
Supplemental to Differential Privacy Over

Riemannian Manifolds

1 Simulation details

Simulations are done in Matlab on a desktop computer with an Intel Xeon
processor at 3.60GHz with 31.9 GB of RAM running Windows 10.

1.1 Computing the Fréchet mean

We use a gradient descent algorithm to compute the Fréchet mean of a sample
D = {x1, x2, . . . , xn}. We initialize the mean µ̂0 at any data point, take a small
step in the average direction of the gradient of energy functional F2 :M→ R,
and iterate. If µ̂k−1 is the mean in the (k− 1)th iterate, in normal coordinates,
the gradient is given by vk = 1

n

∑n
i=1 exp−1µ̂k−1

(xi). Then, the estimate of the

Fréchet mean at iterate k is µ̂k = expµ̂k−1
(tkvk) where tk ∈ (0, 1] is the step

size. The algorithm is assumed to have converged once the change in the mean
across subsequent steps is no longer significant, measured using the intrinsic
distance ρ on M; that is, the algorithm terminates if ρ(µk, µk−1) < λ for some
pre-specified λ > 0. We choose the step size tk = 0.5 and λ = 10−5. In addition,
one could set a maximum number of iterations for situations when the mean
oscillates between local optima, and we set this at 500 but note that in our
settings the algorithm typically converges in fewer than 200 iterations.

1.2 SPDM simulations

1.2.1 Generating random samples within Br(m0)

Since P(k) can be identified with the set of k×k covariance matrices, we use the
Wishart distribution W (V, df) to generate samples from P(k), parameterized by
a scale matrix V and degrees of freedom df > 0 such that if X ∼W (V, df) then
EX = df V . We set V = 1

k Ik, where Ik is the identity matrix and df = k.
Recall that under the Rao-Fisher affine-invariant metric P(k) is negatively

curved and thus the radius r of ball Br(m0) in Assumption 1 within which
data D is assumed to lie in is unconstrained. This results in samples from
W ( 1

k Ik, k) being centred at Ik, which can be viewed as a suitable value for m0.
It is possible, however, that certain samples from W ( 1

k Ik, k) are at a distance
(in terms of ρ) greater than r from m0 = Ik since the affine-invariant metric
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is not used in the definition of the Wishart, but this can always be adjusted
by selecting a suitable radius r. A sample of size n is thus generated by: (i)
sampling X ∼ W ( 1

k Ik, k); (ii) retaining X if ρ(X, Ik) < r or (re-)sampling X
until distance is smaller than r. For our simulations, we set r = 1.5 and df = 2.

1.2.2 Radius in ambient space of symmetric matrices

Let Symk be the set of k× k symmetric matrices within which P(k) resides. In
order to compare sensitivity of the proposed method using geometry of P(k) to
one which considers only the ambient space Symk, the radius rE of a ball in
Symk, with respect to the distance induced by the Frobenius norm ‖ · ‖2, that
in a certain sense ‘corresponds’ to r on P(k) needs to be ascertained.

This amounts to determining how the distance ρ(x, y) = ‖Log(x−1/2yx−1/2)‖2
under the affine-invariant metric on P(k) compares to ‖x−y‖2 when x, y ∈ P(k).
Since m0 = Ik, we can choose y = Ik and compare ‖Log(x)‖2 with ‖x− Ik‖2.

In particular, we seek to find the smallest Euclidean ball in Symk that
contains the geodesic ball Br(Ik) in P(k), and we accordingly define the radius
of the Euclidean ball rE to be

rE = sup
x∈P(k):‖Log(x)‖≤r

‖x− I‖.

Expressing x in its diagonal basis following a suitable change of coordinates
leaves ‖Log(x)‖ and ‖x− I‖ unchanged, and hence

r2E = sup
λ:

∑
i log(λi)2≤r2

∑
i

(λi − 1)2,

where λi > 0, i = 1, . . . , k are the eigenvalues of x.

Proposition 1. rE = er − 1.

Proof. Let ui = log λi, i = 1, . . . , k. Consider the value of the objective function
with the vector

(u1, u2, u3, . . . , uk) =

(√
u21 + u22, 0, u3, . . . , uk

)
.

The reason behind assuming such a structure for the vector of eigenvalues is that
if we can show that the value of objective function increases by replacing (u1, u2)
by (

√
u21 + u22, 0), then by symmetry the objective function will be maximized

by placing all of the weight in the first coordinate and setting all remaining
coordinates to λi = 1. Consider a Taylor expansion of each of the terms (assume
wlog that ui ≥ 0):

(eui − 1)2 =

( ∞∑
n=1

uni
n!

)2

=
∑
n,m

un+mi

n!m!
(1)

2



versus

(e
√
u2
1+u

2
2 − 1)2 =

( ∞∑
n=1

(u21 + u22)n/2

n!

