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Abstract

Data efficiency is a key challenge for deep reinforcement learning. We address this
problem by using unlabeled data to pretrain an encoder which is then finetuned on
a small amount of task-specific data. To encourage learning representations which
capture diverse aspects of the underlying MDP, we employ a combination of latent
dynamics modelling and unsupervised goal-conditioned RL. When limited to 100k
steps of interaction on Atari games (equivalent to two hours of human experience),
our approach significantly surpasses prior work combining offline representation
pretraining with task-specific finetuning, and compares favourably with other
pretraining methods that require orders of magnitude more data. Our approach
shows particular promise when combined with larger models as well as more
diverse, task-aligned observational data – approaching human-level performance
and data-efficiency on Atari in our best setting. We provide code associated with
this work at https://github.com/mila-iqia/SGI.

1 Introduction

Deep reinforcement learning (RL) methods often focus on training networks tabula rasa from random
initializations without using any prior knowledge about the environment. In contrast, humans rely
a great deal on visual and dynamics priors about the world to perform decision making efficiently
(Dubey et al., 2018; Lake et al., 2017). Thus, it is not surprising that RL algorithms which learn
tabula rasa suffer from severe overfitting (Zhang et al., 2018) and poor sample efficiency compared
to humans (Tsividis et al., 2017).

Self-supervised learning (SSL) provides a promising approach to learning useful priors from past
data or experiences. SSL methods leverage unlabelled data to learn strong representations, which
can be used to bootstrap learning on downstream tasks. Pretraining with self-supervised learning has
been shown to be quite successful in vision (Hénaff et al., 2019; Grill et al., 2020; Chen et al., 2020a)
and language (Devlin et al., 2019; Brown et al., 2020) settings.

Pretraining can also be used in an RL context to learn priors over representations or dynamics. One
approach to pretraining for RL is to train agents to explore their environment in an unsupervised
fashion, forcing them to learn useful skills and representations (Hansen et al., 2020; Liu & Abbeel,
2021; Campos et al., 2021). Unfortunately, current unsupervised exploration methods require months
or years of real-time experience, which may be impractical for real-world systems with limits and
costs to interaction — agents cannot be run faster than real-time, may require significant human
oversight for safety, and can be expensive to run in parallel. It is thus important to develop pretraining
methods that work with practical quantities of data, and ideally that can be applied offline to fixed
datasets collected from prior experiments or expert demonstrations (as in Stooke et al., 2021).
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Figure 1: A schematic diagram showing our two stage pretrain-then-finetune method. All unsuper-
vised training losses and task-specific RL use the shared torso on the left.

To this end, we propose to use a combination of self-supervised objectives for representation learning
on offline data, requiring orders of magnitude less pretraining data than existing methods, while
approaching human-level data-efficiency when finetuned on downstream tasks. We summarize our
work below:

RL-aligned representation learning objectives: We propose to pretrain representations using a
combination of latent dynamics modeling, unsupervised goal-conditioned reinforcement learning,
and inverse dynamics modeling – with the intuition that a collection of such objectives can capture
more information about the dynamical and temporal aspects of the environment of interest than any
single objective. We refer to our method as SGI (SPR, Goal-conditioned RL and Inverse modeling).

Significant advances for data-efficiency on Atari: SGI’s combination of objectives performs
better than any in isolation and significantly improves performance over previous representation
pretraining baselines such as ATC (Stooke et al., 2021). Our results are competitive with exploration-
based approaches such as APT or VISR (Liu & Abbeel, 2021; Hansen et al., 2020), which require two
to three orders of magnitude more pretraining data and the ability to interact with the environment
during training, while SGI can learn with a small offline dataset of exploration data.

Scaling with data quality and model size: SGI’s performance also scales with data quality and
quantity, increasing as data comes from better-performing or more-exploratory policies. Additionally,
we find that SGI’s performance scales robustly with model size; while larger models are unstable
or bring limited benefits in standard RL, SGI pretraining allows their finetuning performance to
significantly exceed that of smaller networks.

