
Fast Approximation of the Sliced-Wasserstein
Distance Using Concentration of Random Projections

SUPPLEMENTARY DOCUMENT

Kimia Nadjahi1∗, Alain Durmus2, Pierre E. Jacob3,
Roland Badeau1, Umut Şimşekli4

1: LTCI, Télécom Paris, Institut Polytechnique de Paris, France
2: Université Paris-Saclay, ENS Paris-Saclay, CNRS,

Centre Borelli, F-91190 Gif-sur-Yvette, France
3: Department of Information Systems, Decision Sciences and Statistics,

ESSEC Business School, Cergy, France
4: INRIA - Département d’Informatique de l’École Normale Supérieure,

PSL Research University, Paris, France

Abstract

This document provides details on our theoretical results and their proofs, and a
complete description of the setup of our experiments.

S1 Conditional Central Limit Theorem for Gaussian Projections

We give the formal statement of the result presented in Section 2.2, corresponding to [1, Theorem 1]
for the special case of one-dimensional projections.
Theorem S1 ([1, Theorem 1]). There exists a constant C such that for any µ ∈ P2(Rd),∫
Rd

W2
2

(
θ?]µ,N

(
0, d−1m2(µ)

))
dγd(θ) ≤ Cd−1{α(µ) +

(
m2(µ)β1(µ)

)1/2
+m2(µ)1/5β2(µ)4/5} ,

(S1)
where

m2(µ) =

∫
Rd

‖x‖2 dµ(x) , α(µ) =

∫
Rd

∣∣ ‖x‖2 − m2(µ)
∣∣dµ(x) , (S2)

βq(µ) =

(∫
Rd×Rd

|〈x, x′〉|q d(µ⊗ µ)(x, x′)

) 1
q

, (S3)

with q ∈ {1, 2}.

S2 Postponed proofs for Section 3

S2.1 Proof of Proposition 1

Proof of Proposition 1. Let θ ∈ Rd and write θ = rθ̄, r ≥ 0 and θ̄ ∈ Sd−1. Then, we get

Wp
p(θ

?
]µ, θ

?
] ν) = Wp

p

(
(rθ̄)?]µ, (rθ̄)

?
]ν
)

(S4)

=

∫ 1

0

∣∣F←(rθ̄)?]µ(t)− F←(rθ̄)?]ν(t)
∣∣pdt , (S5)
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where (S5) results from (3): Fµ̃ and F←µ̃ denote the cumulative distribution and quantile function
respectively, of a one-dimensional probability measure µ̃, i.e. Fµ̃(s) = µ̃((−∞, s]) and F←µ̃ (t) =

inf{s′ ∈ R : Fµ̃(s′) ≥ t} for s ∈ R and t ∈ [0, 1]. For any r > 0 and θ ∈ Sd−1, we get

F(rθ̄)?]µ
(s) =

(
(rθ̄)?]µ

)
{(−∞, s]} (S6)

=
(
θ̄?]µ
)
{(−∞, s/r]} = Fθ̄?]µ(s/r) , (S7)

which easily implies that F←
(rθ̄)?]µ

(t) = rF←
θ̄?]µ

(t). Therefore, using this property in (S5), we obtain,

Wp
p(θ

?
]µ, θ

?
] ν) =

∫ 1

0

∣∣rF←θ̄?]µ(t)− rF←θ̄?] ν(t)
∣∣pdt (S8)

= rpWp
p(θ̄

?
]µ, θ̄

?
] ν) . (S9)

By applying a d-spherical change of variables in the definition of S̃Wp (9) and plugging (S9),

S̃W
p

p(µ, ν) =

∫
R+

∫
Sd−1

rpWp
p

(
θ̄?]µ, θ̄

?
] ν
)

(2π)−
d
2 d

d
2 e−

d
2 ‖rθ̄‖

2

rd−1dθ̄dr (S10)

= (2π)−
d
2 d

d
2

∫
R+

rp+d−1e−
d
2 r

2

(∫
Sd−1

Wp
p

(
θ̄?]µ, θ̄

?
] ν
)
dθ̄

)
dr . (S11)

Since the surface area of Sd−1 is equal to 2π
d
2 Γ(d/2)−1 [2], and by definition of SW (4),∫

Sd−1 W
p
p

(
θ̄?]µ, θ̄

?
] ν
)
dθ̄ = 2π

d
2 Γ(d/2)−1SWp

p(µ, ν).

