?h,{s,u?t }

(s̃)| ≤ maxa |Q̂?h,{s,û?t }(s̃, a) − Q̂?h,{s,u?t }
(s̃, a)|,

taking maxs̃ on both sides, we obtain exactly∥∥∥V̂ ?h,{s,û?t } − V̂ ?h,{s,u?t }∥∥∥∞ ≤ ∥∥∥Q̂?h,{s,û?t } − Q̂?h,{s,u?t }∥∥∥∞
then by Lemma B.2,∥∥∥V̂ ?h − V̂ ?h,{s,u?t }∥∥∥∞ ≤ ∥∥∥Q̂?h,{s,û?t } − Q̂?h,{s,u?t }∥∥∥∞ ≤ H max

t
|û?t − u?t | , (6)

Recall
û?t − u?t = V̂ ?t (s)− V̂ ?t+1(s)−

(
V ?t (s)− V ?t+1(s)

)
.

Now we denote

∆s := max
t
|û?t − u?t | = max

t

∣∣∣V̂ ?t (s)− V̂ ?t+1(s)−
(
V ?t (s)− V ?t+1(s)

)∣∣∣ ,
then ∆s itself is a scalar and a random variable.

To sum up, by (4), (5) and (6) and a union bound we have
Lemma B.7. Fix N > 0. With probability 1− δ, element-wisely, for all h ∈ [H],∣∣∣(P̂ − P) V̂ ?h ∣∣∣ ≤ C

√
S log(HSA/δ)

N
·H max

s
∆s · 1 +

√
2 log(4HSA/δ)

N

√
VarP (V̂ ?h ) +

2H log(HSA/δ)

3N
· 1
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Now plug Lemma B.7 back into (?) and combine Lemma B.6, we receive:

∣∣∣Q̂π̂h −Qπ̂h∣∣∣
≤

H∑
t=h

Γπ̂h+1:t

(
C

√
S log(HSA/δ)

N
·H max

s
∆s · 1 +

√
2 log(4HSA/δ)

N

√
VarP (V̂ ?t+1) +

2H log(HSA/δ)

3N
· 1

)

+Cεopt ·
√
H2S log(SA/δ)

N
· 1

≤
H∑
t=h

Γπ̂h+1:t

√
2 log(4HSA/δ)

N

√
VarP (V̂ ?t+1) + CH2

√
S log(HSA/δ)

N
·max

s
∆s · 1 +

2H2 log(HSA/δ)

3N
· 1

+Cεopt ·
√
H2S log(SA/δ)

N
· 1

Next note√
VarP (V̂ ?h ) :=

√
VarP

(
V̂ π̂

?

h

)
=

√
VarP

(
V̂ π̂

?

h − V̂ π̂h + V̂ π̂h

)
≤
√

VarP

(
V̂ π̂h

)
+

√
VarP

(
V̂ π̂

?

h − V̂ π̂h
)
≤
√

VarP

(
V̂ π̂h

)
+
∥∥∥V̂ π̂?h − V̂ π̂h

∥∥∥
∞

≤
√

VarP

(
V̂ π̂h

)
+ εopt · 1 ≤

√
VarP

(
V π̂h
)

+

√
VarP

(
V̂ π̂h − V π̂h

)
+ εopt · 1

≤
√

VarP
(
V π̂h
)

+
∥∥∥V̂ π̂h − V π̂h ∥∥∥∞ + εopt · 1 ≤

√
VarP

(
V π̂h
)

+
∥∥∥Q̂π̂h −Qπ̂h∥∥∥∞ + εopt · 1

(7)

Plug (7) back to above we obtain ∀h ∈ [H],∣∣∣Q̂π̂h −Qπ̂h∣∣∣ ≤
√

2 log(4HSA/δ)

N

H∑
t=h

Γπ̂h+1:t

(√
VarP

(
V π̂t+1

)
+
∥∥∥Q̂π̂t+1 −Qπ̂t+1

∥∥∥
∞

+ εopt · 1
)

+ CH2

√
S log(HSA/δ)

N
·max

s
∆s · 1 +

2H2 log(HSA/δ)

3N
· 1 + Cεopt ·

√
H2S log(SA/δ)

N
· 1

≤
√

2 log(4HSA/δ)

N

H∑
t=h

Γπ̂h+1:t

√
VarP

(
V π̂t+1

)
+

√
2 log(4HSA/δ)

N

H∑
t=h

∥∥∥Q̂π̂t+1 −Qπ̂t+1

∥∥∥
∞

+ CH2

√
S log(HSA/δ)

N
·max

s
∆s · 1 +

2H2 log(HSA/δ)

3N
· 1 + C1εopt ·

√
H2S log(SA/δ)

N
· 1

(8)
Apply Lemma J.5 and the coarse uniform bound (Lemma J.10) we obtain the following lemma:
Lemma B.8. Given N > 0 and εopt ≤

√
H/S. With probability 1− δ, for all h ∈ [H],∥∥∥Q̂π̂h −Qπ̂h∥∥∥∞ ≤

√
C0H3 log(4HSA/δ)

N
+

√
2 log(4HSA/δ)

N

H∑
t=h

∥∥∥Q̂π̂t+1 −Qπ̂t+1

∥∥∥
∞

+ C ′H4S log(HSA/δ)

N

Proof. Since

∆s := max
t
|û?t − u?t | = max

t

∣∣∣V̂ ?t (s)− V̂ ?t+1(s)−
(
V ?t (s)− V ?t+1(s)

)∣∣∣
≤ 2 ·max

t

∣∣∣V̂ ?t (s)− V ?t (s)
∣∣∣

= 2 ·max
t

∣∣∣max
π

V̂ πt (s)−max
π

V πt (s)
∣∣∣

≤ 2 · max
π∈Πg,t∈[H]

∥∥∥V̂ πt − V πt ∥∥∥∞ ≤ C ·H2

√
S log(HSA/δ)

N

(9)
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where the last inequality uses Lemma J.10. Then apply union bound w.p. 1 − δ/2, we obtain

maxs ∆s ≤ C ·H2
√

S log(HSA/δ)
N . Note (8) holds with probability 1− δ/2, therefore plug above

into (8) we obtain w.p. 1− δ,∣∣∣Q̂π̂h −Qπ̂h∣∣∣ ≤
√

2 log(4HSA/δ)

N

H∑
t=h

Γπ̂h+1:t

√
VarP

(
V π̂t+1

)
+

√
2 log(4HSA/δ)

N

H∑
t=h

∥∥∥Q̂π̂t+1 −Qπ̂t+1

∥∥∥
∞

+ C ′H4S log(HSA/δ)

N
· 1 + C1εopt ·

√
H2S log(SA/δ)

N
· 1

≤

[√
C0H3 log(4HSA/δ)

N
+

√
2 log(4HSA/δ)

N

H∑
t=h

∥∥∥Q̂π̂t+1 −Qπ̂t+1

∥∥∥
∞

+ C ′H4S log(HSA/δ)

N

]
· 1,

where the last inequality uses Lemma J.5 and εopt ≤
√
H/S and renames C ′ = C ′+C1. Take ‖·‖∞

then obtain the result.

Lemma B.9. Given N > 0. Define C ′′ := 2 ·max(
√
C0, C

′) where C ′ is the universal constant in
Lemma B.8. When N ≥ 8H2 log(4HSA/δ), then with probability 1− δ, ∀h ∈ [H],∥∥∥Q̂π̂h −Qπ̂h∥∥∥∞ ≤ C ′′

√
H3 log(4HSA/δ)

N
+ C ′′

H4S log(HSA/δ)

N
.∥∥∥Q̂π?h −Qπ?h ∥∥∥∞ ≤ C ′′

√
H3 log(4HSA/δ)

N
+ C ′′

H4S log(HSA/δ)

N
.