We assume familiarity with RL in the following sections (with a brief overview in Appendix A).

2 Representation Learning Objectives

A wide range of SSL objectives have been proposed for RL which leverage various aspects of the
structure available in agent interactions. For example, the temporal dynamics of an environment can
be exploited to create a forward prediction task (e.g., Gelada et al., 2019; Guo et al., 2018; Stooke
et al., 2021; Schwarzer et al., 2021) in which an agent is trained to predict its immediate future
observations, perhaps conditioned on a sequence of actions to perform.

Structure in RL goes far beyond forward dynamics, however. We propose to combine multiple
representation learning objectives, covering different agent-centric and temporal aspects of the MDP.
Based on the intuition that knowledge of an environment is best represented in multiple ways (Hessel
et al., 2021; Degris & Modayil, 2012), we expect this to outperform monolithic representation
learning methods such as temporal contrastive learning (e.g., Stooke et al., 2021). In deciding which
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tasks to use, we consider questions an adequate representation should be able to answer about its
environment, including:

• If I take action a in state s, what state s′ am I likely to see next?
• If I transitioned from state s to state s′, what action a did I take?
• What action a would I take in state s so that I reach another state s′ as soon as possible

Note that none of these questions are tied to task reward, allowing them to be answered in a fully-
unsupervised fashion. Additionally, these are questions about the environment, and not any specific
policy, allowing them to be used in offline pretraining with arbitrary behavioral policies.

In general, the first question may be answered by forward dynamics modeling, which as mentioned
above is well-established in RL. The second question corresponds to inverse dynamics modeling,
which has also been commonly used in the past (Lesort et al., 2018). The third question corresponds to
self-supervised goal-conditioned reinforcement learning which has the advantage of being structurally
similar to the downstream target task, as both require learning to control the environment.

To facilitate their joint use, we formulate these objectives so that they operate in the latent representa-
tion space provided by a shared encoder. We provide an overview of these components in Figure 1
and describe them in greater detail below; we also provide detailed pseudocode in Appendix D.

2.1 Self-Predictive Representations

SPR (Schwarzer et al., 2021) is a representation learning algorithm developed for data-efficient
reinforcement learning. SPR learns a latent-space transition model, directly predicting representations
of future states without reconstruction or negative samples. As in its base algorithm, Rainbow (Hessel
et al., 2018), SPR learns a convolutional encoder, denoted as fo, which produces representations of
states as zt = fo(st). SPR then uses a dynamics model h to recursively estimate the representations
of future states, as ẑt+k+1 = h(ẑt+k, at+k), beginning from ẑt , zt. These representations are
projected to a lower-dimensional space by a projection function po to produce ŷt+k , po(ẑt+k).

Simultaneously, SPR uses a target encoder fm to produce target representations z̃t+k , fm(st+k),
which are further projected by a target projection function pm to produce ỹt+k , pm(z̃t+k). SPR
then maximizes the cosine similarity between these predictions and targets, using a learned linear
prediction function q to translate from ŷ to ỹ:

LSPR
θ (st:t+K , at:t+K) = −

K∑
k=1

q(ŷt+k) · ỹt+k
||q(ŷt+k)||2 · ||ỹt+k||2

. (1)

The parameters of these target modules θm are defined as an exponential moving average of the
parameters θo of fo and po: θm = τθm + (1− τ)θo.

2.2 Goal-Conditioned Reinforcement Learning

Inspired by works such as Dabney et al. (2021) that show that modeling many different value functions
is a useful representation learning objective, we propose to augment SPR with an unsupervised goal-
conditioned reinforcement learning objective. We define goals g to be normalized vectors of the same
size as the output of the agent’s convolutional encoder (3,136- or 4,704-dimensional vectors, for the
architectures we consider). We use these goals to annotate transitions with synthetic rewards, and
train a modified version of Rainbow (Hessel et al., 2018) to estimate Q(st, a, g), the expected return
from taking action a in state st to reach goal g if optimal actions are taken in subsequent states.

