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Appendix Overview

Section A contains the basic theoretical tools we need for the rest of the appendix. We will also
be using some notation from the paper without introduction. In Section B we have all the proofs
for the results relating to asymptotic parameter rates of the histogram spaces in our estimators; this
section corresponds to Section 2.2.1 in the main text. Section C contains the proofs relating to
finite-sample rates, and several expanded or additional results, corresponding to Section 2.2.2 in the
main text. Section 2.2.2 in the main text contains some results that are simplified for readability and
this appendix has some results which are tighter, but less readable. Additionally Section C contains all
the finite-sample analysis for Tucker histograms which were omitted in the main text. Experimental
details, specifically the equivalency of L2 minimization and nonnegative tensor factorization can be
found in Section D. Section E is a bit different from the other sections and contains some discussion
relevant to the future of this direction of research. There we show that not all densities can be written
as a summation of separable densities with nonnegative coefficients.

A Theoretical Basics

A.1 Notation

In this section we include some notation that was not contained in the main text but will be necessary
for the rest of the appendix. In particular we will we need to introduce a fair amount of tensor notation
which will be used to represent the various histograms. A histogram on the unit cube can naturally be
represented as a tensor, which will be useful for deriving many of the results in this paper.

From the main text recall that Td,b is the set of probability tensors in Rb×d , i.e. their entries are
nonnegative and sum to one.

Let T kd,b be the set of tensors that are a convex combination of k separable probability tensors (which
are analogous to multi-view models) i.e.

T kd,b ,


k∑
i=1

wi

d∏
j=1

pi,j

∣∣∣∣∣∣w ∈ ∆k, pi,j ∈ ∆b

 .
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The following is the set of probability tensors constructed via a nonnegative Tucker factorization
([k]

d represents a multi-index)

T̃ kd,b ,

 ∑
S∈[k]d

WS

d∏
i=1

pi,Si

∣∣∣∣∣∣W ∈ Td,k, pi,j ∈ ∆b

 .

For a multi-index A ∈ [b]
d we define ed,b,A as the element of Td,b where the (A1, . . . , Ad)-th entry

is one and is zero elsewhere.

Note that there exists a `1 → L1 linear isometry Ud,b : Td,b → Hd,b with Ud,b defined as

Ud,b(ed,b,A) = hd,b,A.

The inverse function, U−1
d,b , simply transforms a histogram to the tensor representing its bin weights

and Ud,b performs the reverse transformation. Note that Ud,b is also a bijection between T kd,b → Hkd,b
and T̃ kd,b → H̃kd,b. Much of our analysis on histograms will be performed on the space of probability
tensors with the analysis being translated to histograms via this operator.

For a set of vectors V we define k -mix (V) ,
{∑k

i=1 wivi

∣∣∣w ∈ ∆k, vi ∈ V
}

, i.e. the set of convex
combinations of collections of k vectors from V . We define N (V, ε) to be the minimum cardinality
for a subset of of V which ε-covers V (with closed balls) with respect to the ‖·‖1 metric. It will be
clear from context whether ‖·‖1 represents the `1, L1, or total variation norm.

A.2 Preliminary Results

The following lemmas will be useful for all the theoretical results.

Lemma A.1. For all 0 < ε ≤ 1 we have that N (∆b, ε) ≤
(

2b
ε

)b
.

Lemma A.2. For all 0 < ε ≤ 1 we have that N
(
T 1
d,b, ε

)
≤
(

2bd
ε

)bd
.

Lemma A.3. Let P be a set of probability measures, then

N (k -mix (P) , ε+ δ) ≤ N (P, ε)kN (∆k, δ) .

Lemma A.4. For all 0 < ε ≤ 1 the following holds N
(
T kd,b, ε

)
≤
(

4bd
ε

)bdk ( 4k
ε

)k
.

Through application of the Ud,b operator we now have a characterization of the complexity of the
spaceHkd,b.

Corollary A.1. For all 0 < ε ≤ 1 following holds N
(
Hkd,b, ε

)
≤
(

4bd
ε

)bdk ( 4k
ε

)k
.

The following are analogous results for Tucker histograms.

Lemma A.5. For all 0 < ε ≤ 1 the following holds N
(
T̃ kd,b, ε

)
≤
(

4bd
ε

)bdk ( 4kd

ε

)kd
.

Corollary A.2. For all 0 < ε ≤ 1 following holds N
(
H̃kd,b, ε

)
≤
(

4bd
ε

)bdk ( 4kd

ε

)kd
.

The following lemma from [1] provides us with a way to choose good estimators from finite collections
of densities. It can be proven by applying a Chernoff bound to [3], Theorem 6.3.
Lemma A.6 (Thm 3.4 page 7 of [1], Thm 3.6 page 54 of [3]). There exists a deterministic algorithm

that, given a collection of distributions p1, . . . , pM , a parameter ε > 0 and at least
log(3M2/δ)

2ε2 iid
samples from an unknown distribution p, outputs an index j ∈ [M ] such that

‖pj − p‖1 ≤ 3 min
i∈[M ]

‖pi − p‖1 + 4ε

with probability at least 1− δ
3 .
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We present the following asymptotic version of the previous lemma. We highlight the use of finding
sufficiently slow rates on parameters in order to establish asymptotic results, a technique which we
will use in later proofs.
Lemma A.7. Let (Pn)n∈N be a sequence of finite collections of densities in Dd where |Pn| → ∞
with n/ log (|Pn|) → ∞. Then there exists a sequence of estimators Vn ∈ Pn such that, for all
γ > 0,

sup
p∈Dd

P

(
‖Vn − p‖1 > 3 min

q∈Pn
‖p− q‖1 + γ

)
→ 0,

where Vn is a function of X1, . . . , Xn
iid∼ p.

Proof of Lemma A.7. Let M = M(n) = |Pn|. Since n/ log (M) → ∞ we have that for all
c > 0 there exists a Nc such that, for all n ≥ Nc we have n/ log (M) ≥ c or equivalently
n ≥ c log (M). Because of this there exists sequence of positive values C = C(n) such that C →∞
and n ≥ C log (M).

We will be making use of the algorithm in Lemma A.6 as well as its notation. If we can show that
there exist sequences of positive values ε(n)→ 0, δ(n)→ 0 such that, for sufficiently large n, the
following holds

log
(
3M2/δ

)
2ε2

≤ n,

then can simply set Vn equal to be the estimator from Lemma A.6 for sufficiently large n and, because
the lemma holds independent of choice of p, the theorem statement follows.

Let ε = (2/C)
1/4 and δ = 3/

(
exp

(
2
√

C
2

))
. Note that these are both positive sequences which

converge to zero. Now we have

log
(
3M2/δ

)
2ε2

=
log
(
M2
)

+ log (3/δ)

2ε2

=
2 log (M) + log (3/δ)

2ε2
=

log (M) + 1
2 log (3/δ)

ε2

= ε−2

(
log (M) +

1

2
log (3/δ)

)
=
(

(2/C)
1/4
)−2

(
log (M) +

1

2
log

(
exp

(
2

√
C

2

)))

=

√
C

2

(
log(M) +

√
C

2

)
=

√
C

2
log(M) +

C

2
. (1)

For sufficiently large C and M we have that the RHS of (1) is less than or equal to
C

2
log(M) +

C

2
≤ C

2
log(M) +

C

2
log(M)

= C log(M) ≤ n.
which completes our proof.

A.3 Theoretical Basics Proofs

All norms are either the `1, L1, or total variation norm, which are equivalent with respect to our
analysis and the proper norm will be clear from context.

Proof of Lemma A.1. In Section 7.4 from [3], the authors show that for any collection of measures
µ1, . . . , µb, for all ε > 0, that

N (Conv ({µ1, . . . , µb}) , ε) ≤
(
b+

b

ε

)b
.

3



With the additional assumption that ε ≤ 1 we have that b+ b
ε ≤

b
ε + b

ε = 2b
ε and thus

N (Conv ({µ1, . . . , µb})) ≤
(

2b

ε

)b
.

If we let µi = ei, the indicator vector at index i, then the lemma follows.

Proof of Lemma A.2. From Lemma A.1 we know there exists a finite collection of probabil-
ity vectors P̃ such that P̃ is an ε/d-covering of ∆b and

∣∣∣P̃∣∣∣ ≤ (
2bd
ε

)b
. Note that the set{

p̃1 ⊗ · · · ⊗ p̃d | p̃i ∈ P̃
}

contains at most
((

2bd
ε

)b)d
=
(

2bd
ε

)bd
elements. We will now show

that this set is an ε-cover of T 1
d,b. Let p1 ⊗ · · · ⊗ pd ∈ T 1

d,b be arbitrary. From our construction of P̃
there exist elements p̃1, . . . , p̃d ∈ P̃ such that ‖pi − p̃i‖1 ≤

ε
d .

We will now make use of Lemma 3.3.7 in [10], which states that, for any collection of probability
vectors q1, . . . , qd and q̃1, . . . , q̃d, the following holds∥∥∥∥∥∥

d∏
i=1

qi −
d∏
j=1

q̃j

∥∥∥∥∥∥
1

≤
d∑
i=1

‖qi − q̃i‖1 .

From this it follows that ∥∥∥∥∥∥
d∏
i=1

pi −
d∏
j=1

p̃j

∥∥∥∥∥∥
1

≤
d∑
i=1

‖pi − p̃i‖1 ≤ d
ε

d
= ε

thus completing our proof.

Proof of Lemma A.3. Let P̃ be the finite collection of probability measures with |P̃| = N (P, ε)
which ε-covers P . Similarly let W ⊂ ∆k with |W | = N (∆k, δ) such that W is a δ-cover of ∆k.
Consider the set

Ω =

{
k∑
i=1

w̃ip̃i

∣∣∣∣∣w̃ ∈W, p̃i ∈ P̃
}
.

Note that this set contains at most N (P, ε)kN (∆k, δ) elements. We will now show that it (δ + ε)-
covers k -mix (P), which completes the proof. Let

∑k
i=1 piwi ∈ k -mix (P). We know there exists

elements p̃1, . . . , p̃k ∈ P̃ such that ‖p̃i − pi‖1 ≤ ε and w̃ ∈ W such that ‖w − w̃‖1 ≤ δ and thus∑k
i=1 p̃iw̃i ∈ Ω. Now observe that∥∥∥∥∥∥

k∑
i=1

p̃iw̃i −
k∑
j=1

pjwj

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
k∑
i=1

p̃iw̃i −
k∑
j=1

pjw̃j +

k∑
l=1

plw̃l −
k∑
r=1

prwr

∥∥∥∥∥∥
1

≤

∥∥∥∥∥
k∑
i=1

(p̃i − pi) w̃i

∥∥∥∥∥
1

+

∥∥∥∥∥
k∑
i=1

pi (w̃i − wi)

∥∥∥∥∥
1

≤
k∑
i=1

w̃i ‖p̃i − pi‖1 +

k∑
i=1

|w̃i − wi|

≤
k∑
i=1

w̃iε+ ‖w̃ − w‖1

≤ ε+ δ.
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Proof of Lemma A.4. Note that T kd,b = k -mix
(
T 1
d,b

)
. Applying Lemma A.3 followed by Lemmas

A.1 and A.2 we have that

N
(
T kd,b, ε

)
≤ N

(
T 1
d,b, ε/2

)k
N (∆k, ε/2) ≤

(
4bd

ε

)bdk (
4k

ε

)k
.

Proof of Lemma A.5. Fix k, d, b and 0 < ε ≤ 1. We are going to construct an ε-cover of T̃ kd,b. From
Lemma A.1 we know that there exists a set B ⊂ ∆b which

(
ε
2d

)
-covers of ∆b and contains no more

than
(

4bd
ε

)b
elements. Let P be the collection of all d× k arrays whose entries are elements from B.

So we have that

|P| = |B|dk ≤
(

4bd

ε

)bdk
.

From Lemma A.1 there exists W which is an ε/2-cover of Td,k and contains no more than(
4kd/ε

)(kd) elements. Now let

Lkd,b =

 ∑
S∈[k]d

W̃S

d∏
i=1

p̃i,Si

∣∣∣∣∣∣W̃ ∈ W, p̃ ∈ P

 .

Note that ∣∣Lkd,b∣∣ ≤ |W| |P| ≤ (4kd

ε

)kd (
4bd

ε

)bdk
.

We will now show that Lkd,b is an ε-cover of T̃ kd,b. To this end let
∑
S∈[k]dWS

∏d
i=1 pi,Si ∈ T̃ kd,b

be arbitrary, where W ∈ Td,k and pi,j ∈ ∆b. From our construction ofW , there exists W̃ ∈ W
such that

∥∥∥W − W̃∥∥∥
1
≤ ε/2. There also exists p̃ ∈ P such that ‖p̃i,j − pi,j‖1 ≤ ε/2 for all i, j.

Therefore we have that ∑
S∈[k]d

W̃S

d∏
i=1

p̃i,Si ∈ Lkd,b.