Besides, by applying the change of variables t = (d/2)1/2r,∫
R+

rp+d−1e−
d
2 r

2

dr = 2(p+d)/2d−(p+d)/2

∫
R+

tp+d−1e−t
2

dt = 2(p+d)/2−1d−(p+d)/2 Γ
(
(d+p)/2

)
We finally obtain,

S̃W
p

p(µ, ν) = (2/d)p/2
Γ
(
d/2 + p/2

)
Γ(d/2)

SWp
p(µ, ν) . (S12)

S2.2 Proof of Theorem 1

Proof of Theorem 1. By the triangle inequality, for any θ ∈ Rd,∣∣W2(θ?]µd, θ
?
] νd)−W2{N(0, d−1m2(µd)),N(0, d−1m2(νd))}

∣∣ (S13)

≤W2{θ?]µd,N(0, d−1m2(µd))}+ W2{θ?] νd,N(0, d−1m2(νd))} (S14)

Therefore, taking the integral with respect to γd,∫
Rd

(
W2(θ?]µd, θ

?
] νd)−W2{N(0, d−1m2(µd)),N(0, d−1m2(νd))}

)2

dγd(θ) (S15)

≤
∫
Rd

(
W2{θ?]µd,N(0, d−1m2(µd))}+ W2{θ?] νd,N(0, d−1m2(νd))}

)2

dγd(θ) (S16)

≤ 2

{∫
Rd

W2
2{θ?]µd,N(0, d−1m2(µd))}dγd(θ) +

∫
Rd

W2
2{θ?] νd,N(0, d−1m2(νd))}dγd(θ)

}
,

(S17)

where (S17) follows from (a+ b)2 ≤ 2(a2 + b2). Then, we apply Theorem S1 to bound (S17), and
we conclude there exists a universal constant C > 0 such that∫

Rd

(
W2(θ?]µd, θ

?
] νd)−W2{N(0, d−1m2(µd)),N(0, d−1m2(νd))}

)2

dγd(θ) (S18)

≤ C
(
Ξd(µd) + Ξd(νd)

)
(S19)
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Using |‖a‖ − ‖b‖| ≤ ‖a− b‖ in L2(γd) gives∣∣∣{ ∫
Rd

W2
2(θ?]µd, θ

?
] νd)dγd(θ)

}1/2

−
{∫

Rd

W2
2{N(0, d−1m2(µd)),N(0, d−1m2(νd))}dγd(θ)

}1/2∣∣∣
(S20)

≤
{∫

Rd

(
W2(θ?]µd, θ

?
] νd)−W2{N(0, d−1m2(µd)),N(0, d−1m2(νd))}

)2

dγd(θ)
}1/2

(S21)

≤ C1/2
(
Ξd(µd) + Ξd(νd)

)1/2
(S22)

By (9) and Proposition 1,∫
Rd

W2
2(θ?]µd, θ

?
] νd)dγd(θ) = S̃W

2

2(µd, νd) = SW2
2(µd, νd) .

We then obtain the final result by rewritting (S20) as∣∣SW2(µd, νd)−W2{N(0, d−1m2(µd)),N(0, d−1m2(νd))}
∣∣.

S2.3 Proof of Proposition 2

Proof of Proposition 2. This result follows from an analogous translation property of the Wasserstein
distance: by [3, Remark 2.19], W2 (1) can factor out translations; in particular, for any ξ, ξ′ ∈ P2(Rd)
with respective means mξ,mξ′ and centered versions ξ̄, ξ̄′,

W2
2(ξ, ξ′) = W2

2(ξ̄, ξ̄′) + ‖mξ −mξ′‖2 . (S23)

By using (S23) in the definition of SW of order 2 (4), we obtain for any µd, νd ∈ P2(Rd),