We select goals using a scheme inspired by hindsight experience replay (Andrychowicz et al., 2017),
seeking to generate goal vectors that are both semantically meaningful and highly diverse. As in
hindsight experience replay, we begin by sampling a state from another trajectory or the future of the
current trajectory. However, we take the additional step of applying stochastic noise to encourage
goals to lie somewhat off of the current representation manifold. We provide details in Appendix C.2.

2.3 Inverse Dynamics Modeling

We propose to use an inverse dynamics modeling task (Lesort et al., 2018), in which the model is
trained to predict at from st and st+1. Because this is a classification task (in discrete control) or
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regression task (continuous control), it is naturally not prone to representational collapse, which may
complement and stabilize our other objectives. We directly integrate inverse modeling into the rollout
structure of SPR, modeling p(at+k|ŷt+k, ỹt+k+1) for each k ∈ (0, . . . ,K−1), using a two-layer
MLP trained by cross-entropy.

3 Related Work

Data-Efficiency In order to address data efficiency in RL, Kaiser et al. (2019) introduced the
Atari 100k benchmark, in which agents are limited to 100,000 steps of environment interaction, and
proposed SimPLe, a model-based algorithm that substantially outperformed previous model-free
methods. However, van Hasselt et al. (2019) and Kielak (2020) found that simply modifying the
hyperparameters of existing model-free algorithms allowed them to exceed SimPLe’s performance.
Later, DrQ (Kostrikov et al., 2021) found that adding mild image augmentation to model-free methods
dramatically enhanced their sample efficiency, while SPR (Schwarzer et al., 2021) combined data
augmentation with an auxiliary self-supervised learning objective. SGI employs SPR as one of its
objectives in offline pretraining, leading to significant improvements in data-efficiency.

Exploratory pretraining A number of recent works have sought to improve reinforcement learning
via the addition of an unsupervised pretraining stage prior to finetuning on the target task. One
common approach has been to allow the agent a period of fully-unsupervised interaction with the
environment, during which the agent is trained to maximize a surrogate exploration-based task such
as the diversity of the states it encounters, as in APT (Liu & Abbeel, 2021) or ProtoRL (Yarats
et al., 2021), or to learn a set of skills associated with different paths through the environment, as
in DIAYN (Eysenbach et al., 2018), VISR (Hansen et al., 2020), and DADS (Sharma et al., 2019).
Others have proposed to use self-supervised objectives to generate intrinsic rewards encouraging
agents to visit new states; e.g. Pathak et al. (2017) and Burda et al. (2018) use the loss of an inverse
dynamics model like that used in SGI, while Sekar et al. (2020) uses the disagreement between an
ensemble of latent-space dynamics models. Finally, Campos et al. (2021) report strong results based
on massive-scale unsupervised pretraining.

Many of these methods are used to pretrain agents that are later adapted to specific reinforcement
learning tasks. However, SGI differs in that it can be used offline and is agnostic to how data is
collected. As such, if no pre-existing offline data is available, one of the methods above can be used
to generate a dataset for SGI; we use Burda et al. (2018) for this in Section 4.2.

Visual Representation Learning Computer vision has seen a series of dramatic advances in self-
supervised representation learning, including contrastive methods (Oord et al., 2018; Hjelm et al.,
2019; Bachman et al., 2019; He et al., 2020; Chen et al., 2020a) as well as purely predictive ones (Grill
et al., 2020). Variants of these approaches have also been shown to improve performance when
coupled with a small quantity of labeled data, in a semi-supervised setting (Chen et al., 2020b; Hénaff
et al., 2019), and several self-supervised methods have been designed specifically for this case (for
example, Sohn et al., 2020; Tarvainen & Valpola, 2017).