So finally∥∥∥∥∥∥
∑
S∈[k]d

WS

d∏
i=1

pi,Si −
∑
R∈[k]d

W̃R

d∏
j=1

p̃j,Rj

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥
∑
S∈[k]d

WS

d∏
i=1

pi,Si −
∑
R∈[k]d

WR

d∏
j=1

p̃j,Rj

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
∑
S∈[k]d

WS

d∏
i=1

p̃i,Si −
∑
R∈[k]d

W̃R

d∏
j=1

p̃j,Rj

∥∥∥∥∥∥
1

≤
∑
S∈[k]d

WS

∥∥∥∥∥∥
d∏
i=1

pi,Si −
d∏
j=1

p̃j,Sj

∥∥∥∥∥∥
1

+
∑
R∈[k]d

|WR − W̃R|

∥∥∥∥∥∥
d∏
j=1

p̃j,Rj

∥∥∥∥∥∥
1

≤
∑
S∈[k]d

WS

d∑
i=1

‖pi,Si − p̃i,Si‖1 +
∑
R∈[k]d

|WR − W̃R|

∥∥∥∥∥∥
d∏
j=1

p̃j,Rj

∥∥∥∥∥∥
1

≤
∑
S∈[k]d

WS
ε

2
+
∥∥∥W − W̃∥∥∥

1

≤ ε/2 + ε/2 = ε.
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B Asymptotic Theoretical Results

This section contains results related to the asymptotic results related to the growth of model parameters
with respect to the number of training samples. It corresponds to Section 2.2.1 in the main text.

Proof of Theorem 2.1. We will be applying the estimator from Lemma A.7 to a series of δ-covers
ofHkd,b. We begin by constructing a series of δ-covers whose cardinality doesn’t grow too quickly.

Corollary A.1 states that, for all 0 < δ ≤ 1, that N
(
Hkd,b, δ

)
≤
(

4bd
δ

)bdk ( 4k
δ

)k
. For sufficiently

large b and k and sufficiently small δ, the following holds

log

((
4bd

δ

)bdk (
4k

δ

)k)
= bdk log

(
4bd

δ

)
+ k log

(
4k

δ

)
= bdk

[
log (b) + log

(
4d

δ

)]
+ k

[
log (k) + log

(
4

δ

)]
≤ bdk

[
log (b) + log (b) log

(
4d

δ

)]
+ dk

[
log (k) + log (k) log

(
4d

δ

)]
= (bk log (b) + k log (k)) d

(
1 + log

(
4d

δ

))
. (2)

Using the argument from the proof of Lemma A.7 we have that, because n/(bk log(b) + k log(k))→
∞ there exists a sequence of positive values C = C(n) such that C → ∞ and n >
C [bk log(b) + k log(k)]. If we let δ = 4d

exp(Cd −1)
we have that δ → 0 and

(bk log (b) + k log (k)) d

(
1 + log

(
4d

δ

))
≤ n.

Because of this we can construct collections of densities P̃n ⊂ Hkd,b such that P̃n is a δ-covering

of Hkd,b with
∣∣∣P̃∣∣∣ → ∞, n/ log

∣∣∣P̃n∣∣∣ → ∞ and δ → 0. Let Vn be the estimator from Lemma A.7

applied to the sequence P̃n.

Let ε > 0 be arbitrary. Due to the way that we have constructed the sequence P̃n, for sufficiently
large n, we have that 3 supq∈Hkd,b minq̃∈P̃n ‖q − q̃‖1 ≤ ε/2. It therefore follows that, for sufficiently
large n, the following holds for all p ∈ Dd

3 min
q∈Hkd,b

‖p− q‖1 + ε ≥ 3 min
q∈Hkd,b

‖p− q‖1 + 3 sup
q∈Hkb

min
q̃∈P̃n

‖q − q̃‖1 + ε/2

≥ 3 min
q∈Hkd,b

[
‖p− q‖1 + min

q̃∈P̃n
‖q − q̃‖1

]
+ ε/2

= 3 min
q∈Hkd,b

min
q̃∈P̃n

‖p− q‖1 + ‖q − q̃‖1 + ε/2

≥ 3 min
q̃∈P̃n

‖p− q̃‖1 + ε/2.

From this we have that, for sufficiently large n

sup
p∈Dd

P

(
‖Vi − p‖1 > 3 min

q∈Hkd,b
‖p− q‖1 + ε

)
≤ sup
p∈Dd

P

(
‖Vi − p‖1 > 3 min

q̃∈P̃n
‖p− q̃‖1 + ε/2

)
and the right side goes to zero due to Lemma A.7, thus completing the proof.

Proof of Theorem 2.2. This proof is very similar to the proof of Theorem 2.1. We will be applying
the estimator from Lemma A.7 to a series of δ-covers of H̃kd,b. We begin by constructing a series of
δ-covers whose cardinality doesn’t grow too quickly. Corollary A.2 states that, for all 0 < δ ≤ 1,
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that N
(
H̃kd,b, δ

)
≤
(

4bd
δ

)bdk ( 4kd

δ

)kd
. For sufficiently large b and k and sufficiently small δ, the

following holds

log

(4bd

δ

)bdk (
4kd

δ

)kd = bdk log

(
4bd

δ

)
+ kd log

(
4kd

δ

)

≤ d
(
bk log

(
4bd

δ

)
+ kd log

(
4kd

δ

))
= d

(
bk

(
log(b) + log

(
4d

δ

))
+ kd

(
log
(
kd
)

+ log

(
4

δ

)))
≤ d

(
bk

(
log(b) + log

(
4d

δ

))
+ kd

(
log
(
kd
)

+ log

(
4d

δ

)))
=
(
bk log(b) + kd log

(
kd
))
d

(
1 + log

(
4d

δ

))
.

Note that replacing bk log (b) + k log (k) with bk log (b) + kd log
(
kd
)

in the last line is exactly (2)
in our proof of Theorem 2.1 . From here we can proceed exactly as in the proof of Theorem 2.1 by
replacingHkd,b with H̃kd,b and bk log (b) + k log (k) with bk log (b) + kd log

(
kd
)
.

Proof of Corollary 2.1. This follows directly from Theorems 2.1 and 2.2 and selecting an appropri-
ately slow rate for k →∞.

Proof of Lemma 2.1. Let ε > 0. Theorem 5 in Chapter 2 of [6]1 states that, for any p ∈ Dd, that
minh∈Hd,b ‖p− h‖1 → 0 as b → ∞, i.e. the bias of a histogram estimator goes to zero as the
number of bins per dimension goes to infinity. Thus there exists a sufficiently large B such that there
exists a histogram h ∈ Hd,B which is a good approximation of p, ‖p− h‖1 < ε/2. In this proof we
we will argue that once k ≥ Bd and b is sufficiently large, we can find an element ofHkd,b where the
multi-view components can approximate the Bd bins of h.

We have that, for some w ∈ Td,B

h =
∑

A∈[B]d

wAhd,B,A.

From the same theorem in [6] there exists a0 such that, for all a ≥ a0, for all i, there exists
h̃1,a,i ∈ H1,a such that

∥∥∥h1,B,i − h̃1,a,i

∥∥∥
1
< ε/(2d) for all i ∈ [B]. For any multi-index A ∈ [B]d,

we define

h̃d,a,A =

d∏
j=1

h̃1,a,Aj .

Now we have that, for all a ≥ a0 and A ∈ [B]d,

∥∥∥hd,B,A − h̃d,a,A∥∥∥
1

=

∥∥∥∥∥∥
d∏
i=1

h1,B,Ai −
d∏
j=1

h̃1,a,Aj

∥∥∥∥∥∥
1

≤
d∑
i=1

∥∥∥h1,B,Ai − h̃1,a,Ai

∥∥∥
1

(3)

≤ d ε
2d

= ε/2,

1See p. 20 in this text for the application to histograms.
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where we use the previously mentioned product measure inequality for (3). As soon as k ≥ Bd and
a ≥ a0 the setHkd,a contains the element,

h̃ ,
∑

A∈[B]d

wAh̃d,a,A.

Now we have that, for all a ≥ a0.∥∥∥h− h̃∥∥∥
1

=

∥∥∥∥∥∥
∑

A∈[B]d

wAhd,B,A −
∑

Q∈[B]d

wQh̃d,a,Q

∥∥∥∥∥∥
1

≤
∑

A∈[B]d

wA

∥∥∥hd,B,A − h̃d,a,A∥∥∥
1

≤ ε/2.

From the triangle inequality we have that∥∥∥p− h̃∥∥∥
1
≤ ‖p− h‖1 +

∥∥∥h− h̃∥∥∥
1
≤ ε.

So we have that, for sufficiently large b and k

min
q∈Hkd,b

‖p− q‖1 ≤ ε

which completes our proof.

Proof of Lemma 2.2. We will show thatHkd,b ⊂ H̃kd,b and the lemma clearly follows due to Lemma
2.1. Any element ofHkd,b will have the following representation

k∑
i=1

wi

d∏
j=1

fi,j : w ∈ ∆k, fi,j ∈ H1,b. (4)

Letting W ∈ Td,k with Wi,...,i = wi for all i, the rest of the entries of W be zero, and f̃j,i = fi,j for
all i, j we have that ∑

S∈[k]d

WS

d∏
j=1

f̃j,Sj =

k∑
i=1

Wi,...,i

d∏
j=1

f̃j,i

=

k∑
i=1

wi

d∏
j=1

fi,j

so we have that (4) is an element of H̃kd,b and we are done.

Proof of Theorem 2.3. We will proceed by contradiction. Suppose Vn is an estimator violating the
theorem statement, i.e. there exist sequences b→∞ and k →∞ with n/ (bk)→ 0 and b ≥ k such
that, for all ε > 0,

sup
p∈Dd

P

(
‖Vn − p‖1 > 3 min

q∈Hkd,b
‖p− q‖1 + ε

)
→ 0.

Let (pn)
∞
n=1 be a sequence of probability vectors pn ∈ ∆b(n)×k(n) which represent distributions over

[b(n)]× [k(n)]. Let Xn , (Xn,1, . . . , Xn,n) with Xn,1, . . . , Xn,n
iid∼ pn.

We will now construct a series of estimators for pn using Vn. Let X̃n =
(
X̃n,1, . . . , X̃n,n

)
which

are independent random variables with X̃n,i ∼ hd,b,(Xn,i,1,...,1), so X̃n,i is uniformly distributed
over the bin designated by Xn,i, 1, . . . , 1. For this proof we will assume d > 2 but the proof can be
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simplified in a straightforward manner to the d = 2 case by ignoring the indices and modes beyond
the second. Note that that Xn,i contains two indices. Now we have the following for the densities of
X̃n,i

pX̃n,i =
∑

(j,`)∈[b]×[k]

pX̃n,i|Xn,i=(j,`)P (Xn,i = (j, `))

=
∑

(j,`)∈[b]×[k]

hd,b,(j,`,1,...,1)pn (j, `)

=
∑
`∈[k]

∑
j∈[b]

hd,b,(j,`,1,...,1)pn (j, `)

=
∑
`∈[k]

∑
j∈[b]

pn (j, `)h1,b,j ⊗ h1,b,` ⊗
∏

a∈[d−2]

h1,b,1

=
∑
`∈[k]

∑
j∈[b]

pn (j, `)h1,b,j

⊗ h1,b,` ⊗
∏

a∈[d−2]

h1,b,1 (5)

=
∑
`∈[k]

∑
q∈[b]

pn (q, `)

∑
j∈[b]

pn (j, `)∑
q∈[b] pn (q, `)

h1,b,j

⊗ h1,b,` ⊗
∏

a∈[d−2]

h1,b,1. (6)

For (6) we let 0/0 be equal to zero as is common for discrete conditioning. This last line is in the form
of (4) in the main text and is thus an element ofHkd,b. To see this we will show the correspondence
between the terms in (6) from here and the terms in (4) in the main text:

w` :=

∑
q∈[b]

pn (q, `)


f`,1 :=

∑
j∈[b]

pn (j, `)∑
q∈[b] pn (q, `)

h1,b,j


f`,2 := h1,b,`

fi,j := h1,b,1,∀j > 2,∀i.

Let Vn estimate P̃n , pX̃n,i so X̃n,1, . . . , X̃n,n
iid∼ P̃n. We will use Vn to construct an estimator vn

for pn.

Because P̃n ∈ Hkd,b 2 for all n and our contradiction hypothesis we have that
∥∥∥Vn − P̃n∥∥∥

1

p→ 0.

From this it follows that
∥∥∥U−1

d,b (Vn)− U−1
d,b (P̃n)

∥∥∥
1

p→ 0. Note that
[
U−1
d,b (P̃n)

]
j,`,A

= pn(j, `) when

A = (1, . . . , 1) and zero otherwise (see (5)). We define the linear operator Bn : Td,b → ∆b×k as

[Bn(T )]j,` ,
∑

A∈[b]d−2

Tj,`,A

i.e. the linear operator which sums out all modes except for the first two. We have that
Bn(U−1

d,b (P̃n)) = pn. Now let vn = Bn(U−1
d,b (Vn)) be the estimator for pn. Now we have that

‖vn − pn‖1 =
∥∥∥Bn(U−1

d,b (P̃n))−Bn(U−1
d,b (Vn))

∥∥∥
1

=
∥∥∥Bn(U−1

d,b (P̃n − Vn))
∥∥∥

1
.

We have that Bn is an `1-nonexpansive operator due to the triangle inequality,

‖Bn (T )‖1 =
∑
j,l

∣∣∣∣∣∣
∑

A∈[b]d−2

Tj,`,A

∣∣∣∣∣∣ ≤
∑
j,l

∑
A∈[b]d−2

|Tj,`,A| = ‖T‖1 ,

2We will use this portion of the proof again for our proof of Theorem 2.4
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so the operator norm of Bn is less than or equal to one. We also know that U−1
d,b an isometry and∥∥∥P̃n − Vn∥∥∥

1

p→ 0, so it follows that ‖vn − pn‖1
p→ 0 for any sequence of pn ∈ ∆[b(n)]×[k(n)]. We

will now use following theorem from [7] to show that no such estimator vn can exist.