(10)

Proof. We prove by backward induction. For h = H , by Lemma B.8∥∥∥Q̂π̂H −Qπ̂H∥∥∥∞ ≤
√
C0H3 log(4HSA/δ)

N
+

√
2 log(4HSA/δ)

N

∥∥∥Q̂π̂H+1 −Qπ̂H+1

∥∥∥
∞

+ C ′H4S log(HSA/δ)

N

=

√
C0H3 log(4HSA/δ)

N
+ 0 + C ′H4S log(HSA/δ)

N

≤ C ′′
√
H3 log(4HSA/δ)

N
+ C ′′H4S log(HSA/δ)

N
,

for general h, by condition we have H
√

2 log(4HSA/δ)
N ≤ 1/2, therefore by Lemma B.8

∥∥∥Q̂π̂h −Qπ̂h∥∥∥∞ ≤
√
C0H3 log(4HSA/δ)

N
+

√
2 log(4HSA/δ)

N

H∑
t=h

∥∥∥Q̂π̂t+1 −Qπ̂t+1

∥∥∥
∞

+ C ′H4S log(HSA/δ)

N

≤
√
C0H3 log(4HSA/δ)

N
+H

√
2 log(4HSA/δ)

N
max
t+1

∥∥∥Q̂π̂t+1 −Qπ̂t+1

∥∥∥
∞

+ C ′H4S log(HSA/δ)

N

≤
√
C0H3 log(4HSA/δ)

N
+ C ′H4S log(HSA/δ)

N

+
1

2

(
C ′′
√
H3 log(4HSA/δ)

N
+ C ′′

H4S log(HSA/δ)

N

)

≤ C ′′
√
H3 log(4HSA/δ)

N
+ C ′′

H4S log(HSA/δ)

N

The proof of the second claim is even easier since π? is no longer a random policy and it is really just
a non-uniform point-wise OPE. There are multiple ways to prove it and we leave it as an exercise
to avoid redundancy: 1. Follow the same proving pipeline as

∥∥∥Q̂π̂h −Qπ̂h∥∥∥∞ used; 2. Mimic the
procedure of point-wise OPE result in Lemma 3.4. in Yin et al. [2021a].
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Remark B.10. Note the higher order term has dependence H4S, which is somewhat unsatisfactory.
We use the recursion-back trick to further reduce it to H3.5S0.5.
Lemma B.11. Given N > 0. There exists universal constants C1, C2 such that when N ≥
C1H

2 log(HSA/δ), then with probability 1− δ, ∀h ∈ [H],∥∥∥Q̂π̂h −Qπ̂h∥∥∥∞ ≤ C2

√
H3 log(HSA/δ)

N
+ C2

H3
√
HS log(HSA/δ)

N
. (11)

and ∥∥∥Q̂π?h −Qπ?h ∥∥∥∞ ≤ C2

√
H3 log(HSA/δ)

N
+ C2

H3
√
HS log(HSA/δ)

N
.

Proof. Note
V̂ ?t (s)− V ?t (s) := V̂ π̂

?

t (s)− V π
?

t (s)

= V̂ π̂
?

t (s)− V π̂
?

t (s) + V π̂
?

t (s)− V π
?

t (s)

≤ V̂ π̂
?

t (s)− V π̂
?

t (s) ≤
∣∣∣V̂ π̂?t (s)− V π̂

?

t (s)
∣∣∣ (12)

and similarly V ?t (s) − V̂ ?t (s) ≤
∣∣∣V̂ π?t (s)− V π?t (s)

∣∣∣, therefore by Lemma B.9 (and use ||V̂ πt −

V πt ||∞ ≤ ||Q̂πt −Qπt ||∞), with probability 1− δ,

∆s ≤ 2 · sup
t

∥∥∥V ?t − V̂ ?t ∥∥∥ ≤ 2 max
π̂?,π?

sup
t

∥∥∥V̂ πt − V πt ∥∥∥∞ ≤ C2

√
H3 log(HSA/δ)

N
+ C2

H4S log(HSA/δ)

N
,

where the second inequality uses (12). This replaces the crude bound of O(
√
H4S log(HSA/δ)/N)

for maxs ∆s (recall (9)) by O(
√
H3 log(HSA/δ)/N).

Plug this back to (8) and repeat the similar analysis we end up with (11). The second result is similarly
proved.

B.7 Proof of Theorem 4.1

Proof of Theorem 4.1. Note ns,a =
∑n
i=1

∑H
t=1 1[s

(i)
t = s, a

(i)
t = a], which implies

E[ns,a] = E

[
n∑
i=1

H∑
t=1

1[s
(i)
t = s, a

(i)
t = a]

]
= n ·

H∑
t=1

dµt (s, a).

Or equivalently, ns,a follows Binomial(n,
∑H
t=1 d

µ
t (s, a)). Then apply the first result of Lemma J.1

by taking θ = 1/2, we have when n > 1/dm · log(HSA/δ)12, then with probability 1− δ,

ns,a ≥
1

2
n ·

H∑
t=1

dµt (s, a), ∀s ∈ S, a ∈ A.

This further implies w.p. 1 − δ, ns,a ≥ 1
2n ·

∑H
t=1 d

µ
t (s, a) = 1

2n ·H · d
µ(s, a) ≥ 1

2nH · dm and
further ensures

N := min
s,a

ns,a ≥
1

2
nH · dm.

Finally, apply above to Lemma B.11, we can get over with the condition on N and obtain the stated
result.

12The exact sufficient condition for applying Lemma J.1 is n > 1/
∑H
t=1 dt(s, a) · log(HSA/δ) for all s, a.

However, since
∑H
t=1 dt(s, a) ≥ Hdm ≥ dm, our condition n > 1/dm · log(HSA/δ) used here is a much

stronger version thus Lemma J.1 apply.
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C Proof of minimax lower bound for model-based global uniform
OPE

Proof of Theorem 3.1. In particular, we first focus on the case where H = 2 and extend the result of
H = 2 to the general H ≥ 3 at the end.

First of all, by Definition 2.1 let P̂ be the learned transition by certain model-based method. Since
we assume rh is known and by convention QπH+1 = 0 for any π, then by Bellman equation

Q̂πh = rh + P̂πh+1Q̂πh+1, ∀h ∈ [H].

In particular, Q̂πH+1 = QπH+1 = 0, and this implies

Q̂πH = rH + P̂πH+1Q̂πH+1 = rH ; QπH = rH + PπH+1QπH+1 = rH + 0 = rH

Now, again by definition of Bellman equation

Q̂πH−1 = rH−1 + P̂πH Q̂πH = rH−1 + P̂πH rH

QπH−1 = rH−1 + PπHQπH = rH−1 + PπH rH

Therefore

sup
π∈Πg

∥∥∥Q̂πH−1 −QπH−1

∥∥∥
∞

= sup
π∈Πg

∥∥∥(P̂πH − PπH) rH∥∥∥
∞

= sup
π∈Πg

∥∥∥(P̂ − P) rπHH ∥∥∥
∞

= sup
π∈Πg

sup
s,a

∣∣∣(P̂ (·|s, a)− P (·|s, a)
)
rπHH

∣∣∣
= sup

s,a
sup
π∈Πg

∣∣∣(P̂ (·|s, a)− P (·|s, a)
)
rπHH

∣∣∣ ,
where PπH ∈ RS·A×S·A, rH ∈ RS·A, P ∈ RS·A×S and rπHH ∈ RS . Note A ≥ 2, so we can choose
an instance of rH as (there are at least two actions since A ≥ 2)

(rH(s, a1), rH(s, a2), ...) := (1, 0, ...) ∀s ∈ S.
Above implies: if πH(s) = a1, then rπHH (s) = 1; if πH(s) = a2, then rπHH (s) = 0; ...

Hence, if Πg is the global deterministic policy class, then rπHH can traverse all the S-dimensional
vectors with either 0 or 1 in each coordinate, which is exactly{

rπHH ∈ RS : πH ∈ Πg

}
⊃ {0, 1}S .

Now let us first consider fixed s, a. Then with this choice of r, above implies

sup
π∈Πg

∣∣∣(P̂ (·|s, a)− P (·|s, a)
)
rπHH

∣∣∣ ≥ sup
r∈{0,1}S

∣∣∣(P̂ (·|s, a)− P (·|s, a)
)
· r
∣∣∣

= sup
r∈{0,1}S

∣∣∣∣∣ ∑
i:ri=1

(
P̂ (si|s, a)− P (si|s, a)

)∣∣∣∣∣
Let I+ := {i ∈ [S] : s.t. P̂ (si|s, a) − P (si|s, a) > 0} be the set of indices where P̂ (si|s, a) −
P (si|s, a) are positive and I− := {i ∈ [S] : s.t. P̂ (si|s, a)− P (si|s, a) < 0} be the set of indices
where P̂ (si|s, a)− P (si|s, a) are negative, then we further have

sup
r∈{0,1}S

∣∣∣∣∣ ∑
i:ri=1

(
P̂ (si|s, a)− P (si|s, a)

)∣∣∣∣∣
≥max

{ ∣∣∣∣∣∑
i∈I+

[P̂ (si|s, a)− P (si|s, a)]

∣∣∣∣∣ ,
∣∣∣∣∣∑
i∈I−

[P̂ (si|s, a)− P (si|s, a)]