These advances have spurred similar growth in methods aimed specifically at improving performance
in RL. We refer the reader to Lesort et al. (2018) for a review of earlier methods, including inverse
dynamics modeling which is used in SGI. Recent research has focused on leveraging latent-space
dynamics modeling as an auxiliary task. Gelada et al. (2019) propose a simple next-step prediction
task, coupled with reward prediction, but found it is prone to latent space collapse and requires an
auxiliary reconstruction loss for experiments on Atari. Guo et al. (2020) use a pair of networks for
both forward and backward prediction, and show improved performance in extremely large-data
multi-task settings. Mazoure et al. (2020) use a temporal contrastive objective for representation
learning, and show improvement in continual RL settings. Concurrently, SPR (Schwarzer et al., 2021)
proposed a multi-step latent prediction task with similarities to BYOL (Grill et al., 2020).

Two works similar to ours, Anand et al. (2019) and Stooke et al. (2021), propose reward-free temporal-
contrastive methods to pretrain representations. Anand et al. (2019) show that representations from
encoders trained with ST-DIM contain a great deal of information about environment states, but
they do not examine whether or not representations learned via their method are, in fact, useful for
reinforcement learning. However, Stooke et al. (2021) employ a similar algorithm and find only
relatively minor improvements in performance compared to standard baselines in the large-data
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regime; our controlled comparisons show that SGI’s representations are far better for data-efficiency.
Concurrent to our work, FERM (Zhan et al., 2020) propose contrastive pretraining from human
demonstrations in a robotics setting. As FERM is quite similar to ATC, we are optimistic that our
improvements over ATC in Atari 100k would translate to FERM’s setting. Finally, Yang & Nachum
(2021) propose a family of algorithms for learning representations for DRL from state observations;
we believe that these might be promising in DRL from pixels, but they have not yet been adapted to
that setting.

4 Experimental Details

In our experiments, We seek to address two main challenges for the deployment of RL agents in the
real world (Dulac-Arnold et al., 2020): (1) training the RL agent with a limited budget of interactions
in the real environment, and (2) leveraging existing interaction data of arbitrary quality.

4.1 Environment and Evaluation

To address the first challenge, we focus our experimentation on the Atari 100k benchmark introduced
by Kaiser et al. (2019), in which agents are allowed only 100k steps of interaction with their
environment.2 This is roughly equivalent to the two hours human testers were given to learn these
games by Mnih et al. (2015), providing a baseline of human sample-efficiency.

Atari is also an ideal setting due to its complex observational spaces and diverse tasks, with 26
different games included in the Atari 100k benchmark. These factors have led to Atari’s extensive
use for representation learning and exploratory pretraining (Anand et al., 2019; Stooke et al., 2021;
Campos et al., 2021), and specifically Atari 100k for data-efficient RL (e.g., Kaiser et al., 2019;
Kostrikov et al., 2021; Schwarzer et al., 2021), including finetuning after exploratory pretraining (e.g.,
Hansen et al., 2020; Liu & Abbeel, 2021), providing strong baselines to compare to.

Our evaluation metric for an agent on a game is human-normalized score (HNS), defined as
agent_score−random_score
human_score−random_score . We calculate this per game by averaging scores over 100 evaluation
trajectories at the end of training, and across 10 random seeds for training. We report both mean (Mn)
and median (Mdn) HNS over the 26 Atari-100K games, as well as on how many games a method
achieves super-human performance (>H) and greater than random performance (>0). Following
the guidelines of Agarwal et al. (2021) we also report interquartile mean HNS (IQM) and quantify
uncertainty via bootstrapping in Appendix B.

4.2 Pretraining Data

The second challenge pertains to pretraining data. Although some prior work on offline represen-
tational pretraining has focused on expert-quality data (Stooke et al., 2021), we expect real-world
pretraining data to be of greatly varying quality. We thus construct four different pretraining datasets
to approximate different data quality scenarios.

• (R)andom To assess performance near the lower limit of data quality, we use a random policy
to gather a dataset of 6M transitions for each game. To encourage the agent to venture further
from the starting state, we execute each action for a random number of steps sampled from a
Geometric( 13 ) distribution.