Theorem B.1 ([7] Theorem 2.). For any ζ ∈ (0, 1], we have

inf
p̂

sup
p∈∆a

Ep ‖p̂− p‖1 ≥
1

8

√
ea

(1 + ζ)n
1

(
(1 + ζ)n

a
>

e

16

)
+ exp

(
−2 (1 + ζ)n

a

)
1

(
(1 + ζ)n

a
≤ e

16

)
− exp

(
−ζ

2n

24

)
− 12 exp

(
− ζ2a

32 (log a)
2

)
where the infimum is over all estimators.

Our estimator is equivalent to estimating a categorical distribution with a = bk categories. Letting
ζ = 1, bk →∞, and n→∞, with n/ (bk)→ 0, we get that for sufficiently large n

inf
p̂

sup
p∈∆bk

Ep ‖p̂− p‖1 ≥ exp

(
−4n

bk

)
− exp

(
− n

24

)
− 12 exp

(
− bk

32 (log bk)
2

)
whose right hand side converges to 1. From this we get that

lim inf
n→∞

sup
pn∈∆bk

Epn ‖vn − pn‖1 >
1

2

which contradicts ‖vn − pn‖1
p→ 0 for arbitrary sequences pn.

Proof of Theorem 2.4. We will proceed by contradiction. Suppose Vn is an estimator violating the
theorem statement, i.e. there exist sequences b→∞ and k →∞ with n/

(
bk + kd

)
→ 0 and b ≥ k

such that, for all ε > 0,

sup
p∈Dd

P

(
‖Vn − p‖1 > 3 min

q∈H̃kd,b
‖p− q‖1 + ε

)
→ 0.

Since n/(bk + kd) → 0 we have that (bk + kd)/n → ∞ so there is a subsequence ni such that
b(ni)k(ni)/ni →∞ or k(ni)

d/ni →∞, or equivalently ni/(b(ni)k(ni))→ 0 or ni/k(ni)
d → 0.

We will show that both cases lead to a contradiction. We will let b and k be functions of ni implicitly
when defining limits.
Case ni/(bk) → 0: We proceed similarly to the proof of Theorem 2.3. Let (pn)

∞
n=1, P̃n, and Xn

be defined as in the proof of Theorem 2.3. Note that Hkd,b ⊂ H̃kd,b (see proof of Lemma 2.2) and
thus P̃n ∈ H̃kd,b. We can proceed exactly as in our proof of Theorem 2.3 at footnote 2, by simply
replacingHkd,b with H̃kd,b and n with ni which finishes this case.
Case ni/kd → 0: Let (pn)∞n=1 be a sequence of elements in Td,k which represents distributions over

[k]d. Let Xn , (Xn,1, . . . , Xn,n) with Xn,1, . . . , Xn,n
iid∼ pn. Let X̃n =

(
X̃n,1, . . . , X̃n,n

)
which

are independent random variables with X̃n,i ∼ hd,b,Xn,i . Let P̃n be the density for X̃n,i. Note that
k ≤ b. So we have that

P̃n =
∑
S∈[k]d

pX̃n,i|Xn,i=SP (Xn,i = S)

=
∑
S∈[k]d

hd,b,Spn(S)

=
∑
S∈[k]d

pn(S)

d∏
i=1

h1,b,Si

and thus P̃n ∈ H̃kd,b. We proceed as in Theorem 2.3 to find an estimator for elements of Td,k which

is equivalent to estimating elements of ∆kd which is impossible since ni/kd → 0.
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C Finite Sample Theoretical Results

In this section we cover the proofs for the finite-sample results in our paper, Section 2.2.2 in the
main text. This includes proofs related to estimator bias on Lipschitz continuous functions. We note
that all projections in this paper are in their respective L2 space. As noted in the main text we will
be using set projection, ProjS x , arg mins∈S ‖x− s‖2 [2]. When S is a (closed) linear subspace
this is equivalent to a linear projection. Every instance of set projection in this work yields a unique
minimizer. As in the main text let LipL be the set of L-Lipschitz continuous densities on [0, 1] and
let mL = supf∈LipL

‖f‖2.

C.1 Bias

Theorem 2.5 is in the main text but is not used as is in any of our other proofs and is meant simply to
be illustrative of the behavior of the bias as in the main text. We will get the proof of this theorem
out of the way before moving on to the core results of this portion of the proofs. Note that λ is the
standard Lebesgue measure.

Proof of Theorem 2.5. From Hölder’s Inequality we have that for any function f : [0, 1]d → R that

‖f‖1 = ‖f · 1‖1 ≤ ‖f‖2 ‖1‖2 = ‖f‖2 . (7)

Applying this directly to the inequality from Theorem C.1 we have∥∥∥∥∥
d∏
i=1

fi − ProjH1
d,b

d∏
i=1

fi

∥∥∥∥∥
2

2

≤ m2d
L −

(
m2
L −

L2

12b2

)d
.

We now developing the core results needed for the paper. Because of the consequence of Hölder’s
Inequality (7) we will focus mainly on integrated squared distance between functions.

Lemma C.1. Let f : [a, b]→ R be an L-Lipschitz continuous function. Then

min
α∈R

∫ b

a

(α− f(x))
2
dx ≤ L2 (b− a)

3

12
.

Proof of Lemma C.1. Let α = f
(
a+b

2

)
. Then we have that∫ b

a

(α− f(x))
2
dx ≤

∫ b

a

(
L

∣∣∣∣x− a+ b

2

∣∣∣∣)2

dx

= L2

∫ b

a

(
x− a+ b

2

)2

dx

= L2

∫ b− a+b2

a− a+b2

x2dx

= L2

∫ b−a
2

a−b
2

x2dx

=
L2

3

[
x3
] b−a

2
a−b
2

=
L2

3
2

(
b− a

2

)3

=
L2 (b− a)

3

12
.
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Lemma C.2. Let f be an L-Lipschitz function on [0, 1], then

∥∥∥f − Projspan(H1,b)
f
∥∥∥2

2
≤ L2

12b2
.

Proof of Lemma C.2. Applying Lemma C.1 we have that

∥∥∥f − Projspan(H1,b)
f
∥∥∥2

2
= min
w∈Rb

∥∥∥∥∥f −
b∑
i=1

wih1,b,i

∥∥∥∥∥
2

2

= min
w∈Rb

∥∥∥∥∥f −
b∑
i=1

wib1[ i−1
b , ib )

∥∥∥∥∥
2

2

= min
w∈Rb

∫
[0,1]

(
f(x)−

b∑
i=1

wi1

(
i− 1

b
≤ x < i

b

))2

dx

= min
w∈Rb

∫
[0,1]

(
b∑
i=1

(f(x)− wi)1
(
i− 1

b
≤ x < i

b

))2

dx (8)

= min
w∈Rb

∫
[0,1]

b∑
i=1

(
(f(x)− wi)1

(
i− 1

b
≤ x < i

b

))2

dx (9)

= min
w∈Rb

b∑
i=1

∫ i
b

i−1
b

(f(x)− wi)2
dx

≤ b L
2

12b3
=

L2

12b2
,

where (8) to (9) is justified since, when distributing the square, the cross terms of the form
1
(
i−1
b ≤ x <

i
b

)
1
(
j−1
b ≤ x <

j
b

)
are equal to zero when i 6= j.

Lemma C.3. Let f1, . . . , fd ∈ L2([0, 1]). Then

Projspan(Hd,b)

d∏
i=1

fi =

d∏
i=1

Projspan(H1,b)
fi.

Proof of Lemma C.3. We will be using a multi-index A = (i1, . . . , id) ∈ [b]d so that
∏d
j=1 h1,b,ij =

hd,b,A and note that hd,b,A ⊥ hd,b,A′ for A 6= A′, so hd,b,A is an orthogonal basis forHd,b. We have
the following

d∏
i=1

Projspan(H1,b)
fi =

d∏
i=1

b∑
j=1

h1,b,j

‖h1,b,j‖22
〈h1,b,j , fi〉

=

(
h1,b,1

‖h1,b,1‖22
〈h1,b,1, f1〉+ · · ·+ h1,b,b

‖h1,b,b‖22
〈h1,b,b, f1〉

)
⊗

· · · ⊗

(
h1,b,1

‖h1,b,1‖22
〈h1,b,1, fd〉+ · · ·+ h1,b,b

‖h1,b,b‖22
〈h1,b,b, fd〉

)
.

(10)
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Now, distributing the terms in (10) and consolidating the subscripts into A we get that (10) is equal to

∑
A∈[b]d

d∏
i=1

h1,b,Ai

‖h1,b,Ai‖
2
2

〈h1,b,Ai , fi〉 =
∑
A∈[b]d

∏d
i=1 h1,b,Ai∏d

i=1 ‖h1,b,Ai‖
2
2

d∏
i=1

〈h1,b,Ai , fi〉

=
∑
A∈[b]d

hd,b,A

‖hd,b,A‖22

〈
hd,b,A,

d∏
i=1

fi

〉

= Projspan(Hd,b)

d∏
i=1

fi.

Lemma C.4. Let f ∈ L2
(

[0, 1]
d
)

be a probability density. Then

Projspan(Hd,b) f = ProjHd,b f.

Proof of Lemma C.4. Since hd,b,A ⊥ hd,b,A′ for A 6= A′ we have

Projspan(Hd,b) f =
∑
A∈[b]d

hd,b,A

‖hd,b,A‖22
〈hd,b,A, f〉

and
Projspan(Hd,b) f =

∑
A∈[b]d

wAhd,b,A

where

wA =
〈hd,b,A, f〉
‖hd,b,A‖22

.

Clearly wA ≥ 0 so to finish we need only show that
∑
A∈[b]d wA = 1. To this end we have

∑
A∈[b]d

wA =
∑
A∈[b]d

〈hd,b,A, f〉
‖hd,b,A‖22

=
∑
A∈[b]d

∫
[0,1]d

bd1 (x ∈ Λd,b,A) f(x)dx/bd

=

∫
[0,1]d

∑
A∈[b]d

1 (x ∈ Λd,b,A) f(x)dx

=

∫
[0,1]d

f(x)dx

= 1.

Corollary C.1. Let f1, . . . , fd ∈ L2([0, 1]) be probability densities, then

ProjHd,b

d∏
i=1

fi =

d∏
i=1

ProjH1,b
fi = ProjH1

d,b

d∏
i=1

fi.

Proof of Corollary C.1. The first equality follows from Lemmas C.3 and C.4. To second equality
follows from the first equality, the observation that H1

d,b ⊂ Hd,b, and that Lemma C.4 implies∏d
i=1 ProjH1,b

fi ∈ H1
d,b.
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Theorem C.1. Let mL = supf∈LipL
‖f‖2 and let b2 ≥ L2/12 then, for any f1, . . . , fd ∈ LipL, we

have that ∥∥∥∥∥
d∏
i=1

fi − ProjH1
d,b

d∏
i=1

fi

∥∥∥∥∥
2

2

≤ m2d
L −

(
m2
L −

L2

12b2

)d
.

Proof of Theorem C.1. We have∥∥∥∥∥
d∏
i=1

fi − ProjH1
d,b

d∏
i=1

fi

∥∥∥∥∥
2

2

=

∥∥∥∥∥
d∏
i=1

fi − ProjHd,b

d∏
i=1

fi

∥∥∥∥∥
2

2

Corollary C.1

=

∥∥∥∥∥
d∏
i=1

fi

∥∥∥∥∥
2

2

−

∥∥∥∥∥ProjHd,b

d∏
i=1

fi

∥∥∥∥∥
2

2

(Lemma C.4 with linear projection

(11)

=

∥∥∥∥∥
d∏
i=1

fi

∥∥∥∥∥
2

2

−

∥∥∥∥∥
d∏
i=1

ProjH1,b
fi

∥∥∥∥∥
2

2

Corollary C.1

=

d∏
i=1

‖fi‖22 −
d∏
i=1

∥∥∥ProjH1,b
fi

∥∥∥2

2
Def’n of tensor product norm.

Noting that
∥∥∥ProjH1,b

fi

∥∥∥2

2
= ‖fi‖22 −

∥∥∥fi − ProjH1,b
fi

∥∥∥2

2
(rearrangement of the property used in

(11)) we have that∥∥∥∥∥
d∏
i=1

fi −
d∏
i=1

ProjHd,b fi

∥∥∥∥∥
2

2

=

d∏
i=1

‖fi‖22 −
d∏
i=1

(
‖fi‖22 −

∥∥∥fi − ProjH1,b
fi

∥∥∥2

2

)
. (12)

We will now turn our attention to the subtrahend on the right hand side of the previous equa-

tion. Note that the product terms ‖fi‖22 −
∥∥∥fi − ProjH1,b

fi

∥∥∥2

2
=
∥∥∥ProjH1,b

fi

∥∥∥2

2
> 0 so∏d

i=1

(
‖fi‖22 −

∥∥∥fi − ProjH1,b
fi

∥∥∥2

2

)
is a product of positive values. From Lemmas C.2 and C.4

we have that
∥∥∥fi − ProjH1,b

fi

∥∥∥2

2
≤ L2

12b2 . So we have

‖fi‖22 −
∥∥∥fi − ProjH1,b

fi

∥∥∥2

2
≥ ‖fi‖22 −

L2

12b2
.

From Hölder’s Inequality we have that

‖f · 1‖1 ≤ ‖f‖2 ‖1‖2 ⇒ ‖f‖2 ≥ 1.