)2

=
∑
n,m

(u21 + u22)(n+m)/2

n!m!
. (2)

We wish to establish that∑
n,m

(u21 + u22)(n+m)/2

n!m!
≥
∑
n,m

un+m1 + un+m2

n!m!
.

This will hold if
(u21 + u22)(n+m)/2 ≥ un+m1 + un+m2 ,

or equivalently

u21 + u22 ≥
(

(u21)(n+m)/2 + (u22)(n+m)/2
)2/(n+m)

.

However, since n+m ≥ 2, this follows immediately from the triangle inequality
for `p spaces.

1.3 Sphere simulations involving spheres

1.3.1 Generating samples within Br(m0)

We use polar coordinates to sample from a d = 2-dimensional sphere S21 of
radius one (thus κ = 1). Let (θ, φ) be the pair of polar and azimuthal angles,
respectively, where θ ∈ [0, π] and φ ∈ [0, 2π). We uniformly sample on θ ∈ [0, r]
and φ ∈ [0, 2π) with r = π/8. This results in data concentrated about the north
pole (m0), with increasing concentration towards the north pole.

1.3.2 Radius in ambient space

Suppose we have a dataset D on the unit sphere, Sd1 , centered at m0 with
(manifold) radius r. As with SPDM, we need to determine a suitable ball of
radius rE in Euclidean space that contains the geodesic ball of radius r on Sd1 .
To determine rE , we simply need to convert r, which corresponds to arc length,
to the chord length (from m0 to the boundary of the ball). That is, since the
sphere radius equals 1, rE = 2 sin( r2 ).With r = π/8 we obtain rE = 2 sin(π/16).

1.4 Sampling from the Euclidean Laplace

We discuss how to sample from K-norm mechanism with the `2 norm | · |2 (i.e.
the Euclidean Laplace) on Rd. First, wlog we can take x̄ = 0 and σ = 1 as we
can clearly generate from a standardized distribution and then translate/scale
the result. So the goal is to sample from

f(y) ∝ e−|y|2 .
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Evidently, f is a member of the elliptical family of distributions. We thus
sample a vector y = (y1, . . . , yd) from f by sampling a direction uniformly on
the (d − 1)-dimensional unit sphere Sd−11 and then, independently, sampling a
radius r > 0 from an appropriate distribution. To determine this distribution,
let

y1 = r cos(θ1)

y2 = r sin(θ1) cos(θ2),

...

yd−1 = sin(θ1) sin(θ2) . . . cos(θd−1)

yd = sin(θ1) . . . sin(θd−1).

Then the density f assumes the form

f(r, θ1, . . . , θd) = e−rrd−1 sind−2(θ1) . . . sin(θd−1).

Since f factors into a function of r and a function of the angles, the distribution
of r is proportional to rd−1e−r, which is just the Gamma distribution Γ(d, 1)
with parameters α = d and β = 1. Thus, to sample a value from f :

1. sample a direction U uniformly from Sd−1;

2. sample a radius R from Γ(d, 1) distribution;

3. set Y = x̄+RσU .

Then Y will be a draw from the d-dimensional Euclidean Laplace with scale σ
and center x̄. In order to sample U from Sd−11 , we use the well-known fact that
if X ∼ Nd(0d, Id) then U := X/|X|2 follows a uniform distribution on Sd−1.

1.5 Sampling from the Laplace on the sphere Sd
1

To sample from the Laplace on Sd1 we generate a Markov chain by using a
Metropolis-Hastings random walk. At each step n we generate a proposal x′ by
first randomly drawing a vector v in the current tangent space, Txn

Sd1 , then move
on the sphere using the exponential map and said vector, f(x′|xn) = expxn

v.
To draw v we uniformly sample on a ball centered at the current step xn with
radius σ by drawing a vector from N3(03, I3), scaling the resulting vector to have
length σ, and projecting the vector onto the tangent space of xn. This projection
ensures that ‖v‖ ≤ σ, which we take to be much smaller than the injectivity
radius. Further, v is not uniform in Txn

Sd1 , but since we use a Metropolis-
Hastings algorithm, we only require symmetry is satisfied. One can sample
vectors on the required tangent space in several manners, the proposed method
is chosen for computational ease.

We aim to accept/reject draws from f to produce a Markov chain with sta-
tionary density C−1η,σexp(−ρ(η, x)/σ), where ρ is the arc distance on the sphere.
We follow a standard Metropolis-Hastings schematic.
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1. Initialize x0 = η.

2. In the nth iteration, draw a vector in Txn
Sd1 , the tangent space of xn, as

described earlier denoted as v.