• (E)xploratory To emulate slightly better data that covers a larger range of the state space, we
use an exploratory policy. Specifically, we employ the IDF (inverse dynamics) variant of the
algorithm proposed by Burda et al. (2018). We log the first 6M steps from an agent trained in each
game. This algorithm achieves better-than-random performance on only 70% of tasks, setting it
far below the performance of more modern unsupervised exploration methods.

To create higher-quality datasets, we follow Stooke et al. (2021) and use experience gathered during
the training of standard DQN agents (Mnih et al., 2015). We opt to use the publicly-available DQN
Replay dataset (Agarwal et al., 2020), which contains data from training for 50M steps (across all
57 games, with five different random seeds). Although we might prefer to use data from recent

2Note that sticky actions are disabled under this benchmark.
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unsupervised exploration methods such as APT (Liu & Abbeel, 2021), VISR (Hansen et al., 2020),
or CPT (Campos et al., 2021), none of these works provide code or datasets, making this impractical.
We address using data collected from on-task agents with a behavioural cloning baseline in Section 5,
with surprising findings relative to prior work.

• (W)eak We first generate a weak dataset by selecting the first 1M steps for each of the 5 available
runs in the DQN Replay dataset. This data is generated with an ε-greedy policy with high,
gradually decaying ε, leading to substantial action diversity and many suboptimal exploratory
actions. Although the behavioral policies used to generate this agent are not especially competent
(see Table 1), they have above-random performance on almost all games, suggesting that that this
dataset includes more task-relevant transitions.

• (M)ixed Finally, for a realistic best-case scenario, we create a dataset of both medium and low-
quality data. To simulate a real-world collection of data from different policies, we concatenate
multiple checkpoints evenly spread throughout training of a DQN. We believe this is also a
reasonable approximation for data from a modern unsupervised exploration method such as CPT
(Campos et al., 2021); as shown in Table 1, the agent for this dataset has performance in between
CPT and VISR, with median closer to CPT and mean closer to VISR. This data is also lower
quality than the expert data originally used in the method most similar to ours, ATC (Stooke et al.,
2021). 3 We create a dataset of 3M steps and a larger dataset of 6M steps; all M experiments use
the 3M step dataset unless otherwise noted.

Table 1: Performance of agents used in pretraining data
collection compared to external baselines on 26 Atari
games (Kaiser et al., 2019)

Method Mdn Mean >H >0 Data

Exploratory Pretraining Baselines

VISR@0 0.056 0.817 5 19 250M
APT@01 0.038 0.476 2 18 250M
CPT@0 0.809 4.945 12 25 4B

Offline Datasets

Exploratory 0.039 0.042 0 18 6M
Weak2 0.028 0.056 0 23 5M
Mixed2 0.618 1.266 10 26 3M
1 Calculated from ICLR 2021 OpenReview submis-

sion; unreported in arXiv version.
2 Upper-bound estimate from averaging evaluation

performance of corresponding agents in Dopamine.

We compare the agents used for our
datasets to those for unsupervised explo-
ration pretraining baselines in Table 1.
We estimate the performance of the Weak
and Mixed agents as the average of the
corresponding logged evaluations in the
Dopamine (Castro et al., 2018) baselines.
Even our largest dataset is quite small
compared to the amounts of data gath-
ered by unsupervised exploration methods
(see the “Data” column in Table 1); this
is intentional, as we believe that unsuper-
vised interactional data may be expensive
in real world applications. We show the
performance of the non-random data col-
lection policies in Table 2 (note that a fully-
random policy has a score of 0 by defini-
tion).

4.3 Training Details

We optimize our three representation learning objectives jointly during unsupervised pretraining,
summing their losses. During finetuning, we optimize only the reinforcement learning and forward
dynamics losses, following Schwarzer et al. (2021) (see Section 5.5), and lower the learning rates for
the pretrained encoder and dynamics model by two orders of magnitude (see Section 5.4).