∣∣∣∣∣
}

= max

{ ∑
i∈I+

∣∣∣P̂ (si|s, a)− P (si|s, a)
∣∣∣ , ∑
i∈I−

∣∣∣P̂ (si|s, a)− P (si|s, a)
∣∣∣ }
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On the other hand, we have∑
i∈I+

∣∣∣P̂ (si|s, a)− P (si|s, a)
∣∣∣+

∑
i∈I−

∣∣∣P̂ (si|s, a)− P (si|s, a)
∣∣∣ =

∥∥∥P̂ (·|s, a)− P (·|s, a)
∥∥∥

1

since P̂ (si|s, a)− P (si|s, a) = 0 contributes nothing to the l1 norm. Combine all the steps together,
we obtain

sup
π∈Πg

∥∥∥Q̂πH−1 −QπH−1

∥∥∥
∞
≥ sup

s,a

1

2

∥∥∥P̂ (·|s, a)− P (·|s, a)
∥∥∥

1
≥
↑
1

c · sup
s,a

√
S

ns,a
≥
↑
2

c′
√

S

ndm
(13)

holds with constant probability p. Here ns,a =
∑H
h=1

∑n
i=1 1[s

(i)
h = s, a

(i)
h = a] is the number of

data pieces visited (s, a) in n episodes. Now we explain how to obtain 1 and 2 . In particular, we
first explain 2 .

Explain 2 . Recall we consider the case H = 2. Then

E [ns,a] = E

[
H∑
h=1

n∑
i=1

1[s
(i)
h = s, a

(i)
h = a]

]
= n

2∑
i=1

E
[
1[s

(1)
h = s, a

(1)
h = a]

]
= n

2∑
h=1

dµh(s, a)

i.e. ns,a is a Binomial random variable with parameter n and
∑2
h=1 d

µ
h(s, a). Then by Lemma J.1,

choose θ = 1
2 , apply the second result, we obtain when n > (1/2dm) · log(SA/δ)13, with probability

1− δ

ns,a ≤
3

2
n ·

2∑
h=1

dµh(s, a), ∀s, a

Next, similar to the lower bound proof (Theorem G.2.) of Yin et al. [2021a], we can choose µ
and M (near uniform but not exact uniform) such that dµh(s, a) ≤ C · dm, which further implies
ns,a ≤ C · n · dm, ∀s, a. Summarize above we end up with the following Lemma:

Lemma C.1. Suppose n ≥ (1/2dm) · log(SA/δ), then

sup
µ,M

P

[√
1

ns,a
≥ C ·

√
1

n · dm
, ∀s, a

]
≥ 1− δ

Explain 1 . To make the explanation rigorous, we first fix a pair (s, a) and conditional on ns,a. Then
by a direct translation of Lemma J.7, we have

inf
P̂

sup
P (·|s,a)∈MS

P

[
‖P̂ (·|s, a)− P (·|s, a)‖1 ≥

1

8

√
eS

2ns,a
− o (·)

∣∣∣∣∣ns,a ≥ e

32
S

]
≥ p,

where o(·) is some exponentially small term in S, n. Now we consider everything under the condition
n ≥ e

32 · S/dm log(SA/δ). Next again take θ = 1/2, then by the first result of Lemma J.1, with
probability 1− δ,

ns,a ≥
1

2
n ·

2∑
h=1

dµh(s, a) ≥ n · dm ≥
e

32
S log(SA/δ).

13By Lemma J.1,the inequality holds as long as n ≥ 1/
∑2
h=1 d

µ
h(s, a) log(SA/δ), here n > (1/2dm) ·

log(SA/δ) is a stronger sufficient condition.
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where the last inequality uses the condition n ≥ e
32 · S/dm log(SA/δ). Therefore this implies

inf
P̂

sup
P (·|s,a)∈MS

P

[
‖P̂ (·|s, a)− P (·|s, a)‖1 ≥

1

8

√
eS

2ns,a
− o (·)

]

= inf
P̂

sup
P (·|s,a)∈MS

(
P

[
‖P̂ (·|s, a)− P (·|s, a)‖1 ≥

1

8

√
eS

2ns,a
− o (·)

∣∣∣∣∣ns,a ≥ e

32
S

]
· P
[
ns,a ≥

e

32
S
]

+P

[
‖P̂ (·|s, a)− P (·|s, a)‖1 ≥

1

8

√
eS

2ns,a
− o (·)

∣∣∣∣∣ns,a ≤ e

32
S

]
· P
[
ns,a ≤

e

32
S
])

≥ inf
P̂

sup
P (·|s,a)∈MS

P

[
‖P̂ (·|s, a)− P (·|s, a)‖1 ≥

1

8

√
eS

2ns,a
− o (·)

∣∣∣∣∣ns,a ≥ e

32
S

]
· P
[
ns,a ≥

e

32
S
]

≥p · (1− δ),
To sum up, we have the following lemma:

Lemma C.2. Let n ≥ e
32S/dm · log(SA/δ), then there exists a 0 < p < 1,

inf
P̂

sup
P (·|s,a)∈MS

P

[
‖P̂ (·|s, a)− P (·|s, a)‖1 ≥

1

8

√
eS

2ns,a
− o (·)

]
≥ p · (1− δ).

Now we finish the proof for the case where H = 2. First note by (13),

sup
π∈Πg

∥∥∥Q̂πH−1 −QπH−1

∥∥∥
∞
≥ sup

s,a

1

2

∥∥∥P̂ (·|s, a)− P (·|s, a)
∥∥∥

1

with probability 1, therefore by (13), Lemma C.1, Lemma C.2 we have

inf
P̂

sup
P∈MS

P

[
sup
π∈Πg

∥∥∥Q̂πH−1 −QπH−1

∥∥∥
∞
≥ C ·

√
S

ndm

]
≥ p(1− δ)− δ

when n ≥ c · S/dm log(SA/δ) for some c ≥ e
32 . Above holds for any δ.

It is easy to check 3
2

p
1+p ≤ 1, therefore, in particular we set δ = 3

2
p

1+p , direct calculation shows

p(1− δ)− δ =
p

2
,

which completes the proof for H = 2.

Extend to the general H ≥ 3.

Step 1. Similar to the decomposition in section B.4, we also have:

Q̂πt −Qπt =

H∑
h=t

Γ̂πt+1:h(P̂ − P )V πh+1

Step 2. Now choosing rewards recursively from back (with ||rH ||∞ = c sufficiently small) such that
1 ≥ rh ≥ (||rh+1||∞ + . . .+ ||rH ||∞) element-wisely ∀h, and maxs,a rh(s, a) = 3 mins,a rh(s, a).
We denote rh,max := maxs,a rh(s, a) and rh,min := mins,a rh(s, a). This choice guarantees:

rh,min := min
s,a

rh(s, a) > ||Pπh+1rh+1 + ..+ Pπh+1:H rH ||∞

since Pπh is row-stochastic.

Step 3. Next note V πh = rh + Pπh+1rh+1 + ..+ Pπh+1:H rH , so set (rh (s, a1) , rh (s, a2) , . . .) :=
(maxs,a rh(s, a),mins,a rh(s, a), . . .), then choose πh similar to the H = 2 case and use Step 1 and
Step 2 we have

|(P̂s,a − Ps,a)V πh | ≥
1

2
||P̂s,a − Ps,a||1 · (rh,max − rh,min − (Pπh+1rh+1 + ..+ Pπh+1:H rH))

≥1

2
||P̂s,a − Ps,a||1 · rh,min ≥

1

2
||P̂s,a − Ps,a||1 · c
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where the reasoning of the first inequality is similar to the case of H = 2. Next use Γ̂πt+1:h is
row-stochastic then from Step 1 and take the sum we have

||Q̂π1 −Qπ1 ||∞ ≥
1

2
c ·H min

s,a
||P̂s,a − Ps,a||1.

for such choice of rewards and π.

Step 4. However, in the above construction c actually depends on H due to the design 1 ≥ rh ≥
(||rh+1||∞ + . . .+ ||rH ||∞). To get a universal constant c we could use the bound ||Q̂π1 −Qπ1 ||∞ &
rH

2 ,min
· H2 mins,a ||P̂s,a − Ps,a||1 instead, where rH

2 ,min
in Step 2 is universally lower bounded.

Then we apply ||P̂s,a − Ps,a||1 & Ω(
√
S/ndm) to obtain the lower bound Ω(

√
H2S/ndm).