3. Generate a candidate x′ by letting x′ = expxn
v.

4. Accept x′ and set xn+1 = x′ with probability exp(−ρ(η, x′)/σ)/ exp(−ρ(η, xn)/σ).
Otherwise, reject x′ and generate another candidate by returning to pre-
vious step.

5. Return to step 2 until one has generated a sufficiently long chain.

The final sample is chosen based on a burn-in period of 10 000 steps and jump
width of 100 to avoid correlated adjacent steps in the chain.

2 Bounding Distances on the Tangent Space

To complete Theorem 2 we need a bound on the distance

‖ exp−1m (x)− exp−1m (y)‖m,

which holds uniformly across all m,x, y ∈ Br(m0); in particular, we seek a
Lipschitz bound that holds uniformly over Br(m0).

Lemma 1. Under the assumptions of Theorem 2, for x, y,m ∈ Br(m0) we have

‖ exp−1m (x)− exp−1m (y)‖m ≤ 2r(2− h(r, κ)).

Proof. We first establish that the inverse exponential map at a fixedm ∈ Br(m0)
is Lipschitz. The map expm : TxM →M when restricted to a ball B of radius
r around the origin is a diffeomorphism since inj m < r. The inverse exp−1m
is differentiable on expm(B). Let Nm = expm(B) ∩ Br(m0) and consider a
minimizing geodesic γ : [0, 1]→M starting at m that lies entirely in Nm.

The derivative D exp−1m is the value of J̇(1) = D
ds

d
dtcm(s, t)

∣∣∣
s=1

, where J(s) =

d
dtcm(s, t) is the Jacobi field along s 7→ cm(s, t) = expm{s exp−1m (γ(t))}, with
J(0) = 0 and J(1) = γ̇(t). When restricted to the (compact) closure of B, the
map v 7→ ‖D exp−1m v‖m is bounded above by C(m) <∞.

Let Γ := exp−1m (γ). Comparing lengths of γ and Γ we obtain

L(Γ) ≤ C(m)

∫ 1

0

‖γ′(t)‖γ(t)dt = C(m)L(γ),

since ‖ · ‖m is continuous. Since distances are obtained by minimising lengths of
paths of curves, exp−1m is Lipshcitz with constant C(m) on Nm. However, under
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the assumptions of Theorem 2, from Jacobi field estimates A5.4, when used in
conjunction with Corollary 1.6, in 1, we get

C(m) ≤ sup
v∈TmM,‖v‖m=1

‖D exp−1m v‖m ≤
{

2− h(r, κ) if κ > 0
1 if κ ≤ 0,

where h(r, κ) is as defined in Theorem 2. As a consequence,

‖ exp−1m (x)− exp−1m (y)‖m ≤ [2− h(r, κ)]d(x, y) ≤ 2r[2− h(r, κ)],

as desired.

2.1 An Empirical Bound on the Sensitivity for Sd
1

The sensitivity is bound as ρ(x̄, x̄′) ≤ 2r(2−h(r,κ))
nh(r,κ) where h(r, κ) is a function of

the radius of the ball Br(m0) and κ the sectional curvature of the manifold. The
correction factor in the numerator, which is only present for positively curved
manifolds, is not very tight for large radius ball. From the theorem we see that
this correction factor comes from ‖ exp−1m (x) − exp−1m (y)‖ ≤ 2r[2 − h(r, κ)], so
we consider this norm in the case of the unit sphere.

Given a ball Br(m0) and any three points x1, x2, x3 ∈ Br(m0), we wish to
find an empirical bound on ‖ exp−1x1

(x2) − exp−1x1
(x3)‖. To do this we create a

uniformly spaced grid on the boundary of Br(m0) to produce a set {xi}. We
then fix an arbitrary point, say x1, and compute maxi,j ‖ exp−1x1

(xi)−exp−1x1
(xj)‖.

Because of the symmetry of the ball on the sphere, one can fix the footpoint
and search over all other points. In Figure 1 we display the radius of Br(m0) as
the x-axis, 2r in blue, 2r[2−h(r, κ)] in red, and maxi,j ‖ exp−1x (xi)−exp−1x (xj)‖
in yellow. We see that 2r < maxi,j ‖ exp−1x1

(xi) − exp−1x1
(xj)‖ < 2r(2 − h(r, κ))

however the inflation due to the the curvature is not as large as our bound.
Rather than use the theoretical bound in the simulations of the sphere, we use
the empirical bound.

1H. Karcher. Riemannian center of mass and mollifier smoothing, Communications in
Pure and Applied Mathematics (1977), 509-541.
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Figure 1: The x-axis represents the radius of Br(m0). The blue line is 2r, the
red line is 2r(2−h(r, κ)), and the yellow line is maxi,j ‖ exp−1x (xi)−exp−1x (xj)‖.
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