We consider the standard three-layer convolutional encoder introduced by Mnih et al. (2015), a
ResNet inspired by Espeholt et al. (2018), as well as an enlarged ResNet of the same design. In other
respects, our implementation matches that of SPR and is based on its publicly-released code. Full
implementation and hyperparameter details are provided in Appendix C. We refer to agents by the
model architecture and pretraining dataset type used: SGI-R is pretrained on Random, SGI-E on
Exploratory, SGI-W on Weak, and SGI-M on Mixed. To investigate scaling, we vary the size of the
encoder used in SGI-M: the standard Mnih et al. (2015) encoder is SGI-M/S (for small), our standard
ResNet is simply SGI-M and using a larger ResNet is SGI-M/L (for large)4. For SGI-M/L we also
use the 6M step dataset described earlier. All ablations are conducted in comparison to SGI-M unless

3Our data-collection agents are weaker than those used by ATC on seven of the eight games they consider.
4See Appendix C for details on these networks
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otherwise noted. Finally, agents without pretraining are denoted SGI-None; SGI-None/S would be
roughly equivalent to SPR (Schwarzer et al., 2021).

For baselines, we compare to no-pretraining Atari 100k methods (Kaiser et al., 2019; van Hasselt
et al., 2019; Kostrikov et al., 2021; Schwarzer et al., 2021). For our models trained on Random and
Exploratory data we compare against previous pretraining-via-exploration approaches applied to
Atari 100k (Liu & Abbeel, 2021; Hansen et al., 2020; Campos et al., 2021). In the higher quality data
regime, we compare to recent work on data-agnostic unsupervised pretraining, ATC (Stooke et al.,
2021), as well as behavioural cloning (BC).

5 Results and Discussion

Table 2: HNS on Atari100k for SGI and baselines.

Method Mdn Mn >H >0 Data

No Pretraining (Finetuning Only)

SimPLe 0.144 0.443 2 26 0
DER 0.161 0.285 2 26 0
DrQ 0.268 0.357 2 24 0
SPR 0.415 0.704 7 26 0
SGI-None 0.343 0.565 3 26 0

Exploratory Pretraining + Finetuning

Method Mdn Mn >H >0 Data

VISR 0.095 1.281 7 21 250M
APT 0.475 0.6661 7 26 250M
CPT@02 0.809 4.945 12 25 4000M

ATC-R3 0.191 0.472 4 26 6M
ATC-E3 0.237 0.462 3 26 6M
SGI-R 0.326 0.888 5 26 6M
SGI-E 0.456 0.838 6 26 6M

Offline-data Pretraining + Finetuning

Method Mdn Mn >H >0 Data

ATC-W3 0.219 0.587 4 26 3M
ATC-M3 0.204 0.780 5 26 3M
BC-M@0 0.139 0.227 0 23 3M
BC-M 0.548 0.858 8 26 3M
SGI-W 0.589 1.144 8 26 5M
SGI-M/S 0.423 0.914 8 26 3M
SGI-M 0.679 1.149 9 26 3M
SGI-M/L 0.753 1.598 9 26 6M
1 APT claims 0.6955, but we calculate 0.666 from
their reported per-game scores.
2 CPT@0 does not do any finetuning.
3 Our implementation (see Appendix C.6)

We find that SGI performs competitively on the
Atari-100K benchmark; presenting aggregate
results in Table 2, and full per-game data in Ap-
pendix E. Our best setting, SGI-M/L, achieves
a median HNS of 0.753, approaching human-
level sample-efficiency and outperforming all
comparable methods except the recently pro-
posed CPT (Campos et al., 2021). With less data
and a smaller model, SGI-M achieves a median
HNS of 0.679, significantly outperforming the
prior method ATC on the same data (ATC-M).
Meanwhile, SGI-E achieves a median HNS of
0.456, matching or exceeding other exploratory
methods such as APT (Liu & Abbeel, 2021) and
VISR (Hansen et al., 2020), as well as ATC-E.