Combining this with the hypothesis L2

12b2 ≤ 1 we have that

‖fi‖22 −
∥∥∥fi − ProjH1,b

fi

∥∥∥2

2
≥ ‖fi‖22 −

L2

12b2
≥ 0.

For a pair of tuples bi ≥ ai ≥ 0 it follows that
∏
bi ≥

∏
ai and thus we have that

d∏
i=1

(
‖fi‖22 −

∥∥∥fi − ProjH1,b
fi

∥∥∥2

2

)
≥

d∏
i=1

(
‖fi‖22 −

L2

12b2

)
.

Plugging this back into the RHS of (12) we get

d∏
i=1

‖fi‖22 −
d∏
i=1

(
‖fi‖22 −

∥∥∥fi − ProjH1,b
fi

∥∥∥2

2

)
≤

d∏
i=1

‖fi‖22 −
d∏
i=1

(
‖fi‖22 −

L2

12b2

)
. (13)
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For some arbitrary j we perform the following derivative

d

d ‖fj‖22

(
d∏
i=1

‖fi‖22 −
d∏
i=1

(
‖fi‖22 −

L2

12b2

))
=
∏
i 6=j

‖fi‖22 −
∏
i 6=j

(
‖fi‖22 −

L2

12b2

)
≥ 0.

Thus we can find an upper bound to the RHS of (13) by maximizing ‖fi‖22 over fi, thus yielding∥∥∥∥∥
d∏
i=1

fi − ProjHd,b

d∏
i=1

fi

∥∥∥∥∥
2

2

≤ m2d
L −

(
m2
L −

L2

12b2

)d
.

Calculating the value of ML is quite involved and is done in the next subsection. However we will
first present the following result which gives a more tractable bound on bias.
Proposition C.1. Let L ≥ 2, b2 ≥ L2/12, and let f1, . . . , fd be elements of LipL. Then∥∥∥∥∥

d∏
i=1

fi − ProjH1
d,b

d∏
i=1

fi

∥∥∥∥∥
2

2

≤ dL
d+3
2

12b2

[√
8

3

]d−1

.

If 0 ≤ L ≤ 2 instead of L ≥ 2, then∥∥∥∥∥
d∏
i=1

fi − ProjH1
d,b

d∏
i=1

fi

∥∥∥∥∥
2

2

≤ d L2

12b2
exp

(
(d− 1)L2

12

)
.

Proof of Proposition C.1. For the L ≥ 2 case, applying Theorem C.1 and Proposition C.3 gives us∥∥∥∥∥
d∏
i=1

fi − ProjH1
d,b

d∏
i=1

fi

∥∥∥∥∥
2

2

≤

[
2
√

2L

3

]d
−

[
2
√

2L

3
− L2

12b2

]d
.

We will use the identity an − bn = (a− b)
∑n−1
i=0 a

ibn−1−i with a = 2
√

2L
3 and b = 2

√
2L

3 − L2

12b2 .
Note that a > b > 0. From ad − bd = (a− b)

∑d−1
i=0 a

ibd−1−i we have

ad − bd = (a− b)
d−1∑
i=0

aibd−1−i < (a− b)
d−1∑
i=0

aiad−1−i = d(a− b)ad−1

and thus [
2
√

2L

3

]d
−

[
2
√

2L

3
− L2

12b2

]d
≤ d L2

12b2

[
2
√

2L

3

]d−1

=
dL

d+3
2

12b2

[√
8

3

]d−1

.

The other case proceeds analogously. If L = 0 the proposition statement is trivial, so we can assume
L > 0 and thus a > b > 0 as before. Now we can finish with∥∥∥∥∥

d∏
i=1

fi − ProjH1
d,b

d∏
i=1

fi

∥∥∥∥∥
2

2

≤
[
L2

12
+ 1

]d
−
[
L2

12
+ 1− L2

12b2

]d

≤ d L2

12b2

[
L2

12
+ 1

]d−1

≤ d L2

12b2
exp

(
(d− 1)L2

12

)
.

We find that the rate of the convergence of this bias term doesn’t depend on the Lipschitz constants nor
dimension and always has order O

(
b−2
)
. Applying a square root and applying Hölder’s Inequality

as we did in (7) we find that the L1 bias convergence rate is O(b−1), regardless of dimension.
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C.1.1 Maximizing the L2 norm of a Lipschitz density

In this section, we compute the value of mL, the largest possible L2 norm of an L-Lipschitz density
function on [0, 1]. We will show that if L ≤ 2, m2

L = L2/12 + 1, and if L ≥ 2, m2
L = 2

√
2L/3 (i.e.

Proposition 2.2). This will follow directly from the more general Proposition C.3 below.

We will need several lemmas, starting with a discretization of the problem.

For the following results we are going to use a notion of monotonic rearrangement. For a finite
sequence of real numbers (y1, . . . , yn) its rearrangement R(y) = ỹ = (ỹ1, . . . , ỹm) which is a
reordering of y so that it is increasing, it essentially sorts y to be ascending. Interestingly this concept
can also be applied to functions [8]. It is usually defined so that the function is decreasing for
the functional case. Interestingly if one monotonically rearranges a Lipschitz continuous function,
f : R+ → R for example, then its rearrangement will also be Lipschitz continuous with a Lipschitz
constant no larger than that for f (and potentially smaller). The following lemma says that the
discrete equivalent of the “Lipschitz constant” of a sequence is always higher than that of its
monotone reordering.
Lemma C.5. Let y = (y1, . . . , yn) be a sequence of real numbers, and let ỹ = (ỹ1, . . . , ỹn) be its
monotone reordering so that ỹ1 ≤ ỹ2 ≤ · · · ≤ ỹn. We have

max
i≤n−1

|yi+1 − yi| ≥ max
i≤n−1

ỹi+1 − ỹi.

Proof of Lemma C.5. If y is constant or n = 1 then we are done, so we will assume y is nonconstant.
Let i∗ be such that ỹi∗+1 − ỹi∗ = maxi≤n−1 ỹi+1 − ỹi. Define the sets

A : = {i ∈ {1, 2, . . . , n} : yi ≤ ỹi∗}
B : = {i ∈ {1, 2, . . . , n} : yi ≥ ỹi∗+1}.

These sets partition [n] so A tB = {1, 2, . . . , n} and A and B are non empty. Thus there must exist
j ∈ [n] such that j ∈ A and j + 1 ∈ B or vice versa. For the first case we have that

yj+1 − yj ≥ ỹi∗+1 − ỹi∗ = max
i≤n−1

ỹi+1 − ỹi

and for the vice versa case we have

|yj+1 − yj | = yj − yj+1 ≥ ỹi∗+1 − ỹi∗ = max
i≤n−1

ỹi+1 − ỹi.

So we have demonstrated that there exits a j such that |yj+1 − yj | ≥ maxi≤n−1 ỹi+1 − ỹi.

We are now in a position to prove the following discrete version of Proposition C.3 below.
Proposition C.2. Let n ∈ N≥2, U > 0, L > 0, and let Sn denote the set of sequences y =
(y1, . . . , yn) such that the following conditions are satisfied:

yi ≥ 0 (∀i) (14)
|yi+1 − yi| ≤ L (∀1 ≤ i ≤ n− 1) (15)

n∑
i=1

yi = U. (16)

A sequence y∗ = (y1, . . . , yn) ∈ Sn, which maximizes the quantity
∑n
i=1 y

2
i subject to the conditions

above is given by the following formulae.

If L ≤ 2U
n(n−1) , for all i,

y∗i = (i− 1)L+ [U/n− (n− 1)L/2] . (17)

If L ≥ 2U
n(n−1) , for all i,

y∗i = ((i− n+m)L+ U/m− L(m+ 1)/2)+ , (18)

where x+ denotes the positive part of x and m is the smallest integer such that m(m+ 1)L ≥ 2U .
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Proof of Proposition C.2. First note that Sn is compact since the intersection of the closed sets
denoted by (14) and (16) is compact and the set denoted by (15) is closed and thus further intersecting
with that set gives us compact set. Because y 7→

∑n
i=1 y

2
i = ‖y‖22 is continuous it must therefore

attain a maximum on Sn. Let ζ̃ ∈ Sn be some sequence which attains the maximum. Define the
sequence ζ as a monotone increasing (non-decreasing) rearrangement of ζ̃. By Lemma C.5, we have

ζ ∈ Sn and clearly ‖ζ‖22 =
∥∥∥ζ̃∥∥∥2

2
so ζ is also a maximizer.

Consider the following class of sequences.

L-sequences: A sequence x = (x1, . . . , xn) is an L-sequence if

1. x ∈ Sn.
2. x is non-decreasing.
3. For all i < n, xi = 0 or xi+1 − xi = L.

We are first going to show that y∗ is the only element in this class.

Consider some arbitrary L-sequence y be and let k = min(i : yi 6= 0). We have yi − yk = L(i− k)
for all i ≥ k and therefore

U =

n∑
i=1

yi

=

n∑
i=k

yk + L

n∑
i=k+1

(i− k) (19)

⇒ U = (n− k + 1)yk +
L(n− k)(n− k + 1)

2
. (20)

One can check that (20) holds when k = n, even though the summation in (19) is ill-posed. We will
now split into two cases, corresponding to (17) and (18), to show that there is only one L-sequence
for fixed U,L, n and that this sequence is given by y∗.

Case 1: Ln(n−1)
2 < U .

If Ln(n−1)
2 < U then (20) cannot hold unless k = 1 because if k ≥ 2 then yk ≤ L (since yk−1 = 0)

and

U = (n− k + 1)yk +
L(n− k)(n− k + 1)

2

≤ (n− 1)L+
L(n− 2)(n− 1)

2

=
Ln(n− 1)

2
< U,

a contradiction.

Solving for yk in (20) with k = 1 we get

yk = y1 =
U

n
− L(n− 1)

2
,

so k and yk are both unique, thus Sn contains only one element. We see that this coincides with the
expression for y∗ in (17) by noting that the derived y1 is equal to y∗1 . The situation where L = 2U

n(n−1)

in (17) will be addressed at the end of Case 2.

Case 2: Ln(n−1)
2 ≥ U .

For this case we need k ≥ 2 since yk > 0 and letting k = 1 in (20) yields

U = (n− k + 1)yk +
L(n− k)(n− k + 1)

2

>
Ln(n− 1)

2
≥ U

17



a contradiction. This implies yk−1 = 0, so yk ≤ L. Define m , n− k + 1. From (20) we have

U = (n− k + 1)yk +
L(n− k)(n− k + 1)

2

= myk +
L(m− 1)m

2
(21)

= m

(
yk +

L(m− 1)

2

)
.

Since yk > 0 we have U ≥ Lm(m−1)
2 . Additionally since yk ≤ L,

U ≤ m
(
L+

L(m− 1)

2

)
=
Lm(m+ 1)

2
.

It now follows that m must be the smallest integer such that Lm(m+1)
2 ≥ U .

Solving for yk in (21) we have

yk =
U

m
− L(m− 1)

2
,

so both k and yk are unique so there is only one element in Sn. Further note that

yk =
U

m
− L(m− 1)

2

=
U

m
− L(m+ 1)

2
+ L.

From the definition of Sn it follows that

yi = (L(i− k) + yk)+

=

(
L(i− n+m− 1) +

U

m
− L(m+ 1)

2
+ L

)
+

=

(
L(i− n+m) +

U

m
− L(m+ 1)

2

)
+

which coincides with y∗ from (18).

To finish this case we will show that when Ln(n−1)
2 = U then (17) equals (18). To see this first note

that Ln(n−1)
2 = U implies m = n− 1. Therefore (18) equals

y∗i =

(
(i− n+m)L+

U

m
− L(m+ 1)

2

)
+

=

(
(i− 1)L+

U

n− 1
− Ln

2

)
+

=

(
(i− 1)L+

Ln

2
− Ln

2

)
+

= (i− 1)L

and accordingly (17) equals

y∗i = (i− 1)L+

[
U

n
− (n− 1)L

2

]
= (i− 1)L+

[
(n− 1)L

2
− (n− 1)L

2

]
= (i− 1)L.
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This finishes Case 2.

We now have that y∗ satisfies property 1 of L-sequences (in particular (16) was nontrivial) as well as
properties 2 and 3. This concludes the proof that y∗ is the only L-sequence.

Now we are going to show that ζ is also a an L-sequence which will complete this proof, since y∗ is
the only L-sequence. For sake of contradiction assume that ζ is not an L-sequence. From this there
must exist i∗ ∈ {1, 2, . . . , n− 1} such that ζi∗+1− ζi∗ < L and ζi∗ 6= 0. We then define a sequence
t by:

ti =


ζi if i 6= i∗, i∗ + 1

ζi∗ −δ if i = i∗
ζi∗+1 +δ if i = i∗ + 1,

where δ = min
(
L−ζi∗+1 + ζi∗

2 , ζi∗

)
. Note that 0 < δ ≤ L/2, a fact which we will be using

extensively.

We will now show that t ∈ Sn.

t satisfies (14): Note that by construction, since δ ≤ ζi∗ and ti∗ ≥ 0 (and clearly, ti ≥ 0 for
i 6= i∗).

t satisfies (15): The sequences t and ζ differ on only two indices so (15) holds trivially for any pair
of indices not involving i∗ or i∗ + 1. We will address the remaining cases:

Case 1 |ti∗+1 − ti∗ |: We now have that
ti∗+1 − ti∗ = ζi∗+1− ζi∗ +2δ

≤ ζi∗+1− ζi∗ +L− ζi∗+1 + ζi∗
=L.

Since ζ is monotonic and δ > 0 we further have that ζi∗+1− ζi∗ +2δ > 0 thereby finishing this case.

