
A Algorithm for training process applying FL-WBC

The detailed local training process of benign devcies after applying FL-WBC is shown in Algorithm 1.
As Algorithm 1 shows, the only overheads after applying our defense is that devices need additional
storage to store W−1 and W−2 during local training.

Algorithm 1 Local training process applying FL-WBC on a benign device in round t.
Input: Local training data D ∈ RL×P×Q; Local objective function F : RP×Q → R; Local model parameters

W ∈ RM×N ; The number of local training iterations I; Learning rates ηt,i for i ∈ [I]; Standard deviation
of Laplace noise s.

Output: Learnt model parameter W with our defense.
1: Initialize W−1,W−2;
2: i← 0;
3: for batch B in D do
4: Randomly generate a Laplace noise matrix Υ ∈ RM×N with mean = 0 and std = s;
5: W−1 ←W ;
6: W ←W − ηt,i∇F (W ,B);
7: if this is not the first training batch then
8: W ∗ ← (W −W−1)− (W−1 −W−2);
9: Find the set S which contains the indices of elements in |W ∗| − ηt,i|Υ| which are less than or equal

to 0;
10: for j, k ∈ S do
11: Wj,k ←Wj,k + ηt,iΥj,k;
12: end for
13: end if
14: W−2 ←W−1;
15: i← i+ 1
16: end for

B Experiments to Support Analysis in §4.3

0 20 40 60 80 100

0

200

400

600

800

1000

1200

M
is

cl
as

si
fi

ca
ti

o
n
 l

o
ss

Communication round

 baseline

 apply RH

Figure 7: Compared results of misclassification loss on malicious dataset for model poisoning attack
with and without applying RH(W ). The black circle denotes the adversarial rounds.

To validate our analysis, we conduct experiments on Fashion-MNIST with model poisoning attacks in
FL training. The training data is uniformly distributed to 100 devices (5 malicious devices included).
In adversarial rounds, 5 malicious devices and 5 randomly chosen benign devices participate in
training. In other rounds, 10 randomly selected benign devices participate in training. The model
architecture can be found in Table 3 (Fashion-MNIST dataset). For training, we set local epoch E as
1 and batch size B as 32. We apply SGD optimizer and set the learning rate η to 0.01.

We first compute Ei∈[I],k∈Stadv+1
(Hk

tadv+1,iδtadv
), denoted as Φtadv

, for each adversarial round tadv .
In order to derive δtadv

, the malicious devices in round tadv perform local training twice by setting α in
Equation 3 as 1 and 0, respectively. Following that we have Wtadv

and Wtadv
(Stadv

\M) respectively
through aggregation. Then we derive δtadv

by computing the difference between Wtadv
(Stadv

\M)
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Adversarial round baseline Φt Φt applying RH(W )
5 3.56 1.06

11 0.00 0.00
26 0.01 0.00
32 0.00 0.00
48 0.00 0.00
60 0.05 0.00
67 0.07 0.00
76 0.00 0.00
83 0.00 0.00
93 0.00 0.00

Table 2: Numerical results of Φt with and without applying RH(W ) at adversarial rounds.

and Wtadv
. Due to the extremely high dimension of Hk

tadv+1,i, we compute Φtadv
element by

element following

Φtadvm,n = Ei∈[I],k∈Stadv+1

〈
∇W [∇WF k(W k

tadv+1,i, ξ
k
tadv+1,i)m,n

]|δtadv

〉
(13)

The results of baseline in Figure 7 shows the loss that the malicious data is miss-classified by the
global model, and the computed Φt for each adversarial round is presented in Table 2. The results
show that for the first adversarial round (i.e. round 5), the value of Φt is higher than 3 and the
attack is mitigated rapidly. While for the following adversarial rounds, Φts are nearly 0, and the
miss-classification loss keeps low until the next attack is conducted. This result is consistent with our
analysis in §4 for why attack effects can remain in the global model.

In addition, we introduce a regularization RH(W ) that approximates Ei∈[I]‖Hk
tadv,i

δt‖2 into the
local training of malicious devices, enforcing δt to reside in the null space of Hk

tadv,i
. Suppose

W ∈ RL×M , then RH(W ) for malicious devices k is formulated as

RH(W ) =
∑

l∈[L],m∈[M ]

〈
∇W [∇WF k(W k

tadv,0, ξ
k
tadv,0)

l,m
]|W −Wtadv (Stadv \M)

〉
. (14)

It is shown that we use the sum of elements in Hk
tadv,0

δt to approximate Ei∈[I]‖Hk
tadv,i

δt‖2. We
adopt this approximation due to unacceptable computational costs of computing Ei∈[I]‖Hk

tadv,i
δt‖2

directly. When Ei∈[I]‖Hk
tadv,i

δt‖2 is zero, the sum of elements in Hk
tadv,0

δt should also be zero. So
RH(W ) is a weaker regularization compared to Ei∈[I]‖Hk

tadv,i
δt‖2.