Pretraining data efficiency SGI achieves
strong performance with only limited pretrain-
ing data; our largest dataset contains 6M transi-
tions, or roughly 4.5 days of experience. This
compares favourably to recent works on unsu-
pervised exploration such as APT or CPT, which
require far larger amounts of data and environ-
ment interaction (250M steps or 193 days for
APT, 4B steps or 8.45 years for CPT). We expect
SGI would perform even better if used in these
large-data settingss, as we find that it scales ro-
bustly with data (see Section 5.2).
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Figure 2: SGI finetuning performance vs. pretrain-
ing data score for all combinations of game and
dataset. Data score is estimated as clipped return
per episode, trend calculated via kernel regression.
Values whitened per-game for clarity.

Behavioural cloning is a strong baseline Al-
though ATC pretrains with expert data, they did
not investigate behavioral cloning as a base-
line pretraining objective. We do so on our
Mixed dataset, the only one to be generated by
policies with significantly above-random perfor-
mance. Behavioral cloning without finetuning
(BC-M@0) performs poorly, perhaps due to the
varying behavioural quality in the dataset. But
when finetuned, BC-M yields very respectable
performance, surpassing ATC-M but not SGI-
M. All fine-tuning settings for BC-M match SGI-
M.

5.1 Data quality matters

In principle, SGI can be used with any offline
dataset but we demonstrate that it scales with
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resentations over pretraining, averaged across the
26 Atari 100k games. 1 indicates representations
are identical, 0 perfect dissimilarity.

the quality of its data. Near the lower bound of
data quality where all actions are selected randomly, SGI-R still provides some benefit over an
otherwise-identical randomly-initialized agent (SGI-None) on 16 out of 26 games, with a similar
median but 57% higher mean HNS. With better data from an exploratory policy, SGI-E improves on
16/26 games, gets 33% higher median HNS, and surpasses APT (Liu & Abbeel, 2021) which used 40
times more pretraining data. With similarly weak data but possibly more task-specific transitions,
SGI-W gets 72% higher median HNS compared to SGI-None and with realistic data from a mixture
of policies, SGI-M improves to 98%.

Importantly, the pattern we observe is very different from what would be expected for imitation
learning. In particular, SGI-W’s strong performance shows that expert data is not required. To
characterize this, we plot the average clipped reward 5 experienced per episode for each of our
pretraining datasets in Figure 2. Normalizing across tasks, we find a strong positive correlation
between task reward engagement (p < 0.0001) and finetuning performance. Moreover, we find
diminishing returns to further task engagement.

5.2 Pretraining unlocks the value of larger networks

The three-layer network introduced by Mnih et al. (2015) has become a fixture of deep reinforcement
learning, and has been employed by previous works examining pretraining in this field (e.g. Liu
& Abbeel, 2021; Stooke et al., 2021). However, we find that representational pretraining with this
network (SGI-M/S) provides only minor benefits compared to training from scratch. In contrast,
larger networks struggle without pretraining but shine when pretrained as shown in Figure 3.

This finding is consistent with recent work in unsupervised representation learning for classifi-
cation, which has observed that unsupervised pretraining benefits disproportionately from larger
networks (Chen et al., 2020a). In particular, our results suggest that model size should increase in par-
allel with amount of pretraining data, matching recent work on scaling in language modeling (Kaplan
et al., 2020; Hernandez et al., 2021). SGI thus provides a simple way to use unlabeled data to extend
the benefits of large networks, already well-known in the large-data regime (e.g., Schrittwieser et al.,
2021; Espeholt et al., 2018), to data-efficient RL.

5.3 Combining SGI’s objectives improves performance

We test all possible combinations of our three SSL objectives, denoted by combinations of the letters
S, G and I to indicate which objectives they employ. Results in Table 3 show that performance
monotonically increases as more objectives are used, with inverse dynamics modeling combined with
either of the other objectives performing respectably well. This illustrates the importance of using
multiple objectives to obtain representational coverage of the MDP.

5Unclipped rewards are not available for the offline DQN dataset.
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Table 3: HNS on Atari 100K for pre-
training ablations of SGI.