SW2
2(µd, νd) =

∫
Sd−1

W2
2(θ?] µ̄d, θ

?
] ν̄d)dσ(θ) +

∫
Sd−1

|mθ?]µd
−mθ?] νd

|2dσ(θ) (S24)

= SW2
2(µ̄d, ν̄d) +

∫
Sd−1

|mθ?]µd
−mθ?] νd

|2dσ(θ) . (S25)

By the properties of pushforward measures, mθ?] ξ
= 〈θ,mξ〉 for any θ ∈ Sd−1 and ξ ∈ P2(Rd). The

second term of (S25) can thus be reformulated as∫
Sd−1

|mθ?]µd
−mθ?] νd

|2dσ(θ) =

∫
Sd−1

| 〈θ,mµd
−mνd〉 |2dσ(θ) (S26)

= (mµd
−mνd)>

(∫
Sd−1

θθ>dσ(θ)

)
(mµd

−mνd) (S27)

= (1/d) ‖mµd
−mνd‖2 , (S28)

where the last equation results from
∫
Sd−1 θθ

>dσ(θ) = (1/d)Id. The final result is obtained by
incorporating (S28) in (S25).

S2.4 Error analysis under independence

This section gives a detailed analysis of the error bound under the first setting discussed in Section 3.3:
we consider sequences of independent random variables which have zero means and finite fourth-order
moments, and we derive an upper bound for Ξd in the next proposition.

Proposition S1. Let (Xj)j∈N∗ be a sequence of independent random variables with zero means and
E[X4

j ] < +∞ for j ∈ N∗. Set for any d ∈ N∗, X1:d = {Xj}dj=1 and let µd be the distribution of
X1:d. Then, we have

Ξd(µd) ≤ d−1/2
{

max
1≤j≤d

Var[X2
j ]
}1/2

+
{
d−1/4 + d−2/5

}
max

1≤j≤d
Var[Xj ] . (S29)
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Proof of Proposition S1. Given the definition of Ξd(µd) (7), the proof consists in bounding m2(µd),
α(µd) and βq(µd) for q ∈ {1, 2}.

Since for any j ∈ {1, . . . , d}, E[Xj ] = 0, then Var
[
Xj

]
= E[X2

j ] and

m2(µd) =

d∑
j=1

E[X2
j ] =

d∑
j=1

Var[Xj ] ≤ d max
1≤j≤d

Var[Xj ] (S30)

To bound α(µd), we first use the Cauchy–Schwarz inequality.

α(µd) ≤
{∫

Rd

(
‖x1:d‖2 − m2(µd)

)2
dµd(x1:d)

}1/2

(S31)

Besides,
∫
Rd

(
‖x1:d‖2 − m2(µd)

)2
dµd(x1:d) = Var

[
‖X1:d‖2

]
, and since the d components of X1:d

are assumed to be pairwise independent, Var
[
‖X1:d‖2

]
=
∑d
j=1 Var

[
X2
j

]
. We conclude that

α(µd) ≤

 d∑
j=1

Var
[
X2
j

]1/2

≤
(
d max

1≤j≤d
Var[X2

j ]
)1/2

. (S32)

Finally, we bound βq(µd) for q ∈ {1, 2} by bounding β2(µd) then using the fact that β1(µd) ≤
β2(µd) by the Cauchy–Schwarz inequality. Denote by X ′1:d an independent copy of X1:d.

〈X1:d, X
′
1:d〉

2
=
( d∑
j=1

XjX
′
j

)2

=

d∑
j=1

Xj
2X ′j

2
+ 2

∑
i<j

XiX
′
iXjX

′
j . (S33)

Since X1:d and X ′1:d are independent on one hand, and they both are sequences of d independent
random variables with zero means on the other hand, we have∫

Rd×Rd

(〈x1:d, x
′
1:d〉)2d(µd ⊗ µd)(x1:d, x

′
1:d) (S34)

=

d∑
j=1

E
[
Xj

2
]
E
[
X ′j

2]
=

d∑
j=1

E
[
X2
j

]2
=

d∑
j=1

Var
[
Xj

]2
. (S35)