We aim to evaluate whether the poisoning attack can be boosted after applying RH(W ), i.e., the
attack effect remains for more rounds. As Figure 7 and Table 2 show, the values of Φt in round 5, 60
and 67 are reduced after applying RH and the corresponding attacks are boosted. This result further
supports our analysis that the reason why effective attacks can remain in the aggregated model is that
the AEP s reside in the kernels of Hk

t,i.

C Experiment setup

C.1 Detailed data preparation and hyperparameter configurations for §7

For IID settings, the data is uniformly distributed to 100 devices (malicious devices included). For
non-IID settings, we first sort the data by the digit label, divide it into 200 shards uniformly, and
assign each of 100 clients (malicious devices included) 2 shards.

For training, we set local epoch E as 1 and batch size B as 32. We apply SGD optimizer and set
the learning rate η to 0.01. We set 5 devices out of totally 100 devices to be malicious. The model
architectures for two dataset are shown in Table 3. We conduct 500 communication rounds of training
for Fashion-MNIST and 1000 communication rounds for CIFAR10.
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Table 3: Model architectures for Fashion-MNIST dataset and CIFAR10 dataset.

Fashion-MNIST CIFAR10
5× 5 Conv 1-16 5× 5 Conv 3-6

5× 5 Conv 16-32 3× 3 Maxpool
FC–10 5× 5 Conv 6-16

3× 3 Maxpool
FC–120
FC–84
FC–10

D Derivation of Equation 7

Since no malicious devices are selected between round τ1 and round τ2, the training processes of
Wt−1(S \ M) to Wt(S \ M) and Wt−1 to Wt are the same. The cause of difference between
Wt(S \M) and Wt is that they are locally trained from different initial models, Wt−1(S \M) and
Wt−1, respectively.

We first estimate the term W k
t (S \M)−W k

t by applying first-order Taylor approximation and the
chain rule based on Equation 2:

W k
t,I(S \M)−W k

t,I

≈
∂W k

t,I

∂W k
t,I−1

∂W k
t,I−1

∂W k
t,I−2

. . .
∂W k

t,1

∂W k
t,0

(W k
t,0(S \M)−W k

t,0). (15)

where W k
t,0(S \M)−W k

t,0 = Wt−1(S \M)−Wt−1. According to Equation 2, we have

∂W k
t,i+1

∂W k
t,i

= I − ηt,iHk
t,i, (16)

where Hk
t,i , ∇2F k(W k

t,i, ξ
k
t,i).

Afterwards, according to Equation 4, we obtain

Wt(S \M)−Wt =
N

K

∑
k∈St

pk[W k
t,I(S \M)−W k

t,I ]. (17)

By combining Equations 15, 16 and 17, we get an estimator of δt, denoted as δ̂t

δ̂t =
N

K
[
∑
k∈St

pk
I−1∏
i=0

(I − ηt,iHk
t,i)]δ̂t−1. (18)

E Certified robustness guarantee

We define our certified robustness guarantee as the distance of AEP between the adversarial round
and the subsequent rounds where FL-WBC is applied. A larger distance of AEP indicates that
FL-WBC can mitigate the attack more efficiently. We first make an assumption for the Hessian matrix
after applying our defense:
Assumption 5. After applying FL-WBC, the new benign training Hessian matrix H ′ would be nearly
full-rank. Following the notation of s as the variance of Υ in Equation 9, the operator H ′ is bounded
below: E‖H ′a‖22/P ≥ s‖a‖22.

Additionally, we make assumptions on bounding the norm of AEP s in different rounds and indepen-
dent distributions of Hk

t,iδ
k
t,i.

Assumption 6. The expected norm of AEP s is lower bounded in each round across devices and
iterations: Ei∈[I],k∈St‖δkt,i‖22 ≥ Λt.
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Assumption 7. Since local training data have independent distributions, the elements in Hk
t,iδ

k
t,i are

independent and have expectations of 0 in different rounds across devices and iterations.

Following the notations in §4 and applying the local training of benign devices in Algorithm 1, which
can be found in Appendix A, we have the following theorem for our robustness guarantee on FedAvg
after applying FL-WBC.

Theorem 2. Let Assumption 5-7 hold and s,Λt, P be defined therein. K denotes the number of
devices involved in training for each round. Assuming that poisoning attack happens in round tadv
and no attack happens from round tadv to T , then for FedAvg applying FL-WBC we have:

E‖δ̂T − δ̂tadv‖
2
2 ≥

PIs

K

T∑
t=tadv+1

η2t,I−1Λt. (19)

Proof. According to Equations 15 and 16, we obtain

δ̂kt,i+1 = (I − ηt,iHk
t,i)δ̂

k
t,i. (20)

According to Equation 17, we have

E(δ̂t) = E(
N

K

∑
k∈St

pk δ̂kt,I). (21)

With δ̂t−1 = δ̂kt,0 and E(pk) = 1
N , we have

E( ˆδt−1) = E(
N

K

∑
k∈St

pk δ̂kt,0). (22)

Then we have

E(δ̂t − δ̂t−1) = E[
N

K

∑
k∈St

pk(δ̂kt,I − δ̂kt,0)] (23)

= E[
N

K

∑
k∈St

pk
I−1∑
i=0

(δ̂kt,i+1 − δ̂kt,i)] (24)

= E[
N

K

∑
k∈St

pk
I−1∑
i=0

−ηt,iHk
t,iδ̂

k
t,i], (25)

where the first equality comes from Equations 21 and 22, the third equality comes from Equation 20.