Case 2 |ti∗+2 − ti∗+1|: We have that
ti∗+2 − ti∗+1 = ζi∗+2− ζi∗+1−δ

≥− δ
≥− L/2

and
ti∗+2 − ti∗+1 =

(
ζi∗+2− ζi∗+1

)
− δ ≤ L

thereby completing this case.

Case 3: |ti∗ − ti∗−1|: This is virtually identical to the previous case so we omit it.

Thus, we have that t satisfies condition (15).

t satisfies (16): finally, it is clear that ti∗ + ti∗+1 = ζi∗ + ζi∗+1 and thus
∑
i ti =

∑
i ζi = U .

Hence, t satisfies (16) and we have proved the claim that t ∈ Sn.

Now, writing θ for ζi∗+1 + ζi∗
2 and ∆ for ζi∗+1− ζi∗

2 :
n∑
i=1

(t2i − ζ
2
i ) = t2i∗+1 + t2i∗ − ζ

2
i∗+1− ζ

2
i∗

= (ζi∗+1 +δ)2 + (ζi∗ −δ)
2 − ζ2

i∗+1− ζ
2
i∗

= (θ+∆ + δ)2 + (θ−∆− δ)2 − (θ+∆)2 − (θ−∆)2

= 2 θ2 +2(∆ + δ)2 − [2 θ2 +2∆2] = 4∆δ + 2δ2 ≥ 2δ2 > 0,

where at the last line, we have used the fact that since by construction, since ζ 6= y∗, we have δ > 0.
This shows that:

n∑
i=1

t2i >

n∑
i=1

ζ2
i ,

a contradiction. Hence we conclude that ζ must equal y∗.
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We can now proceed with the statement and proof of the continuous case.

Proposition C.3. Let L,U > 0 be given and let S be the set of functions f : [0, 1]→ R+ such that
the following conditions are satisfied:

1. f is Lipschitz continuous with Lipschitz constant L.
2.
∫ 1

0
f(x)dx = U .

Let fU,L∗ be defined as follows

fU,L∗ (x) =

(
x− 1

2

)
L+ U if L ≤ 2U (22)

fU,L∗ (x) = L

(
x− 1 +

√
2U

L

)
+

if L > 2U. (23)

Then fU,L∗ ∈ arg maxf∈S
∫ 1

0
f2(x)dx and

max
f∈S

∫ 1

0

f2(x)dx = M(U,L) ,
W 3L2

12
+
U2

W
,

where W = 1 if L ≤ 2U and W =
√

2U
L if L > 2U . Equivalently, M = L2

12 + U2 if L ≤ 2U and

M = 2
√

2
3

√
LU3/2 if L ≥ 2U .

Remark (Proposition C.3 applied to probability densities). The highly general formation of Proposi-
tion C.3 is useful for its proof. However in density estimation only the case where f∗ is a pdf and
U = 1 is particularly meaningful. This gives

f∗(x) =

(
x− 1

2

)
L ‖f∗‖22 =

L2

12
+ 1 if L ≤ 2

f∗(x) = L

(
x− 1 +

√
2

L

)
+

‖f∗‖22 =
2
√

2

3

√
L if L > 2.

Proof of Proposition C.3. We first introduce some notation. For n ∈ N and U ′, L′ ≥ 0 we will
denote by Gn (U ′, L′) the nonnegative sequence (y1, y2, . . . , yn) maximizing

∑n
i=1 y

2
i subject to∑n

i=1 yi
1
n = U ′ and |yi+1 − yi| ≤ L′

n (i.e. Gn (U ′, L′) = y∗ from Proposition C.2 with U ←
U ′n and L ← L′

n ). We similarly write Mn (U ′, L′) for the optimal value, i.e., Mn (U ′, L′) =∑n
i=1(Gn (U ′, L′)i)

2 1
n . For ease of notation we set Gn , Gn (U ′, L′), Mn , Mn (U ′, L′), and

f∗ = fU
′,L′

∗ . Later we will set U ′ ← U and L′ ← L to prove the proposition statement, but it will
be useful to establish some results for general U ′ and L′. We use the prime symbol to help avoid
confusion between proving the final proposition statement and proving supporting results. Unless
otherwise specified, all limits are taken as n→∞.

Let G̃n be the piecewise linear function from [0, 1] to R+ with G̃n(i/n) = Gni for i ∈ [n] and
G̃n(0) = Gn1 .

Lemma C.6. The following limits hold,∫ 1

0

G̃n(x)dx→ U ′∫ 1

0

G̃n(x)2dx−Mn → 0.

Proof of Lemma C.6. Note that the function G̃n is L′-Lipschitz. The Lipschitz continuity also implies
the following bounds on the difference between the Riemann sums below and their corresponding
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integrals: ∣∣∣∣∫ 1

0

G̃n(x)dx− U ′
∣∣∣∣ =

∣∣∣∣∣
∫ 1

0

G̃n(x)dx−
n∑
i=1

Gni
1

n

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∣
∫ i/n

(i−1)/n

G̃n(x)dx− Gni
1

n

∣∣∣∣∣
=

n∑
i=1

∣∣∣∣∣
∫ i/n

(i−1)/n

G̃n(x)− Gni dx

∣∣∣∣∣
≤

n∑
i=1

∫ i/n

(i−1)/n

∣∣∣G̃n(x)− Gni
∣∣∣ dx

≤
n∑
i=1

∫ i/n

(i−1)/n

L′

n
dx

= n
L′

n2
→ 0,

and also ∣∣∣∣∫ 1

0

G̃n(x)2dx−Mn

∣∣∣∣ =

∣∣∣∣∣
∫ 1

0

G̃n(x)2dx−
n∑
i=1

(Gni )2 1

n

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

[∫ i/n

(i−1)/n

G̃n(x)2 − (Gni )2dx

]∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

[∫ i/n

(i−1)/n

[
G̃n(x)− (Gni )

] [
G̃n(x) + (Gni )

]
dx

]∣∣∣∣∣
≤ n 1

n

L′

n
max
i

[2Gni ]

≤ L′

n
[2 (U ′ + L′)]→ 0,

where at the last line we have used the fact that Gni ≤ U ′ + L′ for all i. This is because
∑n
i=1 Gni =

U ′n implies there exists an i∗ such that Gni∗ ≤ U
′ and the Lipschitz condition further implies (for all

i):

Gni ≤ Gni∗ +
L′

n
|i− i∗| ≤ U ′ + L′. (24)

Lemma C.7. The sequence of functions G̃n → f∗ pointwise.

Proof of Lemma C.7. Given a continuous function f : [0, 1]→ R, that is also differentiable on (0, 1),
for all x ∈ [0, 1] the fundamental theorem of calculus implies∫ x

0

∂yf(y)dy = f(x)− f(0)

⇒f(x) =

∫ x

0

∂yf(y)dy + f(0)

⇒|f(x)| ≤
∫ x

0

|∂yf(y)| dy + |f(0)| ≤
∫ 1

0

|∂yf(y)| dy + |f(0)| .
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Suppose f was not differentiable, but was still continuous, at some c ∈ (0, x). We would still have

f(x) = f(x)− f(c) + f(c)

=

∫ x

c

∂yf(y)dy +

∫ c

0

∂yf(y)dy + f(0)

⇒ |f(x)| ≤
∫ 1

0

|∂yf(y)| dy + |f(0)| .

Both f∗ and G̃n are piecewise linear. They are therefore continuous and their derivatives exist on all
but a finite set of points, so for all x ≤ 1,

|f∗(x)− G̃n(x)| ≤
∣∣∣f∗(0)− G̃n(0)

∣∣∣+

∫ 1

0

|∂yf∗(y)− ∂yG̃n(y)|dy. (25)

We now go on with the proof of Lemma C.7 in two cases.

Case 1: L′ ≤ 2U ′

Note that if L′ ≤ 2U ′, then for all n ≥ 2 we have that L
′

n ≤
2U ′n
n(n−1) and thus Gn is defined by (17).

Then for any nwe have G̃n(i/n)−G̃n((i−1)/n) = L′/n for all i ≥ 2, and G̃n(1/n)−G̃n(0/n) = 0.
In particular, we have under these conditions that ∂xG̃n(x) = L′ for all x > 1/n and ∂xG̃n(x) = 0
for x < 1/n. Hence by (25) we have for all x ≤ 1,

|f∗(x)− G̃n(x)| ≤
∣∣∣f∗(0)− G̃n(0)

∣∣∣+

∫ 1

0

|∂yf∗(y)− ∂yG̃n(y)|dy

≤
∣∣∣∣U ′ − 1

2
L′ −

[
U ′ − n− 1

n

L′

2

]∣∣∣∣+

∫ 1/n

0

|∂yf∗(y)− ∂yG̃n(y)|dy

≤ L′

2n
+
L′

n
→ 0.

Case 2: L′ > 2U ′

SinceL′ > 2U ′, for sufficiently large nwe have that L
′

n > 2U ′n
n(n−1) and Gn is defined using (18). Since

we are interested the limit as n→∞ we will proceed using (18). As in the proof of Proposition C.2
we let k be the smallest natural number with Gnk > 0, noting also that k ≥ 2 (see Case 2 in that
proof).

For all i ≤ k − 1 we have G̃n(i/n) − G̃n((i − 1)/n) = 0 so ∂xG̃n(x) = 0 for all x < (k − 1)/n.
Similarly for all i ≥ k + 1 we have G̃n(i/n) − G̃n((i − 1)/n) = L′/n so ∂xG̃n(x) = L′ for all
x > (k + 1)/n. We also have that G̃n(0) = 0.

By definition (23) we have ∂xf∗(x) = 0 for all x <
[
1−

√
2U ′

L′

]
and ∂xf∗(x) = L′ for all

x > 1−
√

2U ′

L′ . We also have f∗(0) = 0.

Again from the proof of Proposition C.2 we know k = n−m+ 1, where m is the smallest integer
such that m(m + 1)L′/n ≥ 2U ′n. It follows that m(m + 1)/n2 → 2U ′/L′. Since m → ∞
and m2/n2 doesn’t diverge we have that m/n2 → 0 and thus m/n →

√
2U ′/L′. Substituting in

k = n−m+ 1 gives k/n→ 1−
√

2U ′/L′.

Let ε > 0. For sufficiently large n both (k + 1)/n and (k − 1)/n lie in[
1−

√
2U ′/L′ − ε, 1−

√
2U ′/L′ + ε

]
. Letting x ≤ 1, for large enough n the following holds by
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(25)

|f∗(x)− G̃n(x)| ≤
∣∣∣f∗(0)− G̃n(0)

∣∣∣+

∫ 1

0

|∂yf∗(y)− ∂yG̃n(y)|dy

=
∣∣∣f∗(0)− G̃n(0)

∣∣∣+

∫ 1−
√

2U ′/L′+ε

1−
√

2U ′/L′−ε
|∂yf∗(y)− ∂yG̃n(y)|dy

≤ 2ε

(
max
y
|∂yf∗(y)|+ |∂yG̃n(y)|

)
≤ 2ε (L′ + L′ + U ′) using (24).

Since this holds for all ε > 0, |f∗(x)− G̃n(x)| goes to zero, and we have pointwise convergence for
Case 2.

Lemma C.8. We have that Mn →
∫ 1

0
f∗(x)2dx.

Proof of Lemma C.8. From (24) we can bound maxx G̃n (x)
2 ≤ (U ′ + L′)

2. This bound, along with
the pointwise convergence of Lemma C.7, allows us to apply the dominated convergence theorem,
thus giving

∫ 1

0
G̃n(x)2dx→

∫ 1

0
f∗(x)2dx. Simply applying Lemma C.6 finishes our proof.

We can now proceed with the proof of the proposition. First we will calculate the integral
∫ 1

0
f∗(x)2dx,

thus establishing that M(U ′, L′) =
∫ 1

0
f∗(x)2dx. To avoid confusion and to be fully precise: M is

defined by the , symbol in the proposition statement; the left equality in that equation being proven.

We define W ′ from U ′ and L′ analogously to the way W is defined from U and L in the proposition
statement. Note that f∗ is linear on the interval [1−W ′, 1] and zero elsewhere. From Lemmas C.6
and C.7 and using the dominated convergence theorem as before we have that

∫ 1

0
f∗(x)dx = U ′.

Thus we can write

M (U ′, L′) =

∫ 1

0

[f∗(x)]2dx

=

∫ 1

1−W ′
[f∗(x)]2dx

=

∫ 1

1−W ′

[
f∗(x)− U ′

W ′
+
U ′

W ′

]2

dx

=

∫ 1

1−W ′

[
f∗(x)− U ′

W ′

]2

dx+

∫ 1

1−W ′

[
U ′

W ′

]2

dx+ 2

∫ 1

1−W ′

[
f∗(x)− U ′

W ′

] [
U ′

W ′

]
dx

=

∫ 1

1−W ′

[
f∗(x)− U ′

W ′

]2

dx+

∫ 1

1−W ′

[
U ′

W ′

]2

dx,

where at the last line we have used the fact that
∫ 1

1−W ′ f∗(x)− U ′

W ′ dx = 0.