Therefore, β2(µd) ≤ (
∑d
j=1 Var[Xj ]

2)1/2 ≤ (dmax1≤j≤d Var[Xj ]
2)1/2. Since X1:d has finite

second and fourth-order moments, max1≤j≤d Var[Xj ], max1≤j≤d Var[X2
j ] <∞, and we get

m2(µd) ≤ d max
1≤j≤d

Var[Xj ], α(µd) ≤ d1/2( max
1≤j≤d

Var[X2
j ])1/2, (S36)

β1(µd), β2(µd) ≤ d1/2 max
1≤j≤d

Var[Xj ] . (S37)

The final result is obtained by bounding Ξ(µd) using (S36).

Note that the setting considered in Proposition S1 was mentioned in [1] to illustrate the conditions
of [1, Corollary 3]. We derived an explicit upper bound of Ξd under this setting for completeness,
showing that Ξd(µd) goes to zero as d→∞, which we can then use to refine the convergence rate in
Theorem 1, as we explained in Section 3.3.

S2.5 Error analysis under weak dependence

We now analyze the error under the weak dependence condition introduced in Definition 1. Specifi-
cally, the proposition below gives the formal statement of the result mentioned before Corollary 1:
we consider a sequence of fourth-order weakly dependent random variables, and we prove that Ξ(µd)
goes to zero as d→∞, with a convergence rate that depends on {ρ(n)}n∈N∗ .
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Proposition S2. Let (Xj)j∈N∗ be a sequence of random variables which is fourth-order weakly
dependent. Set for any d ∈ N∗, X1:d = {Xj}dj=1 and denote by µd the distribution of X1:d. Then,
there exists a universal constant C > 0 such that

Ξd(µd) ≤ C
{
d−1/2

(
ρ(0) + 2ρ∞

)1/2
+ d−1/4ρ(0)1/2

(
ρ(0)2 + 2ρ∞ max

1≤k≤d−1
ρ(k)

)1/4
(S38)

+ d−2/5ρ(0)1/5
(
ρ(0)2 + 2ρ∞ max

1≤k≤d−1
ρ(k)

)2/5}
. (S39)

Proof of Proposition S2. We proceed as in the proof of Proposition S1, i.e. by bounding m2(µd),
α(µd) and β2(µd).

Since (Xj)j∈N∗ is assumed to be fourth-order weakly dependent, then by Definition 1, there exist
some constant K ≥ 0 and a nonincreasing sequence of real coefficients {ρ(n)}n∈N such that, for any
1 ≤ i ≤ j ≤ d,

|Cov(X2
i , X

2
j )| ≤ Kρ(j − i), |Cov(Xi, Xj)| ≤ Kρ(j − i) (S40)

First, using the same arguments as in (S30), we have m2(µd) =
∑d
j=1 Var[Xj ]. We then use the

second inequality in (S40) to bound m2(µd) as follows.

m2(µd) =

d∑
j=1

Cov(Xj , Xj) ≤ dKρ(0) (S41)

Regarding α(µd), we use the Cauchy–Schwarz inequality again (S31) but in this setting, the right-
hand side features non-zero covariance terms:∫

Rd

(
‖x1:d‖2 − m2(µd)

)2
dµd(x1:d) = Var

[
‖X1:d‖2

]
(S42)

=

d∑
j=1

Var
[
X2
j

]
+ 2

∑
i<j

Cov
(
X2
i , X

2
j

)
. (S43)

By using the first inequality in (S40), we get for any d ∈ N∗,

d∑
j=1

Var
[
X2
j

]
=

d∑
j=1

Cov(X2
j , X

2
j ) ≤ Kdρ(0) , (S44)

∑
i<j

Cov
(
X2
i , X

2
j

)
≤
∑
i<j

|Cov
(
X2
i , X

2
j

)
| ≤ K

∑
i<j

ρ(j − i) (S45)

≤ K
d−1∑
n=1

(d− n)ρ(n) (S46)

≤ Kd
d−1∑
n=1

ρ(n) ≤ Kdρ∞ (S47)

where (S46) results from the change of variable n = j − i. Besides, by Definition 1, {ρ(n)}n∈N is a
nonincreasing sequence satisfying