Accumulating the difference between δ̂t and δ̂t−1 formulated in Equation 25, we have

E(δ̂T − δ̂tadv ) = E[

T∑
t=tadv+1

(δ̂t − δ̂t−1)] (26)

= E[

T∑
t=tadv+1

∑
k∈St

I−1∑
i=0

−N
K
pkηt,iH

k
t,iδ̂

k
t,i]. (27)

Then we have
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E‖δ̂T − δ̂tadv‖
2
2 = E‖

T∑
t=tadv+1

∑
k∈St

I−1∑
i=0

−N
K
pkηt,iH

k
t,iδ̂

k
t,i‖22 (28)

=

T∑
t=tadv+1

∑
k∈St

I−1∑
i=0

E‖N
K
pkηt,iH

k
t,iδ̂

k
t,i‖22 (29)

≥
T∑

t=tadv+1

E
∑
k∈St

(
N

K
pkηt,I−1)2

I−1∑
i=0

Ps‖δ̂kt,i‖22 (30)

≥
T∑

t=tadv+1

E
∑
k∈St

(
N

K
pkηt,I−1)2

I−1∑
i=0

PsΛt (31)

=

T∑
t=tadv+1

E
∑
k∈St

(
ηt,I−1

K
)2IPsΛt (32)

=
PIs

K

T∑
t=tadv+1

(ηt,I−1)2Λt, (33)

(34)

where the second equality come from Assumption 7, the first inequality comes from the lower bound
of operator Hk

t,i parameterized in Assumption 5 and shrinking learning rate, the second inequality
comes form the bounded norm of AEP stated in Assumption 6. The third equality comes from the
equation E(pk) = 1

N .

F Proof of Theorem 1

Overview: Our proof is mainly inspired by [27]. Specifically, our proof has two key parts. First,
we derive the bounds similar to those in Assumptions 3 and 4, after applying our defense scheme.
Second, we adapt Theorem 2 on convergence guarantee in [27] using our new bounds.

Bounding the expected distance between the perturbed gradients with our defense and raw
gradients. According to Algorithm 1, the absolute values of elements in Tt,i in Equation 11 is
max{|Υ| − |W ∗|/ηt,i, 0}. Thus, ‖Tt,i‖22 ≤ ‖Υ‖22. Then we have

E||∇F ′k(W k
t,i, ξ

k
t,i)−∇Fk(W k

t,i, ξ
k
t,i)||22 (35)

=E||Tt,i||22 ≤ E||Υ||22 = E(Υ)2 + V ar(Υ) = s2. (36)

New bounds for Assumption 3 with our defense.

We use the norm triangle inequality to bound he variance of stochastic gradients in each device, and
we have

E||∇F ′k(W k
t,i, ξ

k
t,i)−∇Fk(W k

t,i)||2 (37)

≤E||∇F ′k(W k
t,i, ξ

k
t,i)−∇Fk(W k

t,i, ξ
k
t,i)||2 (38)

+ E||∇Fk(W k
t,i, ξ

k
t,i)−∇Fk(W k

t,i)||2 (39)

≤s2 + σ2
k, (40)

where we use Assumption 3 and Equation 36 in Equation 40.

New bounds for Assumption 4 with our defense. The expected squared norm of stochastic gradi-
ents∇F ′k(W k

t,i, ξ
k
t,i) with our defense is as follows:

E||∇F ′k(W k
t,i, ξ

k
t,i)||2 (41)

≤E||∇F ′k(W k
t,i, ξ

k
t,i)−∇Fk(W k

t,i, ξ
k
t,i)||2 (42)

+ E||∇Fk(W k
t,i, ξ

k
t,i)||2 (43)

≤s2 +G2, (44)
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where we use Assumption 4 and and Equation 36 in Equation 44.

Convergence guarantee for FedAvg with our defense. We define F ∗ and F ∗k as the minimum

value of F and Fk and let Γ = F ∗−
N∑
k=1

pkF
∗
k . We assume each device has I local training iterations

in each round and the total number of rounds is T . Let Assumptions 1-4 hold and L, µ, σk, G be
defined therein. Choose κ = L

µ , γ = max{8κ, I} and the learning rate ηt,i = 2
µ(γ+tI+i) .

By applying our new bounds and Theorem 2 in [27], FedAvg using our defense has the following
convergence guarantee:

E[F (WT )]− F ∗ ≤ 2κ

γ + TI
(
Q+ C

µ
+
µγ

2
E||W0 −W ∗||2),

where

Q =

N∑
k=1

p2k(s2 + σ2
k) + 6LΓ + 8(I − 1)2(s2 +G2)

C =
4

K
I2(s2 +G2).
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