Remark C.3. We point out while our lower bound of Ω(H2S/dmε
2) for uniform OPE appears to

be qualitatively similar to the lower bound of Ω(H2S2A/ε2) derived for the online reward-free RL
setting [Jin et al., 2020a], our result is not implied by theirs and cannot be proven by directly adapting
their construction. Those two results are in principle different since: the result in [Jin et al., 2020a] is
learning-oriented where they define the problem class onO(S) states and forcing Ω(SA/ε2) episodes
in each state and end up with O(S2A/ε2) complexity; our result is evaluation-oriented where we
need reduce the uniform evaluation problem to estimating probability distribution in `1-error. The
global uniform OPE and the reward-free setting are also different tasks (one cannot imply the other):
the former deals with uniform convergence over all policies but with a fixed reward while the latter
aims at learning simultaneously over all rewards.

D Proof for optimal offline learning (Corollary 4.2)

Proof. This is a corollary of Theorem 4.1. Indeed, by taking π̂ = π̂?, we first have

∥∥∥V̂ π̂?1 − V π̂
?

1

∥∥∥
∞
≤
∥∥∥Q̂π̂?1 −Qπ̂

?

1

∥∥∥
∞
≤ C

√H2ι

ndm
+
H2.5S0.5ι

ndm

 .
Similar to the second result in Lemma B.11, we also have

∥∥∥V̂ π?1 − V π
?

1

∥∥∥
∞
≤
∥∥∥Q̂π?1 −Qπ

?

1

∥∥∥
∞
≤ C

√H2ι

ndm
+
H2.5S0.5ι

ndm

 .
Next, recall the definition of π̂ ∈ Πl that∥∥∥V̂ π̂?1 − V̂ π̂1

∥∥∥
∞
≤ εopt ,

and Theorem 4.1 again that

∥∥∥V̂ π̂1 − V π̂1 ∥∥∥∞ ≤ ∥∥∥Q̂π̂1 −Qπ̂1∥∥∥∞ ≤ C
√H2ι

ndm
+
H2.5S0.5ι

ndm

 .
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Therefore

V π
?

1 − V π̂1 = V π
?

1 − V π̂
?

1 + V π̂
?

1 − V π̂1
≤ max
π̂?,π?

∥∥∥V̂ π1 − V π1 ∥∥∥∞ + V π̂
?

1 − V π̂1

= max
π̂?,π?

∥∥∥V̂ π1 − V π1 ∥∥∥∞ +
(
V π̂

?

1 − V̂ π̂
?

1

)
+
(
V̂ π̂

?

1 − V̂ π̂1
)

+
(
V̂ π̂1 − V π̂1

)
≤ 3C

√H2ι

ndm
+
H2.5S0.5ι

ndm

+
∥∥∥V̂ π̂?1 − V̂ π̂1

∥∥∥
∞
· 1

≤ 3C

√H2ι

ndm
+
H2.5S0.5ι

ndm

+ εopt · 1.

This completes the proof.

E Proof for optimal offline Task-agnostic learning (Theorem 5.3)

Proof. Recall the definition of offline task-agnostic setting, where K tasks corresponds to K MDPs
Mk = (S,A, P, rk, H, d1) with different mean reward functions rk’s. Since the incremental number
of rewards do not incur randomness, therefore by Corollary 4.2, choose π̂k = π̂?k and apply a union
bound we obtain with probability 1− δ,

sup
k∈[K]

||V ?1,Mk
− V π̂

?
k

1,Mk
||∞ ≤ O

√H2 log(HSAK/δ)

ndm
+
H2.5S0.5 log(HSAK/δ)

ndm


= O

√H2(ι+ log(K))

ndm
+
H2.5S0.5(ι+ log(K))

ndm

 ,
which completes the proof.

Remark E.1. We stress that Section 3 of Zhang et al. [2020b] claims the definition of task-agnostic
RL setting embraces one challenge that r(i)

k ’s are the observed random realizations and the need
to accurately estimate mean rewards rk’s causes the additional log(K) dependence. However, for
offline case, this is not essential since, by straightforward calculation, estimating r(i)

k ’s accurately
only requires Õ(log(K)/dmε

2) samples, which is of lower order comparing to Õ(H2 log(K)/dmε
2)

learning bound. Therefore, in Definition 5.1 we do not incorporate the random version statement for
reward rk.

E.1 Offline Learning in the Constrained MDPs (CMDP)

Recently, there is a line of studies in the Constrained Markov Decision Processes (CMDP) (e.g.
?), where the MDP M = (S,A, P,H, d1). When the reward is set to be r, it defines the objective
function V πr and there is another utility function g that defines the constraint. To be concrete, the
objective formualted as:

maximize
π∈∆(A|S,H)

V πr,1 (x1) subject to V πg,1 (x1) ≥ b (14)

where b ∈ (0, H] is some constraint threshold. In addition, the formulation needs a Slater condition
that: there exists γ > 0 and π̄ ∈ ∆(A|S, H) such that V π̄g,1(x1) ≥ b+ γ.
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Let π? be the optimal solution that is compatible with the programming (14) (note this is different
from the optimal policy that maximizes V πr,1 only), then by feasibility it satisfies V π

?

g,1 ≥ b.
Now let π̂? be the solution of the empirical program:

maximize
π∈∆(A|S,H)

V̂ πr,1 (x1) subject to V̂ πg,1 (x1) ≥ b (15)

then we can show π̂? is a near-optimal solution for (14) via the local uniform convergence guarantee
(Theorem 4.1).

Indeed, define a surrogate program:

maximize
π∈∆(A|S,H)

V̂ πr,1 (x1) subject to V πg,1 (x1) ≥ b (16)

and let π̄? be the solution for (16). Then apparently π̄? satisfies V π̄
?

g,1 (x1) ≥ b. Moreover, we
have

V π
?

r,1 − V π̄
?

r,1 =V π
?

r,1 − V̂ π
?

r,1 + V̂ π
?

r,1 − V̂ π̄
?

r,1 + V̂ π̄
?

r,1 − V π̄
?

r,1

≤V π
?

r,1 − V̂ π
?

r,1 + 0 + V̂ π̄
?

r,1 − V π̄
?

r,1

≤2 sup
π
|V πr,1 − V̂ πr,1|

On the other hand, by local uniform convergence guarantee, |V πg,1 − V̂ πg,1| ≤ Õ(
√
H2/ndm) for all

π in the
√
H/S-neighborhood of π̂? (w.r.t g). This implies

V π
?

r,1 − V π̂
?

r,1 ≤ 2 sup
π
|V πr,1 − V̂ πr,1|+ Õ(

√
H2/ndm)

and the violation of the constraint is bounded by Õ(
√
H2/ndm). This means any approach that

solves (15) is near-optimal for the original constrained MDP task given the uniform convergence
guarantee.

F Proof for optimal offline Reward-free learning (Theorem 5.4)

Similar to before, recall ns,a =
∑H
h=1

∑n
i=1 1[s

(i)
h = s, a

(i)
h = a]. We first prove two lemmas which

essentially provide a version of “Maximal Bernstein inequality”. We first fix a pair (s, a) and then
conditional on ns,a.

Lemma F.1. We define ε1 =
√

1
HS2 . Let G = {[i1ε1, i2ε1, . . . , iSε1]>|i1, i2, . . . , iS ∈ Z}∩ [0, H]S

be the S-dimensional grid. Next define ι1 = log[(
√
H3S2)S/δ]. Then with probability 1− δ,∣∣∣(Ps,a − P̂s,a)w

∣∣∣ ≤√2Vars,a(w)ι1
ns,a

+
2Hι1
3ns,a

, ∀w ∈ G.

This is by the direct application of Bernstein inequality with a union bound, where the cardinality of
G is (

H

ε1

)S
=
(√

H3S2
)S

.

Lemma F.2. Let the S-dimensional grid be G = {[i1ε1, i2ε1, . . . , iSε1]>|i1, i2, . . . , iS ∈ Z} ∩
[0, H]S and define ι1 = log[(

√
H3S2)S/δ]. It holds with probability 1− δ,∣∣∣(Ps,a − P̂s,a)v

∣∣∣ ≤√2Vars,a(v)ι1
ns,a

+ C

√
ι1

ns,aHS
+

2Hι1
3ns,a

, ∀ v ∈ [0, H]S .