∑+∞
n=0 ρ(n) ≤ ρ∞ < +∞, hence (S47). We conclude that for any

d ∈ N∗,

α(µd) ≤ d1/2K1/2
(
ρ(0) + 2ρ∞

)1/2
(S48)
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Let us now bound β2(µd). First, for any d ∈ N∗,∫
Rd×Rd

(〈x1:d, x
′
1:d〉)2d(µd ⊗ µd)(x1:d, x

′
1:d) (S49)

=

d∑
j=1

E
[
Xj

2
]
E
[
X ′j

2]
+ 2

∑
i<j

E
[
XiXj

]
E
[
X ′iX

′
j

]
(S50)

=

d∑
j=1

E
[
Xj

2
]2

+ 2
∑
i<j

E
[
XiXj

]2
(S51)

=

d∑
j=1

Var
[
Xj

]2
+ 2

∑
i<j

Cov(Xi, Xj)
2 , (S52)

where we used E[Xi] = 0 for any i ≥ 1. To bound (S52), we apply the second inequality in (S40),
and adapt the arguments used to prove (S44) and (S46), .

d∑
j=1

Var
[
Xj

]2 ≤ K2dρ(0)2 (S53)

∑
i<j

Cov(Xi, Xj)
2 ≤ K2d

d−1∑
n=1

ρ(n)2 ≤ K2dρ∞ max
1≤n≤d−1

ρ(n) (S54)

Since
∑+∞
n=0 ρ(n) ≤ ρ∞ < ∞, {ρ(n)}n∈N converges to 0 and is thus bounded, so

max1≤n≤d−1 ρ(n) < ∞. We then use (S53) and (S54) in the definition of β2(µd), and β1(µd) ≤
β2(µd), to derive the upper-bound below for any d ∈ N∗.

β1(µd), β2(µd) ≤ d1/2K
{
ρ(0)2 + 2ρ∞ max

1≤n≤d−1
ρ(n)

}1/2
(S55)

S3 Setup for synthetic experiments

We explain in more details the setup for the synthetic experiments discussed in Section 4, specifically
the procedure to generate data.

For d ∈ N∗, we generate n = 104 i.i.d. realizations of two random variables in Rd, denoted byX1:d =
{Xj}dj=1 and Y1:d = {Yj}dj=1 and respectively distributed from µd, νd ∈ P2(Rd). The n generated
samples of X1:d and Y1:d are respectively denoted by {x(j)}nj=1, {y(j)}nj=1, with x(j), y(j) ∈ Rd for
j ∈ {1, . . . , n}. We approximate SW of order 2 between the empirical distributions of {x(j)}nj=1 and
{y(j)}nj=1, given by µ̂d,n = n−1

∑n
j=1 δx(j) and ν̂d,n = n−1

∑n
j=1 δy(j) respectively. Note that in

the main text (Section 4), these two distributions were denoted by µd, νd instead of µ̂d,n, ν̂d,n, to
simplify the notation.

S3.1 Independent random variables

We first consider the setting described in Section S2.4, where µd = µ(1) ⊗ · · · ⊗ µ(d) and νd =
ν(1)⊗· · ·⊗ν(d) with µ(j), ν(j) ∈ P4(R) for j ∈ {1, . . . , d}. This means that {Xj}dj=1 and {Yj}dj=1

are two sequences of d independent random variables. For each j ∈ {1, . . . , d}, µ(j) (or ν(j)) refers
to a Gaussian or a Gamma distribution, centered or not, as we explain hereafter.