Clearly
∫ 1

1−W ′ [
U ′

W ′ ]
2dx = U ′2

W ′ . Further, f∗|[1−W ′,1]− U ′

W ′ is linear with slopeL′ and f∗ (1−W ′/2)−
U ′

W ′ = 0, so f∗|[1−W ′,1](x) − U ′

W ′ is antisymmetric about x = 1 − W ′

2 . Using these facts we can
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continue, ∫ 1

0

[f∗(x)]2dx =

∫ 1

1−W ′
[f∗(x)]2dx

=
U ′2

W ′
+ 2

∫ 1

1−W ′2

[
f∗(x)− U ′

W ′

]2

dx

=
U ′2

W ′
+ 2

∫ 1

1−W ′2
L′2
(
x− 1 +

W ′

2

)2

dx

=
U ′2

W ′
+ 2L′2

∫ W ′
2

0

x2dx

=
U ′2

W ′
+ 2L′2

(W ′/2)3

3
=
W ′3L′2

12
+
U ′2

W ′
,

as expected.

We now fix U ′ ← U and L′ ← L. We have shown
∫ 1

0
f∗(x)dx = U which, along direct inspection

of the definition of f∗, establishes that f∗ satisfies the properties of S. Let g ∈ S be arbitrary. We
will show that

∫ 1

0
g(x)2dx ≤

∫ 1

0
f∗(x)2dx, which demonstrates that f∗ ∈ arg maxf∈S

∫ 1

0
f2(x)dx

and finishes our proof.

For all n ≥ 2, define the sequence gn = (gn1 , . . . , g
n
n) with gni = g( in ). From the Lipschitz continuity

of g we have as n→∞,
n∑
i=1

gni
1

n
→
∫ 1

0

g(x)dx = U, (26)

and
n∑
i=1

(gni )
2 1

n
→
∫ 1

0

g(x)2dx. (27)

Let ε > 0 be arbitrary. By (26) we can set N such that
∑n
i=1 g

n
i

1
n ≤ U + ε for all n ≥ N . Note that∣∣gni+i − gni ∣∣ ≤ L/n and gni ≥ 0 for all i. Let Qn , 1

n (nε+ nU −
∑n
i=1 g

n
i ). For n ≥ N we have

that Qn ≥ 0 and the following hold,
gni +Qn ≥ 0 for all i∣∣(gni +Qn)−

(
gni+1 +Qn

)∣∣ ≤ L/n for all i

1

n

(
n∑
i=1

gni +Qn

)
= U + ε.

It follows that ∫ 1

0

g(x)2dx = lim
n→∞

n∑
i=1

(gni )2 1

n

≤ lim sup
n→∞

n∑
i=1

(gni +Qn)
2 1

n

≤ lim
n→∞

Mn (U + ε, L)

= M (U + ε, L) . Lemma C.8

Since M (·, L) is continuous and ε was arbitrary we have that
∫ 1

0
g(x)2dx ≤M (U,L).

C.1.2 Lower bound for Lipschitz densities in L1.

Lemma C.9. Let f : [a, b]→ R be the function f(x) = Lx+ c for some a, b, c, L ∈ R with a < b.
Then

min
α∈R

∫ b

a

|α− f(x)| dx =
L (b− a)

2

4
, (28)
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and

arg min
α∈R

∫ b

a

|α− f(x)| dx = L
a+ b

2
+ c =

1

b− a

∫ b

a

f(x)dx. (29)

Proof of Lemma C.9. When L = 0 the result follows from just setting α = c. We will assume that
L 6= 0.

Suppose that α > max(f(a), f(b)), then we have∫ b

a

|α− f(x)| dx =

∫ b

a

α− f(x)dx

=

∫ b

a

α−max (f(a), f(b)) + max(f(a), f(b))− f(x)dx

=

∫ b

a

|α−max(f(a), f(b))|+ |max(f(a), f(b))− f(x)| dx

>

∫ b

a

|max(f(a), f(b))− f(x)| dx.

Therefore α > max(f(a), f(b)) cannot be the minimizer since we can simply let α =
max(f(a), f(b)) and we have a better minimizer. So we have that α ≤ max(f(a), f(b))
and a similar argument gives us that α ≥ min(f(a), f(b)). Now we have that α ∈[
minx∈[a,b] f(x),maxx∈[a,b] f(x)

]
. From this and the continuity of f there exists r ∈ [a, b] such

that f(r) = α, specifically α = Lr + c. We now assume that L > 0 as the other case (L < 0) is
analogous.

Continuing with this r we get∫ b

a

|α− f(x)| dx =

∫ b

a

|Lr + c− (Lx+ c)| dx

=

∫ b

a

L |r − x| dx

= L

∫ r

a

(r − x)dx+ L

∫ b

r

(x− r)dx

= L(r − a)2/2 + L(b− r)2/2

= L(r − a)2/2 + L(r − b)2/2

=
L(δ −A)2

2
+
L(δ +A)2

2
letting δ := r − a+ b

2
and A :=

a− b
2

= L
(
A2 + δ2

)
=
L (b− a)

2

4
+ Lδ2.

Upon noting that the last line is minimized for δ = 0 we arrive at (28) and the first equality in (29).
The second equality in (29) follows from noting∫ b

a

f(x)dx =

[
1

2
Lx2 + cx

]x=b

x=a

=
1

2
L
(
b2 − a2

)
+ c(b− a) =

(
L
a+ b

2
+ c

)
(b− a).

The following lemma addresses the point in the main text “[w]e show in the appendix that this decays
at a rate of O

(
b−1
)

and that this rate is tight.” We use it later to show a lower bound for the rate of
convergence of the standard histogram.
Lemma C.10. Let b ∈ N and fL : [0, 1]→ R be a collection of pdfs indexed by L ∈ [0,∞) via

fL(x) =

{
1 +

(
x− 1

2

)
L L ≤ 2(

xL− L+
√

2L
)

+
L ≥ 2.

We have that
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(a) If L ≤ 2 then ming∈H1,b
‖fL − g‖1 = L

4b .

(b) If L ≥ 2 and b is a multiple of
√
L/2, we have ming∈H1,b

‖fL − g‖1 =
√

2L
4b .

Proof of Lemma C.10. We will begin by optimizing over span (H1,b) and will then show that the
optimum lies inH1,b. To begin

min
g∈span(H1,b)

‖fL − g‖1 = min
w

∫ 1

0

∣∣∣∣∣fL(x)−
b∑
i=1

wib1 ((i− 1)/b ≤ x < i/b)

∣∣∣∣∣ dx (30)

= min
w̃

b∑
i=1

∫ i/b

(i−1)/b

|fL(x)− w̃i| dx.

For case (b) there is a breakpoint at x satisfying xL− L+
√

2L = 0 ⇐⇒ x = 1−
√

2
L . Since b is

a multiple of
√
L/2, there exists an integer z such that

b = z
√
L/2

⇐⇒ z/b =
√

2/L

⇐⇒ (b− z)/b = 1−
√

2/L (31)

and we have for both cases (a) and (b) that fL is linear on the bins [(i− 1)/b,< i/b).

Applying Lemma C.9 we have the following for (a),

min
w̃

b∑
i=1

∫ i/b

(i−1)/b

|fL(x)− w̃i| dx =

b∑
i=1

L (i/b− (i− 1)/b)
2

4
=
L

4b
.

For (b) we split the summation between the breakpoint

min
w̃

b∑
i=1

∫ i/b

(i−1)/b

|fL(x)− w̃i| dx

= min
w̃

∑
i∈[b]: ib≤1−

√
2
L

∫ i/b

(i−1)/b

|fL(x)− w̃i| dx+
∑

i∈[b]: ib>1−
√

2
L

∫ i/b

(i−1)/b

|fL(x)− w̃i| dx

=
∑

i∈[b]: ib≤1−
√

2
L

0 +
∑

i∈[b]: ib>1−
√

2
L

L

4b2

=

∣∣∣∣∣
{
i ∈ [b] :

i

b
> 1−

√
2

L

}∣∣∣∣∣ L4b2 . (32)

From (31) and because 1−
√

2/L ≥ 0 it follows that b
(

1−
√

2
L

)
is a nonnegative integer so∣∣∣∣∣

{
i ∈ [b] :

i

b
> 1−

√
2

L

}∣∣∣∣∣ = b−

∣∣∣∣∣
{
i ∈ [b] :

i

b
≤ 1−

√
2

L

}∣∣∣∣∣
= b−

∣∣∣∣∣
{
i ∈ [b] : i ≤ b

(
1−

√
2

L

)}∣∣∣∣∣
= b−

(
b

(
1−

√
2

L

))

= b

√
2

L
.

Now (32) is equal to

b

√
2

L

L

4b2
=

√
2L

4b
.
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We will show that the argument for the minimum w (with bw = w̃) from (30) lies in ∆b to finish the
proof. From the second equality in (29) we clearly get that w̃i ≥ 0 for all i. Again using the second
equality in (29) we have

b∑
i=1

wi =
1

b

b∑
i=1

w̃i =
1

b

b∑
i=1

1

i/b− (i− 1)/b

∫ i/b

(i−1)/b

fL(x)dx

=

b∑
i=1

∫ i/b

(i−1)/b

fL(x)dx

=

∫ 1

0

fL(x)dx = 1.

C.2 Finite Sample Rate: Multi-view

This section contains the finite-sample bounds from Section 2.2.2 in the main text. The results here
are a bit stronger than those from the main text at the cost of being a bit less concise. In the main
text we weakened the results by assuming that Lipschitz constants were greater than or equal to 2.
The next section contains corresponding results for Tucker models. First we will prove the following
finite-sample bound.
Proposition C.4 (Proposition 2.1 in main text). Let d, b, k, n ∈ N and 0 < δ ≤ 1. There exists an
estimator Vn ∈ Hkd,b such that for all densities p ∈ Dd the following holds with probability at least
1− δ

‖p− Vn‖1 ≤ min
q∈Hkd,b

3‖p− q‖1 + 7

√
2bdk log(4bdkn)

n
+ 7

√
log( 3

δ )

2n
(33)

where Vn is a function of X1, . . . , Xn
iid∼ p.

Proof of Proposition C.4. We begin by showing that (33), and therefore the proposition, holds if
n = 1, and d, b, k ≥ 1. Bounding the second term in the next summation with b, d, k ≥ 1 and n = 1
yields the following inequality

3 min
q∈Hkd,b

‖p− q‖1 + 7

√
2bdk log(4bdkn)

n
+ 7

√
log( 3

δ )

2n
≥ 7

√
2bdk log(4bdkn)

n

≥ 7
√

2 log(4)

≥ 7.

The triangle inequality gives us ‖p− Vn‖1 ≤ 2 ≤ 7. Therefore Proposition C.5 holds for n = 1. We
will now proceed assuming that n ≥ 2.

Let 1 ≥ ε > 0 be arbitrary. By Corollary A.1 there exists p1, . . . , pM ∈ Hkd,b such that M ≤(
4bd
ε

)bdk ( 4k
ε

)k
and for all q ∈ Hkd,b there exists i ≤M with ‖pi − q‖1 ≤ ε. Applying Lemma A.6

with the same ε gives a deterministic algorithm Vn that, given at least log(3M2/δ)
2ε2 samples from a

density p, outputs an index j ∈ [M ] where, with probability at least 1− δ, the following holds

‖pj − p‖1 ≤3 min
i∈[M ]

‖pi − p‖1 + 4ε

≤3 min
q∈Hkd,b

min
i∈[M ]

(‖pi − q‖1 + ‖q − p‖1) + 4ε

= min
q∈Hkd,b

3

(
min
i∈[M ]

‖pi − q‖1

)
+ 3 ‖q − p‖1 + 4ε

≤7ε+ 3 min
q∈Hkd,b

‖p− q‖1
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(we are loosing δ/3 from Lemma A.6 to δ for convenience).

Note that
log(3M2/δ)

2ε2
=

log(M)

ε2
+

log (3/δ)

2ε2
. (34)

We will now bound log(M) which, because ε is positive and log is strictly increasing, will give us an
upper bound on the previous term. The following follows from the fact that b, d and k are all greater
than or equal to 1 and 1 ≥ ε > 0,

M ≤
(

4bd

ε

)bdk (
4k

ε

)k
≤
(

4bdk

ε

)bdk (
4bdk

ε

)bdk
=

(
4bdk

ε

)2bdk

.

Applying this to (34) we have

log(3M2/δ)

2ε2
≤

2bdk log( 4bdk
ε )

ε2
+

log( 3
δ )

2ε2
. (35)

The rest of the proof will be primarily concerned with choosing ε ∈ (0, 1] so that the RHS of (35) is
less than or equal to n so the hypotheses of Lemma A.6 are satisfied. We begin by eliminating some
settings where selecting Vn trivial; we will then apply Lemma A.6 for the remaining settings.

Observe that if n < 4bdk log(4bdkn), then

7

√
2bdk log(4bdkn)

n
> 2,

and inequality (33) holds trivially. Similarly, if n < log
(

3
δ

)
, then

7

√
log( 3

δ )

2n
≥ 7√

2
> 2,

and again inequality (33) holds trivially.

Thus, we can proceed with the setting

n ≥ 2 max

(
2bdk log(4bdkn),

log( 3
δ )

2

)
≥ 2bdk log(4bdkn) +

log( 3
δ )

2
. (36)

Defining the function ρ(ε) :=
2bdk log( 4bdk

ε )

ε2 +
log( 3

δ )

2ε2 , inequality (36) implies that

ρ(1) =
2bdk log( 4bdk

1 )

1
+

log( 3
δ )

2
≤ n. (37)

Furthermore,

lim
x→0

ρ(x) =∞. (38)

Together with the mean value theorem, (37) and (38) imply that we can now pick 1 ≥ ε > 0 such that

ρ(ε) =
2bdk log( 4bdk

ε )

ε2
+

log( 3
δ )

2ε2
= n. (39)

We can now apply the estimator from Lemma A.6 to select the estimator Vn. As we have shown
before the estimator in Lemma A.6 outputs a density inHkd,b such that

‖Vn − p‖1 ≤ 7ε+ 3 min
q∈Hkd,b

‖p− q‖1. (40)
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By (39), we have

ε =

√
2bdk log( 4bdk

ε )

n
+

log( 3
δ )

2n
≥
√

1

2n
≥ 1

n
,

since 0 < δ, ε ≤ 1 and n ≥ 2. Using this in (39), we obtain

ε =

√
2bdk log( 4bdk

ε )

n
+

log( 3
δ )

2n

≤

√
2bdk log(4bdkn)

n
+

log( 3
δ )

2n

≤
√

2bdk log(4bdkn)

n
+

√
log( 3

δ )

2n
.