Proof. Let z := ProjG(v). Then by design of G we have

‖z − v‖∞ ≤ ε1 =

√
1

HS2
.
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Therefore we obtain ∀v ∈ [0, H]S ,

∣∣∣(Ps,a − P̂s,a)v
∣∣∣ ≤ ∣∣∣(Ps,a − P̂s,a)(v − z)

∣∣∣+
∣∣∣(Ps,a − P̂s,a)z

∣∣∣
≤
∥∥∥Ps,a − P̂s,a∥∥∥

1
‖z − v‖∞ +

∣∣∣(Ps,a − P̂s,a)z
∣∣∣

≤ c

√
S

ns,a
‖z − v‖∞ +

√
2Vars,a(z)ι1

ns,a
+

2Hι1
3ns,a

≤ c

√
S

ns,a
‖z − v‖∞ +

√
2 ‖z − v‖2∞ ι1

ns,a
+

√
2Vars,a(v)ι1

ns,a
+

2Hι1
3ns,a

≤ C

√
Sι1
ns,a
‖z − v‖∞ +

√
2Vars,a(v)ι1

ns,a
+

2Hι1
3ns,a

≤ C
√

ι1
ns,aHS

+

√
2Vars,a(v)ι1

ns,a
+

2Hι1
3ns,a

.

where the third inequality uses Lemma F.1 and Lemma J.9.

Then recall N := mins,a ns,a, by Lemma F.2 and a union bound we obtain with probability 1− δ,
element-wisely,

∣∣∣(P − P̂ )v
∣∣∣ ≤ C ·(√2Vars,a(v)ι2

N
+ 2

√
ι2

N ·HS
+

2Hι2
3N

)
· 1, ∀ v ∈ [0, H]S , (17)

where ι2 = S log(HSA/δ).
Remark F.3. Equation 17 is a form of maximal Bernstein inequality as it keeps validity for all
v ∈ [0, H]S . The price for this stronger result is the extra S factor (coming from ι2) in the dominate
term.

Now, for any reward r, by (empirical) Bellman equation we have element-wisely:

Q̂π̂
?

h −Qπ̂
?

h = rh + P̂ π̂
?
h+1Q̂π̂

?

h+1 − rh − P π̂
?
h+1Qπ̂

?

h+1

=
(
P̂ π̂

?
h+1 − P π̂

?
h+1

)
Q̂π̂

?

h+1 + P π̂
?
h+1

(
Q̂π̂

?

h+1 −Qπ̂
?

h+1

)
=
(
P̂ − P

)
V̂ π̂

?

h+1 + P π̂
?
h+1

(
Q̂π̂

?

h+1 −Qπ̂
?

h+1

)
= . . . =

H∑
t=h

Γπ̂
?

h+1:t

(
P̂ − P

)
V̂ π̂

?

t+1

where Γπh+1:t =
∏t
i=h+1 P

πi is multi-step state-action transition and Γh+1:h := I .
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Concentration on
(
P̂ − P

)
V̂ ?h . Now by (17), we have the following:(

P̂s,a − Ps,a
)
V̂ ?h

≤ C ·

√2Vars,a(V̂ ?h )ι2
N

+ 2

√
ι2

N ·HS
+

2Hι2
3N


≤ C ·

√2Vars,a(V π̂
?

h )ι2
N

+ 2

√
ι2

N ·HS
+

√
2ι2
N
·
∥∥∥V̂ π̂?h − V π̂

?

h

∥∥∥
∞

+
2Hι2
3N


≤ C ·

√2Vars,a(V π̂
?

h )ι2
N

+ 2

√
ι2

N ·HS
+

√
2ι2
N
·H2

√
S

N
+

2Hι2
3N


≤ C ′ ·

√2Vars,a(V π̂
?

h )ι2
N

+ 2

√
ι2

N ·HS
+

2H2S log(HSA/δ)

N

 ,

(18)

where the third inequality uses Lemma J.1014. Then above implies

Q̂π̂
?

h −Qπ̂
?

h

≤C ′
H∑
t=h

Γπ̂
?

h+1:t ·

√2Vars,a(V π̂
?

h )ι2
N

+ 2

√
ι2

N ·HS
+

2H2S log(HSA/δ)

N


≤C ′

 H∑
t=h

Γπ̂
?

h+1:t ·

√
2Vars,a(V π̂

?

h )ι2
N

+ 2

√
H log(HSA/δ)

N
+

2H3S log(HSA/δ)

N


≤C ′

[√
2H3S log(HSA/δ)

N
+ 2

√
H log(HSA/δ)

N
+

2H3S log(HSA/δ)

N

]

≤C ′′
[√

H3S log(HSA/δ)

N
+
H3S log(HSA/δ)

N

]

≤O

√H2S log(HSA/δ)

ndm
+
H2S log(HSA/δ)

ndm

 ,

where the third inequality uses Lemma J.5 and the last one uses N ≥ 1
2ndm with high probability.

Similar result holds for Q̂π
?

h − Qπ
?

h . Combing those results we have reward-free bound (for any
reward simultaneously)

O

√H2S log(HSA/δ)

ndm
+
H2S log(HSA/δ)

ndm

 ,
which finishes the proof of Theorem 5.4.
Remark F.4. Note above result is tight in both the dominate term AND the higher order term.
Therefore this result cannot be further improved even in the higher order term.

14Note the use of Lemma J.10 also works for any rewards since the only high probability result they used is
for ||P − P̂ ||1. Therefore conditional on the concentration for ||P − P̂ ||1, the argument follows for any arbitrary
reward as well.
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G Discussion of Section 5

In this section we explain why Theorem 5.3 and Theorem 5.4 are optimal in the offline RL.

We begin with the offline task-agnostic setting. For the exquisite readers who check the proof
of Theorem 5 of Zhang et al. [2020b], the proving procedure of their lower bound follows the
standard reduction to best-arm identification in multi-armed bandit problems. More specifically,
to incorporate the dependence of log(K), they rely on the Theorem 10 of Zhang et al. [2020b]
(which is originated from Mannor and Tsitsiklis [2004]) to show in order to be (ε, δ)-correct for
a problem with A arms and with K tasks, it need at least Ω( Aε2 log(Kδ )) samples. Such a result
updates the Lemma G.1. in Yin et al. [2021b] by the extra factor log(K) for the bandit problem
with K tasks. With no modification, the rest of the proof in Section E of Yin et al. [2021b] follows
though and one can end up with the lower bound Ω(H2 log(K)/dmε

2) over the problem class
Mdm := {(µ,M) | mint,st,at d

µ
t (st, at) ≥ dm}. The case for the offline reward-free setting is also

similar. Indeed, the Ω(SA/ε2) trajectories in Lemma 4.2 in Jin et al. [2020a] could be replaced by
Ω(1/dmε

2) by choosing some hard near-uniform behavior policy instances (see Section E.2 in Yin
et al. [2021b]) and the rest follows since by forcing S such instances (Section 4.2 of Jin et al. [2020a])
to obtain Ω(S/dmε

2) and create a chain of Ω(H) rewards for Ω(H2S/dmε
2).

H Proof of the linear MDP with anchor representations (Section 6)

Recall that we assume a generative oracle here. Sometimes we abuse the notation K for either anchor
point set or the anchor point indices set. The meaning should be clear in each context.

H.1 Model-based Plug-in Estimator for Anchor Representations

Step 1: For each (sk, ak) where index k ∈ K, collect N samples from P (·|sk, ak); compute

P̂K(s′|sk, ak) =
count(s, a, s′)

N
;

Step 2: Compute the linear combination coefficients λs,ak satisfies φ(s, a) =∑
k∈K λ

s,a
k φ(sk, ak);

Step 3: Estimate transition distribution

P̂ (s′|s, a) =
∑
k∈K

λs,ak · P̂K(s′|sk, ak).

We need to check such P̂ (s′|s, a) is a valid distribution. This is due to:

∑
k∈K

λs,ak =
∑
k∈K

∑
s′

λs,ak P (s′|sk, ak) =
∑
s′

∑
k∈K

λs,ak P (s′|sk, ak)

=
∑
s′

∑
k∈K

λs,ak 〈φ(sk, ak), ψ(s′)〉 =
∑
s′

〈φ(s, a), ψ(s′)〉 =
∑
s′

P (s′|s, a) = 1

and ∑
s′

P̂ (s′|s, a) =
∑
s′

∑
k∈K

λs,ak P̂K (s′ | sk, ak) =
∑
k∈K

∑
s′

λs,ak P̂K (s′ | sk, ak)

=
∑
k∈K

λs,ak
N

N
= 1.

Step 4: construct empirical model M̂ = (S,A, P̂ , r,H) and output π̂? = argmaxπ V̂
π
1 .
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Similarly, Bellman (optimality) equations hold15

V ?t (s) = max
a

{
r(s, a) +

∫
s′
V ?t+1(s′)dP (s′|s, a)

}
, ∀s ∈ S.

V̂ ?t (s) = max
a

{
r(s, a) +

∫
s′
V̂ ?t+1(s′)dP̂ (s′|s, a)

}
, ∀s ∈ S.