Pretraining Mdn Mean >H

None 0.343 0.565 3
S 0.009 -0.054 0
G 0.060 0.181 1
I 0.411 0.943 7
S+G 0.029 0.098 0
G+I 0.512 1.004 9
S+I 0.629 0.978 8

SGI-M 0.679 1.149 9

We note that including inverse modeling appears to be
critical, and hypothesize that this is related to represen-
tational collapse. To measure this, we plot the average
cosine similarity between representations yt of differ-
ent states for several pretraining methods in Figure 4,
using our ResNet encoder on the Mixed dataset. We
observe that S, G and S+G all show some degree repre-
sentational collapse, while configurations that include
inverse dynamics modeling avoid representational col-
lapse, as does ATC, whose contrastive loss implicitly
optimizes for representational diversity (Wang & Isola,
2020). Intriguingly, we observe that increased represen-
tational diversity does not necessarily improve perfor-
mance. For example, SGI outperforms ATC, G+I and
I in finetuning but has less diverse pretraining representations. We also observe that adding SPR (S)
consistently pulls representations towards collapse (compare S+I and I, S+G and G, and SGI and
G+I); how this relates to performance is a question for future work.

5.4 Naively finetuning ruins pretrained representations

Table 4: HNS on Atari 100K for fine-
tuning schemes for SGI.

Method Mdn Mean >H

No pretrain 0.343 0.565 3
Naive 0.429 0.845 8
Frozen 0.499 0.971 8
Reduced LRs 0.679 1.149 9

We find that properly finetuning pretrained representa-
tions is critical, as results in Table 4 show. Although
allowing pretrained weights to change freely during fine-
tuning is better than initializing from scratch (Naive vs
No Pretrain), freezing the pretrained encoder (Frozen)
leads to better performance than either. SGI’s approach
of reducing finetuning learning rates for pretrained pa-
rameters leads to superior performance (Reduced LRs,
equivalent to SGI-M).

We thus hypothesize that representations learned by SGI are being disrupted by gradients early
in finetuning, in a phenomenon analogous to catastrophic forgetting (Zenke et al., 2017; Hadsell
et al., 2020). As representations may not generalize between different value functions across
training (Dabney et al., 2021), allowing the encoder to strongly adapt early in training could make it
worse at modeling later value functions, compared to the neutral initialization from SGI. We also note
that there is a long history in computer vision of employing specialized finetuning hyperparameters (Li
et al., 2020; Chu et al., 2016) when transferring tasks.

5.5 Not all SSL objectives are beneficial during finetuning

Table 5: HNS on Atari 100K for finetun-
ing ablations of SGI.

Finetune SSL Mdn Mean >H

Without SGI pretraining

None 0.161 0.315 2
S Only 0.343 0.565 3

With SGI pretraining

None 0.452 1.114 8
SGI 0.397 1.011 8
S Only 0.679 1.149 9

Although SGI uses S during finetuning, we experiment
with a variant that optimizes only the standard DQN
objective, roughly equivalent to using DrQ (Kostrikov
et al., 2021) with DQN hyperparameters set to match SGI.
We find that finetuning with S has a large impact with or
without pretraining (compare None and S Only entries in
Table 5.). Although, SGI without S manages to achieve
roughly the same mean human-normalized score as SGI
with S, removing S harms performance on performance
on 19 out of 26 games and reduces median normalized
score by roughly 33%. We also find no benefit to using
all of SGI’s constituent objectives during finetuning (All
Losses in Table 5) compared to using S alone, although
the gap between them is not statistically significant for
metrics other than median (see Figure 5d).
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6 Conclusion

We present SGI, a fully self-supervised (reward-free) approach to representation learning for re-
inforcement learning, which uses a combination of pretraining objectives to encourage the agent
to learn multiple aspects of environment dynamics. We demonstrate that SGI enables significant
improvements on the Atari 100k data-efficiency benchmark, especially in comparison to unsupervised
exploration approaches which require orders of magnitude more pretraining data. Investigating the
various components of SGI, we find that it scales robustly with higher-quality pretraining data and
larger models, that all three of the self-supervised objectives contribute to the success of this approach,
and that careful reduction of fine-tuning learning rates is critical to optimal performance.
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