The result follows upon plugging this back into inequality (40).

Now we can prove the key result from the paper.

Proposition C.5 (Theorem 2.6 in main text). Let L ≥ 2, 0 < δ ≤ 1 and k, n ∈ N. Then there exists
b and an estimator Vn ∈ Hkd,b such that for any density p ,

∑k
i=1 wi

∏d
j=1 pi,j where pi,j ∈ LipL

and w is in the probability simplex, the following holds with probability at least 1− δ,

‖Vn − p‖1 ≤
21dk1/3L

d+3
12

n
1
3

√
log(3Ldkn) + 7

√
log( 3

δ )

2n
(41)

where Vn is a function of X1, . . . , Xn
iid∼ p.

This also holds with “L ≤ 2” replacing “L ≥ 2” and the following inequality replacing (41)

‖Vn − p‖1 ≤
√
d
k1/3

n1/3

[
L1/3 exp

(
L2(d− 1)

24

)
+ 20

√
log(7dnk)

]
+ 7

√
log( 3

δ )

2n
. (42)

Proof of Proposition C.5. We begin with the L ≥ 2 case and the other case will follow with some
minor adjustments. From Hölder’s Inequality followed by Proposition C.1, if b2 ≥ L2/12 and L ≥ 2,
then for any collection f1, . . . , fd in LipL we have that∥∥∥∥∥∥

d∏
j=1

fj − ProjH1
d,b

d∏
j=1

fj

∥∥∥∥∥∥
2

1

≤

∥∥∥∥∥∥
d∏
j=1

fj − ProjH1
d,b

d∏
j=1

fj

∥∥∥∥∥∥
2

2

≤ dL
d+3
2

12b2

[√
8

3

]d−1

≤ dL
d+3
2

9b2
.

Taking the square root, we have∥∥∥∥∥∥
d∏
j=1

fj − ProjH1
d,b

d∏
j=1

fj

∥∥∥∥∥∥
1

≤
√
dL

d+3
4

3b
.

Consider some density p like that from the theorem statement

p =

k∑
i=1

wi

d∏
j=1

pi,j .
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Since
∑k
i=1 wi

∏d
j=1 ProjH1,b

pi,j is an element ofHkd,b, using Corollary C.1 gives us

min
q∈Hkd,b

‖p− q‖1 ≤

∥∥∥∥∥∥
k∑
i=1

wi

d∏
j=1

pi,j −
k∑
i=1

wi

d∏
j=1

ProjH1,b
pi,j

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
k∑
i=1

wi

d∏
j=1

pi,j −
k∑
i=1

wi ProjH1
d,b

d∏
j=1

pi,j

∥∥∥∥∥∥
1

≤
k∑
i=1

wi

∥∥∥∥∥∥
d∏
j=1

pi,j − ProjH1
d,b

d∏
j=1

pi,j

∥∥∥∥∥∥
1

≤
k∑
i=1

wi

√
dL

d+3
4

3b
=

√
dL

d+3
4

3b
.

Invoking the estimator Vn from Proposition C.4 and using the previous bound it follows that, for any
choice of k and b such that b2 ≥ L2/12, there exists an estimator Vn ∈ Hkd,b where for all densities p
from our theorem statement, with probability at least 1− δ, the following holds

‖p− Vn‖1 ≤
√
dL

d+3
4

b
+ 7

√
2bdk log(4bdkn)

n
+ 7

√
log( 3

δ )

2n
. (43)

We now set b =
⌈
n

1
3L

d+3
6 k−1/3

⌉
. Note that if n < kL then (41) is trivially satisfied since L ≥ 2

and
21dk1/3L

d+3
12

n
1
3

≥ 21dk1/3L
1+3
12

n
1
3

≥ 21dk1/3L
1
3

n
1
3

≥ 21.

Thus we can proceed with the assumption that n ≥ kL for the L ≥ 2 case of this proof. Under this
assumption, noting again that L ≥ 2, we have the following bound on b,

b ≥ n 1
3L

d+3
6 k−1/3 ≥ L1/3L

1+3
6 = L,

which implies b2 ≥ L2

12 . So for the remainder of the L ≥ 2 case of this proof we will proceed with
the assumption b2 ≥ L2

12 and use the estimator from (43).

Since n ≥ kL ≥ k and L ≥ 2, we also have 1 ≤ n 1
3L

d+3
6 k−1/3 ≤ b ≤ 2n

1
3L

d+3
6 k−1/3. Thus

7

√
2bdk log (4bdkn)

n
≤ 7

√√√√4dk2/3n
1
3L

d+3
6 log

(
8L

d+3
6 dk2/3n4/3

)
n

= 14

√
dk1/3L

d+3
12

n1/3

√
log
(

8L
d+3
6 dk2/3n4/3

)
≤ 14

√
dk1/3L

d+3
12

n1/3

√
log (32dL2dd2dk2dn2d)

= 14

√
dk1/3L

d+3
12

n1/3

√
2d log (3Ldkn)

≤ 20
dk1/3L

d+3
12

n1/3

√
log (3Ldkn).

Using this with (43) and applying n
1
3L

d+3
6 k−1/3 ≤ b to the first summand in (43) we have

‖p− Vn‖1 ≤
√
dk1/3L

d+3
12

n
1
3

+
20dk1/3L

d+3
12

n
1
3

√
log(3Ldkn) + 7

√
log( 3

δ )

2n

≤ 21dk1/3L
d+3
12

n
1
3

√
log(3Ldkn) + 7

√
log( 3

δ )

2n
,
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as expected. This finishes the L ≥ 2 case.

For the L ≤ 2 case, we obtain (using Proposition C.1 and taking the square root along with some
simple manipulations) instead,

min
q∈Hkd,b

‖p− q‖1 ≤
√
d
L

3b
exp

(
L2(d− 1)

24

)
,

and instead of (43),

‖p− Vn‖1 ≤
√
d
L

b
exp

(
L2(d− 1)

24

)
+ 7

√
2bdk log(4bdkn)

n
+ 7

√
log( 3

δ )

2n
. (44)

Since L ≤ 2, we clearly have L2

12 < b2 so we can use Proposition C.1 without issue. Set b =⌈
n1/3k−1/3L2/3

⌉
(we can assume L > 0 and thus b ≥ 1 since the L = 0 case can be solved by

simply setting Vn to output the uniform distribution). If k > n then (42) is trivially satisfied so we
can proceed with the assumption that k ≤ n.

Since n ≥ k and n1/3k−1/3 ≥ 1 it follows that b ≥ n1/3k−1/3L2/3 and b ≤
⌈
n1/3k−1/322/3

⌉
≤⌈

n1/3k−1/32
⌉
≤ 3n1/3k−1/3. Letting C = 7

√
log( 3

δ )

2n we can bound (44) as follows

‖p− Vn‖1 ≤
√
d
L

b
exp

(
L2 (d− 1)

24

)
+ 7

√
2bdk log (4bdkn)

n
+ C

≤
√
d
L

b
exp

(
L2 (d− 1)

24

)
+ 7

√
2
(
3n1/3k−1/3

)
k

n

√
d log

(
4
(
3n1/3k−1/3

)
dkn

)
+ C

≤
√
d
L1/3k1/3

n1/3
exp

(
L2 (d− 1)

24

)
+

7k1/3

n1/3

√
6d log

(
12dn4/3k2/3

)
+ C

≤
√
d
L1/3k1/3

n1/3
exp

(
L2 (d− 1)

24

)
+

7k1/3

n1/3

√
6d log

(
74/3d4/3n4/3k4/3

)
+ C

≤
√
d
L1/3k1/3

n1/3
exp

(
L2 (d− 1)

24

)
+

7k1/3

n1/3

√
8d log (7dnk) + C

≤
√
d
L1/3k1/3

n1/3
exp

(
L2 (d− 1)

24

)
+

20k1/3
√
d

n1/3

√
log (7dnk) + C

=
√
d
k1/3

n1/3

[
L1/3 exp

(
L2(d− 1)

24

)
+ 20

√
log(7dnk)

]
+ 7

√
log( 3

δ )

2n
,

which finishes the proof for the L ≤ 2 case.

C.3 Finite Sample Rate: Tucker

Here we present results for the Tucker decomposition that are analogous to those in the last section.
The results here were omitted from the main text “[f]or brevity, and because the results are virtually
direct analogues of their multi-view histogram counterparts...” We begin again with a proof of a
finite-sample bound, which will then be used to prove a distribution-free bound.

Proposition C.6. Let d, b, k, n ∈ N and 0 < δ ≤ 1. There exists an estimator Vn ∈ H̃kd,b such that
for all densities p ∈ Dd, the following holds with probability at least 1− δ

‖p− Vn‖1 ≤ 3 min
q∈H̃kd,b

‖p− q‖1 + 7

√
2bdk log(4bdn)

n
+ 7

√
2kd log(4kdn)

n
+ 7

√
log( 3

δ )

2n
(45)

where Vn is a function of X1, . . . , Xn
iid∼ p.

Proof of Proposition C.6. This proof is very similar to the proof of Proposition C.4 and we will
provide fewer intermediate steps when they are virtually identical to those that proof.
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Similarly to the proof of Proposition C.4, we can assume n ≥ 2. Let 1 ≥ ε > 0 be arbitrary. By

Corollary A.2 there exists p1, . . . , pM ∈ H̃kd,b such that M ≤
(

4bd
ε

)bdk ( 4kd

ε

)kd
and for all q ∈ H̃kd,b

there exists i ≤M with ‖pi − q‖1 ≤ ε.
Now, by applying Lemma A.6 with the same ε, there exists a deterministic algorithm which, for all
densities p, can output an index j ∈ [M ] such that

‖pj − p‖1 ≤ 7ε+ 3 min
q∈H̃kd,b

‖p− q‖1,

with probability at least 1− δ given at least N samples from the distribution, where

N ≥ log(3M2/δ)

2ε2
=

log(M)

ε2
+

log (3/δ)

2ε2
.

Now we can bound

log(3M2/δ)

2ε2
≤

2bdk log( 4bd
ε )

ε2
+

2kd log( 4kd

ε )

ε2
+

log( 3
δ )

2ε2
.

Note that:

• If n ≤ 6bdk log(4bdn), then 7
√

2bdk log(4bdn)
n ≥ 7/

√
3 ≥ 2, making (45) trivial.

• If n ≤ 6kd log(4kdn) then 7
√

2kd log(4kdn)
n ≥ 7/

√
3 ≥ 2, also making (45) trivial.

• Similarly, if n ≤ 3 log(3
δ ), then 7

√
log( 3

δ )

2n ≥ 2, making (45) trivial yet again.

Thus we can assume that

n ≥ 3 max

(
2bdk log(4bdn), 2kd log(4kdn), log

(
3

δ

))
≥ 2bdk log(4bdn) + 2kd log(4kdn) + log

(
3

δ

)
. (46)

We now define ρ(ε) as

ρ(ε) :=
2bdk log( 4bd

ε )

ε2
+

2kd log( 4kd

ε )

ε2
+

log( 3
δ )

2ε2
. (47)

So (46) gives us ρ(1) ≤ n and, as before, limx→0 ρ(x) =∞. Together with the mean value theorem
it follows we can now pick 1 ≥ ε > 0 such that

ρ(ε) =
2bdk log( 4bd

ε )

ε2
+

2kd log( 4kd

ε )

ε2
+

log( 3
δ )

2ε2
= n. (48)

We can now apply the estimator from Lemma A.6 to select the estimator Vn. As we have shown
before the estimator in Lemma A.6 outputs a density inHkd,b such that

‖Vn − p‖1 ≤ 7ε+ 3 min
q∈H̃kd,b

‖p− q‖1. (49)

Now, note that by (48), we have

ε =

√
2bdk log( 4bd

ε )

n
+

2kd log( 4kd

ε )

n
+

log( 3
δ )

2n
≥
√

1

2n
≥ 1

n
,

since 0 < δ, ε ≤ 1 and n ≥ 2. Plugging this back into (48), we obtain

ε ≤

√
2bdk log(4bdn)

n
+

2dkd log(4kdn)

n
+

log( 3
δ )

2n

≤
√

2bdk log(4bdn)

n
+

√
2kd log(4kdn)

n
+

√
log( 3

δ )

2n
.

The result follows upon plugging this back into inequality (49).

32



Now we can prove our distribution-free bound.
Proposition C.7. Let L ≥ 2, 0 < δ ≤ 1 and k, n ∈ N. Then there exists b ∈ N and an estimator
Vn ∈ H̃kd,b such that for any density p ,

∑
S∈[k]dWS

∏d
i=1 pi,Si where pi,j ∈ LipL and W is a

probability tensor, the following holds with probability at least 1− δ,

‖p− Vn‖1 ≤
21dk1/3L

d+3
12

n
1
3

√
log(3Ldkn) + 7

√
2kd log(4kdn)

n
+ 7

√
log( 3

δ )

2n
(50)

where Vn is a function of X1, . . . , Xn
iid∼ p.