H.2 General absorbing MDP

The definition of the general absorbing MDP remains the same: i.e. for a fixed state s and a sequence
{ut}Ht=1, MDP Ms,{ut}Ht=1

is identical to M for all states except s, and state s is absorbing in the
sense PM

s,{ut}Ht=1

(s|s, a) = 1 for all a, and the instantaneous reward at time t is rt(s, a) = ut for
all a ∈ A. Also, we use the shorthand notation V π{s,ut} for V πs,M

s,{ut}Ht=1

and similarly for Q{s,ut}
and transition P{s,ut}. Then the following properties mirroring the Lemma B.1 and Lemma B.2 with
nearly identical proof but for the integral version (which we skip):

Lemma H.1.

V ?h,{s,ut}(s) =

H∑
t=h

ut.

Lemma H.2. Fix state s. For two different sequences {ut}Ht=1 and {u′t}Ht=1, we have

max
h

∥∥∥Q?h,{s,ut} −Q?h,{s,u′t}∥∥∥∞ ≤ H · max
t∈[H]

|ut − u′t| .

H.3 Singleton-absorbing MDP

The well-definedness of singleton-absorbing MDP for linear MDP with anchor points depends on the
following two lemmas whose proofs are still nearly identical to Lemma B.3 and Lemma B.5 which
we skip.
Lemma H.3. V ?t (s)− V ?t+1(s) ≥ 0, for all state s ∈ S and all t ∈ [H].
Lemma H.4. Fix a state s. If we choose u?t := V ?t (s) − V ?t+1(s) ∀t ∈ [H], then we have the
following vector form equation

V ?h,{s,u?t } = V ?h,M ∀h ∈ [H].

Similarly, if we choose û?t := V̂ ?t (s)− V̂ ?t+1(s), then V̂ ?h,{s,û?t } = V̂ ?h,M , ∀h ∈ [H].

The singleton MDP we used is exactly Ms,{u?t }Ht=1
(or M̂s,{u?t }Ht=1

).

H.4 Proof for the optimal sample complexity

For π̂?, by (empirical) Bellman equation we have element-wisely:

Q̂π̂
?

h −Qπ̂
?

h = rh + P̂ π̂
?
h+1Q̂π̂

?

h+1 − rh − P π̂
?
h+1Qπ̂

?

h+1

=
(
P̂ π̂

?
h+1 − P π̂

?
h+1

)
Q̂π̂

?

h+1 + P π̂
?
h+1

(
Q̂π̂

?

h+1 −Qπ̂
?

h+1

)
=
(
P̂ − P

)
V̂ π̂

?

h+1 + P π̂
?
h+1

(
Q̂π̂

?

h+1 −Qπ̂
?

h+1

)
= . . . =

H∑
t=h

Γπ̂
?

h+1:t

(
P̂ − P

)
V̂ π̂

?

t+1 ≤
H∑
t=h

Γπ̂
?

h+1:t

∣∣∣(P̂ − P) V̂ π̂?t+1

∣∣∣︸ ︷︷ ︸
(?)

where Γπ
?

h+1:t =
∏t
i=h+1 P

π?i is multi-step state-action transition and Γh+1:h := I .

15We use the integral only to denote S could be exponentially large.
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H.5 Analyzing (?)

Concentration on
(
P̂ − P

)
V̂ ?h . Since P̂ aggregates all data from different step so that P̂ and V̂ ?h

are on longer independent. We use the singleton-absorbing MDP Ms,{u?t }Ht=1
to handle the case

(recall u?t := V ?t (s)− V ?t+1(s) ∀t ∈ [H]). Here, we fix the state action (s, a) ∈ K. Then we have:

(
P̂s,a − Ps,a

)
V̂ ?h =

(
P̂s,a − Ps,a

)(
V̂ ?h − V̂ ?h,{s,u?t } + V̂ ?h,{s,u?t }

)
=
(
P̂s,a − Ps,a

)(
V̂ ?h − V̂ ?h,{s,u?t }

)
+
(
P̂s,a − Ps,a

)
V̂ ?h,{s,u?t }

≤
∥∥∥P̂s,a − Ps,a∥∥∥

1

∥∥∥V̂ ?h − V̂ ?h,{s,u?t }∥∥∥∞ +

√
2 log(4/δ)

N

√
Vars,a(V̂ ?h,{s,u?t }

) +
2H log(1/δ)

3N

≤
∥∥∥P̂s,a − Ps,a∥∥∥

1

∥∥∥V̂ ?h − V̂ ?h,{s,u?t }∥∥∥∞ +

√
2 log(4/δ)

N

(√
Vars,a(V̂ ?h ) +

√
Vars,a(V̂ ?h,{s,u?t }

− V̂ ?h )

)
+

2H log(1/δ)

3N

≤
∥∥∥P̂s,a − Ps,a∥∥∥

1

∥∥∥V̂ ?h − V̂ ?h,{s,u?t }∥∥∥∞ +

√
2 log(4/δ)

N

(√
Vars,a(V̂ ?h ) +

√∥∥∥V̂ ?h,{s,u?t } − V̂ ?h ∥∥∥2

∞

)
+

2H log(1/δ)

3N

=

(∥∥∥P̂s,a − Ps,a∥∥∥
1

+

√
2 log(4/δ)

N

)∥∥∥V̂ ?h − V̂ ?h,{s,u?t }∥∥∥∞ +

√
2 log(4/δ)

N

√
Vars,a(V̂ ?h ) +

2H log(1/δ)

3N

(19)

where the first inequality uses Bernstein inequality (Lemma J.3) (note here Ps,aV =∫
s′
V (s′)dP (s′|s, a) since S could be continuous space, but this does not affect the availabil-

ity of Bernstein inequality!), the second inequality uses
√

Var(·) is norm (norm triangle inequality).

Now we treat
∥∥∥P̂s,a − Ps,a∥∥∥

1
and

∥∥∥V̂ ?h − V̂ ?h,{s,u?t }∥∥∥∞ separately.

For
∥∥∥P̂s,a − Ps,a∥∥∥

1
. Recall here (s, a) ∈ K. By Lemma J.9 we obtain w.p. 1− δ

∥∥∥P̂s,a − Ps,a∥∥∥
1
≤ C

√
|S| log(1/δ)

N
. (20)

where C absorbs the higher order term and constants.

For
∥∥∥V̂ ?h − V̂ ?h,{s,u?t }∥∥∥∞. Note if we set û?t = V̂ ?t (s)− V̂ ?t+1(s), then by Lemma H.4

V̂ ?h = V̂ ?h,{s,û?t }

Next since V̂ ?h,{s,û?t }(s̃) = maxa Q̂
?
h,{s,û?t }

(s̃, a) ∀s̃ ∈ S , by generic inequality |max f −max g| ≤
max |f − g|, we have |V̂ ?h,{s,û?t }(s̃) − V̂ ?h,{s,u?t }

(s̃)| ≤ maxa |Q̂?h,{s,û?t }(s̃, a) − Q̂?h,{s,u?t }
(s̃, a)|,

taking maxs̃ on both sides, we obtain exactly∥∥∥V̂ ?h,{s,û?t } − V̂ ?h,{s,u?t }∥∥∥∞ ≤ ∥∥∥Q̂?h,{s,û?t } − Q̂?h,{s,u?t }∥∥∥∞
then by Lemma H.2,∥∥∥V̂ ?h − V̂ ?h,{s,u?t }∥∥∥∞ ≤ ∥∥∥Q̂?h,{s,û?t } − Q̂?h,{s,u?t }∥∥∥∞ ≤ H max

t
|û?t − u?t | , (21)

Recall
û?t − u?t = V̂ ?t (s)− V̂ ?t+1(s)−

(
V ?t (s)− V ?t+1(s)

)
.

Now we denote

∆s := max
t
|û?t − u?t | = max

t

∣∣∣V̂ ?t (s)− V̂ ?t+1(s)−
(
V ?t (s)− V ?t+1(s)

)∣∣∣ ,
then ∆s itself is a scalar and a random variable.