Gaussian distributions (Figure 1(a)). For j ∈ {1, . . . , d}, µ(j) = N(m
(j)
1 , σ2

1) and ν(j) =

N(m
(j)
2 , σ2

2), where m(j)
1 , m

(j)
2 are two i.i.d. samples from N(1, 1), σ2

1 = 1 and σ2
2 = 10. There-

fore, µd = N(m1, Id) and νd = N(m2, 10 Id), where Id denotes the identity matrix of size d, and
m1 = {m(j)

1 }dj=1, m2 = {m(j)
2 }dj=1 ∈ Rd.
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We prove that the SW of order 2 between such Gaussian distributions admits a closed-form expression:
for any m1,m2 ∈ Rd and σ2

1 , σ
2
2 > 0,

SW2
2{N(m1, σ

2
1 Id),N(m2, σ

2
2 Id)} =

1

d
‖m1 −m2‖2 + (σ1 − σ2)2 (S56)

Proof. First, given the properties of affine transformations of Gaussian random variables, we know
that for any θ ∈ Sd−1, m ∈ Rd and Σ ∈ Rd×d symmetric positive-definite, θ?]N(m,Σ) is the
univariate Gaussian distribution N(〈θ,m〉 , θᵀΣθ).

Using this property in the definition of SW (4) and the fact that ‖θ‖ = 1 for θ ∈ Sd−1,

SW2
2{N(m1, σ

2
1 Id),N(m2, σ

2
2 Id)}

=

∫
Sd−1

W2
2{N(〈θ,m1〉 , σ2

1),N(〈θ,m2〉 , σ2
2)}dσ(θ) (S57)

=

∫
Sd−1

{
〈θ,m1 −m2〉2 + (σ1 − σ2)2

}
dσ(θ) , (S58)

where (S58) results from the closed-form solution of the Wasserstein distance of order 2 between
Gaussian distributions (2). Besides, by definition of the Euclidean inner-product, for any θ ∈ Sd−1,

〈θ,m1 −m2〉2 =
(
θᵀ(m1 −m2)

)2
= (m1 −m2)ᵀθθᵀ(m1 −m2) . (S59)

We can thus rewrite (S58) to obtain

SW2
2{N(m1, σ

2
1 Id),N(m2, σ

2
2 Id)}

= (m1 −m2)ᵀ
{∫

Sd−1

θθᵀdσ(θ)
}

(m1 −m2) + (σ1 − σ2)2 . (S60)

We conclude by using the fact that
∫
Sd−1 θθ

ᵀdσ(θ) = (1/d)Id.

Gamma distributions (Figure 1(a)). Denote by Γ(k, s) the Gamma distribution with shape pa-
rameter k > 0 and scale s > 0. For j ∈ {1, . . . , d}, µ(j) = Γ(k

(j)
1 , s1) and ν(j) = Γ(k

(j)
2 , s2),

where k(j)
1 (respectively, k(j)

2 ) is drawn from the uniform distribution over [1, 5) (respectively, over
[5, 10)), s1 = 2 and s2 = 3.

Centered (Gaussian or Gamma) distributions (Figures 1(b) and 2). We first generate
{x(j)}nj=1, {y(j)}nj=1 using the Gaussian (or Gamma) distributions described in the two para-
graphs above. Then, we center the data: for j ∈ {1, . . . , n}, x̄(j) = x(j) − n−1

∑n
i=1 x

(i) and
ȳ(j) = y(j) − n−1

∑n
i=1 y

(i). The two distributions that we compare with SW, referred to as µ̄d, ν̄d
in Section 4, correspond to the empirical distributions of the centered datasets {x̄(j)}nj=1, {ȳ(j)}nj=1,
which can be denoted by µ̄d,n and ν̄d,n.

We prove in the next proposition that our theoretical bounds derived in Section S2.4 can be improved
for centered Gaussian distributions: in this setting, the expected approximation error is upper-bounded
by a term in d−1/2, which is consistent with the slope observed in Figure 1(b).
Proposition S3. For d ∈ N∗, let µd = N(m1, σ

2
1Id) and νd = N(m2, σ

2
2Id), and denote by

µ̄d, ν̄d their centered versions, i.e. µ̄d = N(0, σ2
1Id) and ν̄d = N(0, σ2

2Id). Consider the empirical
distributions µ̄d,n, ν̄d,n given by

µ̄d,n = (1/n)

n∑
j=1

δ
(X

(j)
1:d−X̄1:d)

, ν̄d,n = (1/n)

n∑
j=1

δ
(Y

(j)
1:d−Ȳ1:d)

, (S61)

where {X(j)
1:d}nj=1 (respectively, {Y (j)