This also holds with “L ≤ 2” replacing “L ≥ 2” and the following inequality replacing (50)

‖p−Vn‖1 ≤
√
d
k1/3

n1/3

[
L1/3 exp

(
L2(d− 1)

24

)
+ 20

√
log(7dnk)

]
+7

√
2kd log(4kdn)

n
+7

√
log( 3

δ )

2n
.

Proof of Proposition C.7. This proof is very similar to the proof of Proposition C.5 and we will
provide fewer intermediate steps when they are virtually identical to those that proof. We begin with
the L ≥ 2 case. Consider some density p like that from the theorem statement

p =
∑
S∈[k]d

WS

d∏
i=1

pi,Si .

Since
∑
S∈[k]dWS

∏d
i=1 ProjH1,b

pi,Si is an element of H̃kd,b, using Corollary C.1, Hölder’s Inequal-
ity, and Proposition C.1 yields the following when b2 ≥ L2/12

min
q∈H̃kd,b

‖p− q‖1 ≤

∥∥∥∥∥∥
∑
S∈[k]d

WS

d∏
i=1

pi,Si −
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WS

d∏
i=1

ProjH1,b
pi,Si

∥∥∥∥∥∥
1

=
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∑
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WS
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pi,Si −
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WS ProjH1
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pi,Si
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1

≤
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∥∥∥∥∥
d∏
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pi,Si − ProjH1
d,b

d∏
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pi,Si
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1

≤
∑
S∈[k]d

WS

√
dL

d+3
4

3b
=

√
dL

d+3
4

3b
. (51)

Combining this with the estimator from Proposition C.6 we get that, for any b such that b2 ≥ L2/12,
we have

‖p− Vn‖1 ≤
√
dL

d+3
4

b
+ 7

√
2bdk log(4bdn)

n
+ 7

√
2kd log(4kdn)

n
+ 7

√
log( 3

δ )

2n
.

If n < kL, the RHS of (50) is greater than 2, which means that (50) holds trivially. Thus we assume
n ≥ kL. Since b doesn’t appear in the third summand in the previous inequality, and the first,
second, and fourth summand are exactly the same as those from (43) in the proof Proposition C.5,
we can set b =

⌈
n

1
3L

d+3
6 k−1/3

⌉
and proceed exactly as we did in that proof (again b2 ≥ L2/12 so

Proposition C.1 holds). We then obtain

‖p− Vn‖1 ≤
21dk1/3L

d+3
12

n
1
3

√
log(3Ldkn) + 7

√
2kd log(4kdn)

n
+ 7

√
log( 3
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,

as expected.

For the L ≤ 2 case, (51) becomes

min
q∈H̃kd,b

‖p− q‖1 ≤
√
d
L

3b
exp

(
L2(d− 1)

24

)
,
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from which we get

‖p− Vn‖1 ≤
√
d
L

b
exp

(
L2(d− 1)

24

)
+ 7

√
2bdk log(4bdn)

n
+ 7

√
2kd log(4kdn)

n
+ 7

√
log( 3

δ )

2n
.

Since b doesn’t appear in the third summand in the previous inequality, and the rest of the inequality is
exactly the same as in the proof of Proposition C.5, we can again let b =

⌈
n1/3k−1/3L2/3

⌉
, assume

n ≥ k and, proceed identically as we did in the proof of Proposition C.5. This yields

‖p−Vn‖1 ≤
√
d
k1/3

n1/3

[
L1/3 exp

(
L2(d− 1)

24

)
+ 20

√
log(7dnk)

]
+7

√
2kd log(4kdn)

n
+7

√
log( 3

δ )

2n
,

as expected.
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C.4 Lower Bound: Standard Histogram

Proof of Proposition 2.3. Let p ∈ Dd with p =
∏d
i=1 pi where p1 is the density from Lemma C.10

for L = 2, i.e. p1(x) = 2x, and pi(x) ≡ 1 for i > 1. Let (Y1, . . . , Yd) ∼ Vn and (X1, . . . , Xd) ∼ p.
Because total variation distance is never increased through mappings of the random variables (see
Theorem 5.2 in [3]) we have that ‖Vn − p‖1 ≥ ‖f − p1‖1 where f is the probability density
associated with Y1 . We will now show that f is an element ofH1,b. Let S ⊂ [0, 1] be an arbitrary
(Borel) measurable set and note that Vn has the form

∑
A∈[b]d ŵAhd,b,A. Then we have that

P (Y ∈ S) =

∫
S

fdλ

=

∫
S×[0,1]×···×[0,1]

Vndλ

=

∫
S×[0,1]×···×[0,1]

∑
A∈[b]d

ŵAhd,b,Adλ

=
∑
A∈[b]d

ŵA

∫
S×[0,1]×···×[0,1]

hd,b,Adλ

=
∑
A∈[b]d

ŵA

∫
S×[0,1]×···×[0,1]

d∏
i=1

h1,b,Aidλ

=
∑
A∈[b]d

ŵA

(∫
S

h1,b,A1
dλ

)(∫
[0,1]

h1,b,A2
dλ

)
· · ·

(∫
[0,1]

h1,b,Addλ

)

=
∑
A∈[b]d

ŵA

∫
S

h1,b,A1dλ

=

∫
S

∑
A∈[b]d

ŵAh1,b,A1dλ.

note that
∑
A∈[b]d ŵAh1,b,A1

is a histogram and thus the density associated with f is a histogram.
Using this fact with the earlier mentioned inequality we have that

‖Vn − p‖1 ≥ ‖f − p1‖1
≥ min
h∈H1,b

‖h− p1‖1 .

From Lemma C.10 it then follows that

‖Vn − p‖1 ≥
1

2b
.

Let D > 0 be arbitrary. From our assumption that n/bd →∞ it follows that, for sufficiently large n,
that n/bd ≥ (2D)d and furthermore

n/bd ≥ (2D)d ⇐⇒ d
√
n/b ≥ 2D ⇐⇒ 1/(2b) ≥ D/ d

√
n⇒ ‖Vn − p‖1 ≥ D/

d
√
n

so ‖Vn − p‖1 ∈ ω(1/ d
√
n) by definition.
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D Experimental Setting

Consider the problem of finding some density estimator p̂ with minimal L2 distance to an unknown
density p (p is the various projections of MNIST and Diabetes from the main text). This is equivalent
to minimizing the squared L2 loss:∫

[0,1]d
(p(x)− p̂ (x))

2
dx

=

∫
[0,1]d

p̂ (x)
2
dx− 2

∫
[0,1]d

p(y)p̂(y)dy +

∫
[0,1]d

p(z)2dz. (52)

Because the right term in (52) does not depend on p̂ it can be ignored when finding optimal p̂. The left
term in (52) is known. The middle term in (52) can be estimated with the following approximation∫

[0,1]d
p(x)p̂(x)dx = EX∼p [p̂(X)] ≈ 1

n

n∑
i=1

p̂ (Xi)

where X = X1, . . . , Xn
iid∼ p. We can use this to find a good estimate Ĥ ∈ Rkd,b for p which

representsHkd,b or H̃kd,b:

arg min
Ĥ∈Rkd,b

∫
[0,1]d

(
Ĥ (x)− p̂ (x)

)2

dx = arg min
Ĥ∈Rkd,b

〈
Ĥ, Ĥ

〉
− 2

∫
[0,1]d

Ĥ(x)p(x)dx

≈ arg min
Ĥ∈Rkd,b

〈
Ĥ, Ĥ

〉
− 2

1

n

n∑
i=1

Ĥ(Xi). (53)

Recall that the standard histogram estimator is H = Hd,b (X ) =
1
n

∑n
i=1

∑
A∈[b]d hd,b,A1 (Xi ∈ Λd,b,A) and let Ĥ =

∑
A∈[b]d ŵAhd,b,A. We have the fol-

lowing 〈
Ĥ,H

〉
=

〈 ∑
A∈[b]d

ŵAhd,b,A,
1

n

n∑
i=1

∑
B∈[b]d

hd,b,B1 (Xi ∈ Λd,b,B)

〉

=
1

n

n∑
i=1

∑
A∈[b]d

ŵA1 (Xi ∈ ΛB) bd =
1

n

n∑
i=1

Ĥ(Xi).

As a consequence (53) is equal to

arg min
Ĥ∈Rkd,b

〈
Ĥ, Ĥ

〉
− 2

〈
H, Ĥ

〉
= arg min

Ĥ∈Rkd,b

〈
Ĥ, Ĥ

〉
− 2

〈
H, Ĥ

〉
+ 〈H,H〉

= arg min
Ĥ∈Rkd,b

∥∥∥H − Ĥ∥∥∥2

2
.

Using the Ud,b operator we can reformulate this into a tensor factorization problem

min
T̂∈Qkd,b

∥∥∥H − Ud,b(T̂ )
∥∥∥2

2
= min
T̂∈Qkd,b

bd
∥∥∥U−1

d,b (H)− T̂
∥∥∥2

2

where Qkd,b could be either T kd,b or T̃ kd,b. Because of this equivalence, to find estimates in Hkd,b or
H̃kd,b we can simply use nonnegative tensor decomposition algorithms, which minimize `2 loss, to
find NNTF histograms that approximate H .
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E Nonexistence of Infinite Tensor Decomposition

Let p : R2 → R be a probability density function. Consider the possibility of decomposing p as
follows

p(x, y) =

∞∑
i=1

wifi(x)gi(y) (54)

where, for all i, wi ≥ 0 and fi and gi are probability densities. We are going to show that this is not
always possible, which we will do by contradiction. Let λ be the Lebesgue measure (dimensionality
will be left implicit). We are going to use the following proposition which we will prove later.

Proposition E.1. There exists a set E ⊂ [0, 1] × [0, 1] such that λ(E) > 0 and for all non-null
measurable sets A,B ⊂ [0, 1] we have that λ(E ∩A×B) < λ(A×B).

Let E be a set satisfying the property in Proposition E.1. Let 1S be the indicator function a set S.
We will let p = 1E and assume that p has a decomposition as in (54).

We will assume that w1 > 0. Clearly we have that p − w1f1g1 is an almost everywhere (a.e.)
nonnegative function (all products of functions here are outer products). Let ε > 0 such that
A , f−1

1 ([ε,∞)) and B , g−1
1 ([ε,∞)) have positive measure. Such an ε must exist otherwise f1

and g1 are 0 a.e.. Now we have that ε2
1A1B ≤ f1g1. And thus p−w1ε

2
1A1B ≥ 0 a.e or equivalently

λ(E)−1
1E − w1ε

2
1A×B ≥ 0 a.e.. From our definition of E we know that λ(A × B \ E) =

λ(A×B)−λ(E ∩A×B) > 0 so λ(E)−1
1E −w1ε

2
1A×B is negative on a set of positive measure,

a contradiction.

We will now address the existence of the set E. The most direct statement of the existence of such an
E can be found in [9], the following is the exact statement from the text.

Theorem E.1 ([9] Theorem 2.1). There exist Borel measurable subsets E ⊂ [0, 1]
2 of positive

measure which are rectangle free, so that if A×B ⊆ E then area (A×B) = 0.

That paper builds the set E via a random construction and contains an image which showing
an example that approximates a randomly sampled E. Their construction seems to imply that the
condition “A×B ⊆ E” was intended to be interpreted measure theoretically, i.e. “area(A×B\E) =
0”; it is not particularly difficult to construct a measurable subset of [0, 1]× [0, 1] which contains all
but a null set of [0, 1]× [0, 1] and is “rectangle free” as described in the theorem statement (see [4]
and references therein). If the measure theoretic strengthening is true it would imply the existence
of the set E from Proposition E.1 above. Since we are not totally certain that this strengthening is
possible we include a proof of the existence of E above.

For a topological space (Ω, τ) equipped with a Borel measure µ, a set S ⊆ Ω is called essentially
dense if, for any nonempty open set I , µ(I ∩ S) > 0. For any measurable set in Rd we will equip it
with the standard subspace topology and measure induced by the standard Lebesgue measure. There
exists a measurable set D ⊂ R such that D and DC are essentially dense (see [5] 134J(a)). The
following is a simplification of Theorem 1 in [4] that we will use to construct E.

Theorem E.2 ([4] Theorem 1). For a measurable set of the form E = {(x, y) : x− y ∈ D} the
following two conditions are equivalent

1. D is essentially dense on R.
2. λ (E ∩A×B) > 0 for all A,B such that λ(A)λ(B) > 0.

From this we have that E , {(x, y) : x− y ∈ D} ∩ [0, 1]2 and EC =
{

(x, y) : x− y ∈ DC
}
∩

[0, 1]2 (we letE live in [0, 1]2) have that property that for non null setsA,B ⊂ [0, 1], λ(E∩A×B) >
0, λ(EC ∩ A × B) > 0. Note that λ(E ∩ A × B) + λ(EC ∩ A × B) = λ(A × B) and thus
λ(E ∩A×B) < λ(A×B) so we have constructed E.

We mention that the E we have constructed contains a non-null rectangle when rotated by 45
degrees. Thusly rotating p to give p̃ allows us to find f, g and w > 0 such that p̃ − wfg is a.e.
nonnegative. In [4] the authors discuss the existence of sets E where, for all non null A,B, we have
that λ(f(E) ∩ A × B) > 0, for all f in certain classes of transforms. These results hint towards
research directions of finding transforms so that our data is better approximated by nice NNTF model.
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