To sum up, by (19), (5) and (21) and a union bound over all (s, a) ∈ K we have
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Lemma H.5. FixN > 0. With probability 1−δ, element-wisely, for all h ∈ [H] and all (sk, ak) ∈ K,∣∣∣(P̂sk,ak − Psk,ak) V̂ ?h ∣∣∣ ≤C
√
|S| log(HK/δ)

N
·H max

sk
∆sk

+

√
2 log(4HK/δ)

N

√
VarPsk,ak (V̂ ?h ) +

2H log(HK/δ)

3N

Now we extend Lemma H.5 to any arbitrary (s, a) by proving the following lemma:
Lemma H.6 (recover lemma). For any function V and any state action (s, a), we have∑

k∈K

λs,ak

√
VarPsk,ak (V ) ≤

√
VarPs,a(V )

Proof of Lemma H.6. Since λs,ak are probability distributions, by Jensen’s inequality twice∑
k∈K

λs,ak

√
VarPsk,ak (V ) ≤

√∑
k∈K

λs,ak VarPsk,ak (V )

=

√∑
k∈K

λs,ak VarPsk,ak (V ) =

√∑
k∈K

λs,ak (Psk,akV
2 − (Psk,akV )2)

≤
√∑
k∈K

λs,ak · Psk,akV 2 − (
∑
k∈K

λs,ak Psk,akV )2

=
√
Ps,aV 2 − (Ps,aV )2 =

√
VarPs,a(V ),

where we use Ps,a =
∑
k∈K λ

s,a
k Psk,ak .

Therefore for all (s, a), using Lemma H.5 and Lemma H.6 we obtain w.p. 1− δ,∣∣∣(P̂s,a − Ps,a) V̂ ?h ∣∣∣ ≤∑
k∈K

λs,ak

∣∣∣(P̂sk,ak − Psk,ak) V̂ ?h ∣∣∣
≤ C

∑
k∈K

λs,ak

√
S log(HK/δ)

N
·H max

sk
∆sk +

∑
k∈K

λs,ak

√
2 log(4HK/δ)

N

√
VarPsk,ak (V̂ ?h )

+
∑
k∈K

λs,ak
2H log(HK/δ)

3N

= C

√
S log(HK/δ)

N
·H max

sk
∆sk +

∑
k∈K

λs,ak

√
2 log(4HK/δ)

N

√
VarPsk,ak (V̂ ?h )

+
2H log(HK/δ)

3N

≤ C
√
S log(HK/δ)

N
·H max

sk
∆sk +

√
2 log(4HK/δ)

N

√
VarPs,a(V̂ ?h ) +

2H log(HK/δ)

3N

Now plug above back into (?), we receive:

∣∣∣Q̂π̂?h −Qπ̂?h ∣∣∣
≤

H∑
t=h

Γπ̂
?

h+1:t

(
C

√
S log(HK/δ)

N
·H max

sk
∆sk · 1 +

√
2 log(4HK/δ)

N

√
VarP (V̂ ?t+1) +

2H log(HK/δ)

3N
· 1

)

≤
H∑
t=h

Γπ̂h+1:t

√
2 log(4HK/δ)

N

√
VarP (V̂ ?t+1) + CH2

√
S log(HK/δ)

N
·max

s
∆s · 1 +

2H2 log(HK/δ)

3N
· 1
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Similar to before, we get√
VarP (V̂ ?h ) :=

√
VarP

(
V̂ π̂

?

h

)
≤
√

VarP
(
V π̂

?

h

)
+
∥∥∥Q̂π̂?h −Qπ̂?h ∥∥∥∞ (22)

Plug (22) back to above we obtain ∀h ∈ [H],∣∣∣Q̂π̂?h −Qπ̂?h ∣∣∣ ≤
√

2 log(4HK/δ)

N

H∑
t=h

Γπ̂
?

h+1:t

(√
VarP

(
V π̂

?

t+1

)
+
∥∥∥Q̂π̂?t+1 −Qπ̂

?

t+1

∥∥∥
∞

)

+ CH2

√
S log(HK/δ)

N
·max
sk

∆sk · 1 +
2H2 log(HK/δ)

3N
· 1

≤
√

2 log(4HK/δ)

N

H∑
t=h

Γπ̂
?

h+1:t

√
VarP

(
V π̂

?

t+1

)
+

√
2 log(4HK/δ)

N

H∑
t=h

∥∥∥Q̂π̂?t+1 −Qπ̂
?

t+1

∥∥∥
∞

+ CH2

√
S log(HK/δ)

N
·max
sk

∆sk · 1 +
2H2 log(HK/δ)

3N
· 1

(23)
Apply Lemma J.5 and the (anchor version using recover lemma H.6) coarse uniform bound
(Lemma J.10) we obtain the following lemma:
Lemma H.7. With probability 1− δ, for all h ∈ [H],∥∥∥Q̂π̂?h −Qπ̂?h ∥∥∥∞ ≤

√
C0H3 log(4HK/δ)

N
+

√
2 log(4HK/δ)

N

H∑
t=h

∥∥∥Q̂π̂?t+1 −Qπ̂
?

t+1

∥∥∥
∞

+ C ′H4S log(HK/δ)

N

Proof. Since

∆sk := max
t
|û?t − u?t | = max

t

∣∣∣V̂ ?t (sk)− V̂ ?t+1(sk)−
(
V ?t (sk)− V ?t+1(sk)

)∣∣∣
≤ 2 ·max

t

∣∣∣V̂ ?t (sk)− V ?t (sk)
∣∣∣

= 2 ·max
t

∣∣∣max
π

V̂ πt (sk)−max
π

V πt (sk)
∣∣∣

≤ 2 · max
π∈Πg,t∈[H]

∥∥∥V̂ πt − V πt ∥∥∥∞ ≤ C ·H2

√
|S| log(HK/δ)

N

(24)

where the last inequality uses (the anchor version) of Lemma J.10.16 Then apply union bound w.p.

1− δ/2, we obtain maxsk ∆sk ≤ C ·H2
√
|S| log(HK2/δ)

N . Note (23) holds with probability 1− δ/2,
therefore plug above into (23) and uses Lemma J.5 and take || · ||∞ we obtain w.p. 1− δ, the result
holds.

Lemma H.8. Given N > 0. Define C ′′ := 2 ·max(
√
C0, C

′) where C ′ is the universal constant in
Lemma H.7. When N ≥ 8H2|S| log(4HK/δ), then with probability 1− δ, ∀h ∈ [H],∥∥∥Q̂π̂?h −Qπ̂?h ∥∥∥∞ ≤ C ′′

√
H3 log(4HK/δ)

N
+ C ′′

H4S log(HK/δ)

N
.∥∥∥Q̂π?h −Qπ?h ∥∥∥∞ ≤ C ′′

√
H3 log(4HK/δ)

N
+ C ′′

H4S log(HK/δ)

N
.

(25)

Proof. The proof is the same as Lemma B.9.

Remark H.9. Note the higher order term has dependence H4S. Use the same self-bounding trick,
we can reduce it to H3.5S0.5.

16Here the anchor version means for any (s, a) we can apply ||P̂s,a−Ps,a||1 = ||
∑
k λ

s,a
k (P̂s,a−Ps,a)||1 ≤∑

k λ
s,a
k ||P̂s,a − Ps,a||1.
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Lemma H.10. Given N > 0. There exists universal constants C1, C2 such that when N ≥
C1H

2|S| log(HK/δ), then with probability 1− δ, ∀h ∈ [H],∥∥∥Q̂π̂?h −Qπ̂?h ∥∥∥∞ ≤ C2

√
H3 log(HK/δ)

N
+ C2

H3
√
HS log(HK/δ)

N
. (26)

and ∥∥∥Q̂π?h −Qπ?h ∥∥∥∞ ≤ C2

√
H3 log(HK/δ)

N
+ C2

H3
√
HS log(HK/δ)

N
.

Proof. The proof is similar to Lemma B.11.

H.6 Proof of Theorem 6.2

Proof. By the direct computing of the suboptimality,

Q?1 −Qπ̂
?

1 = Q?1 − Q̂π
?

1 + Q̂π
?

1 − Q̂π̂
?

1 + Q̂π̂
?

1 −Qπ̂
?

1 ≤ |Q?1 − Q̂π
?

1 |+ |Q̂π̂
?

1 −Qπ̂
?

1 |,

then by Lemma H.10 we can finish the proof.

H.7 Take-away in the linear MDP with anchor setting.

Under the setting S could be exponential large, A could be infinite (or even continuous space), with
anchor representations (K � |S|), our Theorem 6.2 has order Õ(

√
H3/N) when N is sufficiently

large. This translate to N = Õ(H3/ε2) and the total sample used is KN = Õ(KH3/ε2). This
improves the total complexity Õ(KH4/ε2) in Cui and Yang [2020] and is optimal.