1:d }nj=1) is a sequence of n random variables i.i.d. from µd

(respectively, from νd), X̄1:d = n−1
∑n
j=1X

(j)
1:d , and Ȳ1:d = n−1

∑n
j=1 Y

(j)
1:d . Then,

E
∣∣SW2(µ̄d, ν̄d)−W2{N(0, d−1m2(µ̄d,n)),N(0, d−1m2(ν̄d,n))}

∣∣ ≤ σ1 + σ2

(2dn)1/2
+O

(
1

dn

)
,
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where E is the expectation with respect to {X(j)
1:d}nj=1 and {Y (j)

1:d }nj=1, and m2(µ̄d,n), m2(ν̄d,n) are

defined in (8), i.e. m2(µ̄d,n) = n−1
∑n
j=1 ‖X

(j)
1:d−X̄1:d‖2 and m2(ν̄d,n) = n−1

∑n
j=1 ‖Y

(j)
1:d −Ȳ1:d‖2.

Proof of Proposition S3. Given the closed-form expressions in (S56) and (2), we have

E
∣∣SW2(µ̄d, ν̄d)−W2{N(0, d−1m2(µ̄d,n)),N(0, d−1m2(ν̄d,n))}

∣∣
= E

∣∣|σ1 − σ2| − |d−1/2m2(µ̄d,n)1/2 − d−1/2m2(ν̄d,n)1/2|
∣∣

≤ E
∣∣σ1 − σ2 − d−1/2m2(µ̄d,n)1/2 + d−1/2m2(ν̄d,n)1/2

∣∣ (S62)

≤ E
∣∣σ1 − d−1/2m2(µ̄d,n)1/2

∣∣+ E
∣∣σ2 − d−1/2m2(ν̄d,n)1/2

∣∣ . (S63)

where (S62) results from applying the reverse triangle inequality, and (S63) follows from the triangle
inequality and the linearity of the expectation.

The final result follows from bounding E
∣∣σ1 − d−1/2m2(µ̄d,n)1/2

∣∣ and E
∣∣σ2 − d−1/2m2(ν̄d,n)1/2

∣∣
from above. First, by the Cauchy–Schwarz inequality,

E
∣∣σ1 − d−1/2m2(µ̄d,n)1/2

∣∣ ≤ {E[(σ1 − d−1/2m2(µ̄d,n)1/2)2
]}1/2

, (S64)

with

E
[
(σ1 − d−1/2m2(µ̄d,n)1/2)2

]
= σ2

1 − 2σ1d
−1/2E[m2(µ̄d,n)1/2] + E[d−1m2(µ̄d,n)] . (S65)

Consider the random variable defined as Z =
√∑dn

i=1

{
(Xi − X̄)2/σ2

1

}
, where {Xi}dni=1 are

i.i.d. from N(0, σ2
1) and X̄ = (dn)−1

∑dn
i=1Xi. Then, by Cochran’s theorem, Z is distributed

from the chi distribution with dn− 1 degrees of freedom. This implies that,

E[d−1m2(µ̄d,n)] = σ2
1

dn− 1

dn
,

E[Z] =
√

2
Γ(dn/2)

Γ((dn− 1)/2)
=
√
dn− 1

[
1− 1

4dn
+O

(
1

(dn)2

)]
.

Hence, (S65) boils down to

E
[
(σ1 − d−1/2m2(µ̂d,n)1/2)2

]
= σ2

1

[
2− 1

dn
− 2

(
1− 1

dn

)1/2{
1− 1

4dn
+O

(
1

(dn)2

)}]
.

(S66)

Besides, we know that (
1− 1

dn

)1/2

= 1− 1

2dn
+O

(
1

(dn)2

)
, (S67)

so we can write (S66) as

E
[
(σ1 − d−1/2m2(µ̂d,n)1/2)2

]
=

σ2
1

2dn
+O

(
1

(dn)2

)
. (S68)

By plugging (S68) in (S64), we conclude that

E
∣∣σ1 − d−1/2m2(µ̂d,n)1/2

∣∣ ≤ σ1

(2dn)1/2
+O

(
1

dn

)
. (S69)

We can use the same reasoning to prove that

E
∣∣σ2 − d−1/2m2(ν̂d,n)1/2

∣∣ ≤ σ2

(2dn)1/2
+O

(
1

dn

)
, (S70)

and we use (S69) and (S70) to bound (S63), which concludes the proof.
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S3.2 Autoregressive processes

Let (Xj)j∈N∗ be an autoregressive process of order 1 defined as X1 = ε1 and for t ∈ N∗, t > 1,
Xt = αXt−1 + εt, where α ∈ [0, 1) and (εj)j∈N∗ is a sequence of i.i.d. real random variables such
that E[ε1] = 0 and E[ε2

1] <∞.

For d ∈ N∗ andB = 104, we generate n realizations of {Xj}B+d
j=B+1 ∈ Rd using the aforementionned

recursion. This gives us our first dataset {x(j)}nj=1, where x(j) ∈ Rd for j ∈ {1, . . . , n}. Note that
the first B steps of the process are discarded in order to reach its stationary regime (which exists
since |α| < 1), and thus meet the weak dependence condition [4]. We repeat the same procedure
to obtain the second dataset, {y(j)}nj=1. Since the two datasets are generated using the same AR(1)
model, µd and νd are the same distribution, so the exact value of SW is zero.

We conducted our experiments on two types of AR(1) processes, which differ from the distribution
used to draw n i.i.d. samples of {εj}B+d

j=1 . The two settings are specified below.

Gaussian noise (Figure 1(c)). For j ∈ {1, . . . , B + d}, εj ∼ N(0, 1).

Student’s t noise (Figure 1(d)). Denote by t(r) the Student’s t distribution with r > 0 degrees of
freedom. For j ∈ {1, . . . , B + d}, εj ∼ t(10).

S3.3 Computing infrastructure

The experiment comparing the computation time of our methodology against Monte Carlo estimation
(Figure 2) was conducted on a daily-use laptop equipped with 8 × Intel Core i7-8650U CPU @
1.90GHz, 16GB of RAM.

S4 Experimental details for image generation

Architecture. For each model (SWG, reg-SWG or reg-det-SWG), we used the architectures de-
scribed in [5]: the “Conv & Deconv” generator and discriminator in [5, Section D] for MNIST, and
DCGAN [6] with layernorm for both the generator and discriminator for CelebA.

Data preprocessing. For MNIST, we do not apply any specific preprocessing. For CelebA, each
image is cropped at the center and resized to 140× 140 (using the notation width × height, both in
pixels), then resized to 64× 64.

Optimization. For each model, we used the same optimization routine as in [5]: one training
iteration consists in performing one update for the generator then one update for the discriminator,
both with the default setting of Adam [7] (i.e. β1 = 0.9, β2 = 0.999, ε = 10−8). The values of other
important hyperparameters are given in Table S1.

Dataset Batch size Learning rate Total number of epochs
MNIST 512 5× 10−4 200
CelebA 64 1× 10−4 20

Table S1: Hyperparameters used when training each model.

Regularization parameters. For reg-SWG and reg-det-SWG, we tuned the regularization coef-
ficients (λ1, λ2) via cross-validation: we trained the models for λ1 ∈ {10−3, 10−2, 10−1, 1} and
λ2 ∈ {0, 10−3, 10−2, 10−1, 1}, and selected the tuple that minimizes the average FID over 5 runs.

Computing infrastructure. The FID and computation times on GPU reported in Table 1 (columns
‘FID’, ‘TSW, GPU’ and ‘Ttot, GPU’) were obtained by training each model on a computer cluster
equipped with 3 GPUs (NVIDIA Tesla V100-PCIE-32GB and 2× NVIDIA Tesla V100-PCIE-16GB)
for CelebA, and with 1 GPU (NVIDIA GP100GL, Tesla P100 PCIe 16GB) for MNIST. To obtain the
computation times on CPU (Table 1, columns ‘TSW, CPU’ and ‘Ttot, CPU’), we used a workstation
equipped with 24 × Intel Xeon CPU E5-2620 v3 @ 2.40GHz.
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