I The computational efficiency for the model-based offline plug-in
estimators

For completeness, we discuss the computational and storage aspect of our model-based method. Its
computational cost is Õ(H4/dmε

2) for computing P̂ , the same as its sample complexity in steps
(H steps is an episode), and running value iteration causes O(HS2A) time (here we assume the
bit complexity L(P, r,H) = 1, see Agarwal et al. [2019] Section 1.3). The total computational
complexity is Õ(H4/dmε

2) +O(HS2A). The memory cost is O(HS2A).

J Assisting lemmas

Lemma J.1 (Multiplicative Chernoff bound Chernoff et al. [1952]). Let X be a Binomial random
variable with parameter p, n. For any 1 ≥ θ > 0, we have that

P[X < (1− θ)pn] < e−
θ2pn

2 . and P[X ≥ (1 + θ)pn] < e−
θ2pn

3

Lemma J.2 (Hoeffding’s Inequality Sridharan [2002]). Let x1, ..., xn be independent bounded
random variables such that E[xi] = 0 and |xi| ≤ ξi with probability 1. Then for any ε > 0 we have

P

(
1

n

n∑
i=1

xi ≥ ε

)
≤ e
− 2n2ε2∑n

i=1
ξ2
i .

Lemma J.3 (Bernstein’s Inequality). Let x1, ..., xn be independent bounded random variables such
that E[xi] = 0 and |xi| ≤ ξ with probability 1. Let σ2 = 1

n

∑n
i=1 Var[xi], then with probability

1− δ we have
1

n

n∑
i=1

xi ≤
√

2σ2 · log(1/δ)

n
+

2ξ

3n
log(1/δ)
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Lemma J.4 (Freedman’s inequality Tropp et al. [2011]). Let X be the martingale associated
with a filter F (i.e. Xi = E[X|Fi]) satisfying |Xi − Xi−1| ≤ M for i = 1, ..., n. Denote
W :=

∑n
i=1 Var(Xi|Fi−1) then we have

P(|X − E[X]| ≥ ε,W ≤ σ2) ≤ 2e
− ε2

2(σ2+Mε/3) .

Or in other words, with probability 1− δ,

|X − E[X]| ≤
√

8σ2 · log(1/δ) +
2M

3
· log(1/δ), Or W ≥ σ2.

Lemma J.5 (Sum of expectation of conditional variance of value; Lemma F.3 of Yin et al. [2021a]).

Varπ

[
H∑
t=h

r
(1)
t | s

(1)
h = sh, a

(1)
h = ah

]

=

H∑
t=h

(
Eπ
[
Var

[
r

(1)
t + V πt+1

(
s

(1)
t+1

)
| s(1)
t , a

(1)
t

]
| s(1)
h = sh, a

(1)
h = ah

]
+Eπ

[
Var

[
E
[
r

(1)
t + V πt+1

(
s

(1)
t+1

)
| s(1)
t , a

(1)
t

]
| s(1)
t

]
| s(1)
h = sh, a

(1)
h = ah

])

By apply above, one can show

H∑
t=h

Γπh+1:t

√
VarP

(
V πt+1

)
≤
√

(H − h)3 · 1.

Remark J.6. The infinite horizon discounted setting counterpart result is (I − γPπ)−1σV π ≤
(1− γ)−3/2.

J.1 Minimax rate of discrete distributions under l1 loss.

This Section provides the minimax rate for
∥∥∥P̂ − P∥∥∥

1
for any model-based algorithms and is based

on Han et al. [2015]. Let P be S dimensional distribution.
Lemma J.7 (Minimax lower bound for

∥∥∥P̂ − P∥∥∥
1
). Let n be the number of data-points sampled

from P . If n > e
32S, then there exists a constant p > 0, such that

inf
P̂

sup
P∈MS

P

[∥∥∥P̂ − P∥∥∥
1
≥ 1

8

√
eS

2n
− o(e−n)− o(e−S)

]
≥ p,

whereMS denotes the set of distributions with support size S and the infimum is taken over ALL
estimators.
Remark J.8. Note the P̂ in above carries over all estimators but not just empirical estimator. This
provides the minimax result.

Proof. The proof comes from Theorem 2 of Han et al. [2015], where we pick ζ = 1. Note they
establish the minimax result for EP ‖P̂ − P‖1. However, by a simple contradiction we can get the
above. Indeed, suppose

inf
P̂

sup
P∈MS

P

[∥∥∥P̂ − P∥∥∥
1
<

1

8

√
eS

2n
− o(e−n)− o(e−S)

]
= 1,

then this implies inf P̂ supP∈MS
EP ‖P̂ − P‖1 < 1

8

√
eS
2n − o(e

−n) − o(e−S) which contradicts
Theorem 2 of Han et al. [2015].
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Lemma J.9 (Upper bound for
∥∥∥P̂ − P∥∥∥

1
). Let n be the number of data-points sampled from P .

Then with probability 1− δ∥∥∥P̂ − P∥∥∥
1
≤ C

(√
S log(S/δ)

n
+
S log(S/δ)

n

)

for any P ∈MS . Here P̂ is the empirical (MLE) estimator.

Proof. First fix a state s. Let Xi = 1[si = s], then Xi ∼ Bern(ps(1− ps)) and Xs =
∑n
i=1Xi ∼

Binomial(n, pi). By Bernstein inequality,∣∣∣∣Xs

n
− Ps

∣∣∣∣ ≤
√

2ps(1− ps) log(1/δ)

n
+

3

n
log(1/δ)

Apply a union bound we obtain w.p. 1− δ∣∣∣∣Xs

n
− Ps

∣∣∣∣ ≤
√

2ps(1− ps) log(S/δ)

n
+

3

n
log(S/δ) ∀s ∈ S

which implies∥∥∥P̂ − P∥∥∥
1

=
∑
s∈S

∣∣∣∣Xs

n
− Ps

∣∣∣∣
≤
∑
s∈S

√
2ps(1− ps) log(S/δ)

n
+

3S

n
log(S/δ)

=

√
1

n

∑
s∈S

1

S
·
√

2S2ps(1− ps) log(S/δ) +
3S

n
log(S/δ)

≤
√

1

n

√
2S2 ·

∑
s∈S ps

S

(
1−

∑
s∈S ps

S

)
log(S/δ) +

3S

n
log(S/δ)

=

√
2(S − 1) log(S/δ)

n
+

3S

n
log(S/δ).

where the last inequality uses the concavity of
√
x(1− x).

Finally, we can absorb the higher order term using the mild condition n > c · S log(S/δ).

J.2 A crude uniform convergence bound

Here we provide a crude bound for supπ∈Πg

∥∥∥V̂ π1 − V π1 ∥∥∥∞, which is the finite horizon counterpart
of Section 2.2 of Jiang [2018] and is a form of simulation lemma.
Lemma J.10 (Crude bound by Simulation Lemma). Fix N > 0 to be number of samples for each
coordinates. Recall Πg is the global policy class. Then w.p. 1− δ,

sup
π∈Πg,h∈[H]

∥∥∥Q̂πh −Qπh∥∥∥∞ ≤ C ·H2

√
S log(SA/δ)

N
,

which further implies

sup
π∈Πg,h∈[H]

∥∥∥V̂ πh − V πh ∥∥∥∞ ≤ C ·H2

√
S log(SA/δ)

N
,
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Proof.

Q̂πh −Qπh = rh + P̂πh+1Q̂πh+1 − rh − Pπh+1Qπh+1

=
(
P̂πh+1 − Pπh+1

)
Q̂πh+1 + Pπh+1

(
Qπh+1 −Qπh+1

)
=
(
P̂ − P

)
V̂ πh+1 + Pπh+1

(
Q̂πh+1 −Qπh+1

)
= . . . =

H∑
t=h

Γπh+1:t

(
P̂ − P

)
V̂ πt+1

≤
H∑
t=h

Γπh+1:t

∣∣∣(P̂ − P) V̂ πt+1

∣∣∣
≤

H∑
t=h

1 ·max
s,a

∥∥∥(P̂ − P )(·|s, a)
∥∥∥

1
·
∥∥∥V̂ πt+1

∥∥∥
∞
· 1

≤ H2 ·max
s,a

∥∥∥(P̂ − P )(·|s, a)
∥∥∥

1
· 1 ≤ C ·H2

√
S log(SA/δ)

N
1

with probability 1− δ, where the last inequality is by Lemma J.9. By symmetry and taking the ‖·‖∞,
we obtain w.p. 1− δ

sup
π∈Πg,h∈[H]

∥∥∥Q̂πh −Qπh∥∥∥∞ ≤ C ·H2

√
S log(SA/δ)

N
.

The above holds for ∀π ∈ Πg since Lemma J.9 acts on
∥∥∥P̂ − P∥∥∥

1
and is irrelevant to π.
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