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Abstract

We consider the problem of minimizing a convex function that is evolving in time
according to unknown and possibly stochastic dynamics. Such problems abound in
the machine learning and signal processing literature, under the names of concept
drift and stochastic tracking. We provide novel non-asymptotic convergence guar-
antees for stochastic algorithms with iterate averaging, focusing on bounds valid
both in expectation and with high probability. Notably, we show that the tracking
efficiency of the proximal stochastic gradient method depends only logarithmically
on the initialization quality when equipped with a step-decay schedule.

1 Introduction

Stochastic optimization underpins much of machine learning theory and practice. Significant progress
has been made over the last two decades in the finite-time analysis of stochastic approximation
algorithms; see, e.g., [1, 2, 6, 7, 8, 23, 26, 31, 32]. The predominant assumption in this line of work
is that the distribution generating the data is fixed throughout the run of the process. There is no
shortage of problems, however, where this assumption is grossly violated for reasons beyond the
learner’s control. Indeed, data often shifts and evolves over time for reasons that may be independent
of the learning process.

Two examples are worth highlighting. The first is a classical problem in signal processing related to
stochastic tracking [21, 29], wherein the learning algorithm aims to track over time a moving target
driven by an unknown stochastic process. The second example is the concept drift phenomenon in
online learning [15, 30], wherein the true hypothesis may be changing over time, as in topic modeling
or spam classification. An important goal in online problems, and the one we adopt here, is to track
as closely as possible an unknown sequence of minimizers or minimal values. The tracking error
efficiency of stochastic algorithms in online settings is much less developed than sample complexity
guarantees for static problems.

We present finite-time efficiency estimates in expectation and with high probability for the tracking
error of the proximal stochastic gradient method under time drift. Our results concisely explain
the interplay between the learning rate, the noise variance in the gradient oracle, and the strength
of the time drift. The high-probability results merely assume that the gradient noise and time drift
have light tails. Moreover, none of the results require the objectives to have bounded domains.
While conventional wisdom and previous work recommend the use of constant step sizes under time
drift, we show in an important regime that a significantly better step size schedule is one that is
geometrically decaying to a “critical step size”.
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1.1 Related work

Our current work fits within the broader literature on stochastic tracking, online optimization with
controlled increments, and high-probability guarantees in stochastic optimization. We now survey
the most relevant literature in these areas.

Stochastic tracking. Stochastic gradient-type algorithms for stochastic tracking and filtering have
been the subject of extensive research in the past century. Most works have focused on the so-called
least mean-squares (LMS) algorithm and its variants, which can be viewed as a stochastic gradient
method on a least-squares loss-based objective. Other stochastic algorithms that have been studied
in these settings with a larger cost per iteration include recursive least-squares and the Kalman
filter [13]. Recent works have revisited these methods from a more modern viewpoint [5, 25, 34].
In particular, the paper [25] focuses on (accelerated) gradient methods for deterministic tracking
problems, while [34] analyzes a stochastic gradient method for online problems that is adaptive
to unknown parameters. The paper [5] analyzes the dynamic regret of stochastic algorithms for
time-varying problems, focusing both on lower and upper complexity bounds. Though the proof
techniques in our paper share many aspects with those available in the literature, the results we obtain
are distinct.

Online optimization with controlled increments. Online learning under concept drift was first
considered by [24] and further developed in several papers [3, 18]. In this literature, the data
distribution is typically fixed over time and the rate of variation is stated in terms of the probability of
disagreement of consecutive target functions, which is assumed to be upper bounded. Another line of
work assumes a time partitioning with an expert in each time interval, and the goal is to compete with
the expert in each segment. Closer to this work is [15, 17], where in the framework of online convex
optimization the bounds are stated in terms of maximum regret over any contiguous time interval; see
also [5, 9, 28]. In contrast to these works, in our framework we state our bounds in the same spirit as
in classical stochastic approximation, that is, in terms of distance to optimum and objective function
gap, and we present results holding both in expectation and with high probability.

High-probability guarantees in stochastic optimization. A large part of our work revolves around
high-probability guarantees in stochastic optimization. Classical references on the subject in static
settings and for minimizing regret in online optimization include [4, 16, 22, 27]. There exists a
variety of techniques for establishing high-probability guarantees based on Freedman’s inequality and
doubling tricks; see, e.g., [4, 16]. A more recent line of work [14] establishes a generalized Freedman
inequality that is custom-tailored for analyzing stochastic gradient-type methods and results in best
known high-probability guarantees. Our arguments closely follow the paradigm of [14] based on the
generalized Freedman inequality.

1.2 Outline

The outline of the paper is as follows. Section 2 formalizes the problem setting of time-dependent
stochastic optimization and records the relevant assumptions. Sections 3 and 4 summarize the main
results of the paper. Specifically, Section 3 focuses on efficiency estimates for tracking the minimizer,
while Section 4 focuses on efficiency estimates for tracking the minimal value. Proofs of the main
results appear in Section 5. Illustrative numerical results appear in Section 6, and additional proofs
appear in Appendix A.

2 Framework and assumptions

2.1 Stochastic optimization under time drift

Throughout Sections 2-4, we consider the sequence of stochastic optimization problems

min
x

ϕt(x) := ft(x) + rt(x) (1)

indexed by time t ∈ N. We make the standard standing assumption that (i) each function ft : Rd →
R is µ-strongly convex and C1-smooth with L-Lipschitz continuous gradient for some common
parameters µ,L > 0, and (ii) each regularizer rt : Rd → R∪{∞} is proper, closed and convex. The
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minimizer and minimal value of (1) will be denoted by x?t and ϕ?t , respectively. Throughout, ‖ · ‖
denotes the `2-norm on Rd induced by the dot product 〈·, ·〉.
As motivation, we describe two classical examples of (1) that are worth keeping in mind and that
guide our framework: stochastic tracking of a drifting target and online learning under a distributional
drift.

Example 2.1 (Stochastic tracking of a drifting target). The problem of stochastic tracking, related to
the filtering problem in signal processing, is to track a moving target x?t from observations

bt = ct(x
?
t ) + εt,

where ct(·) is a known measurement map and εt is a mean-zero noise vector. A typical time-dependent
problem formulation takes the form

min
x

E
εt
`t(bt − ct(x)) + rt(x),

where `t(·) derives from the distribution of εt and rt(·) encodes available side information about the
target x?t . Common choices for rt are the 1-norm and the squared 2-norm. The motion of the target
x?t is typically driven by a random walk or a diffusion [13, 29].

Example 2.2 (Online learning under distributional drift). The problem of online learning under a
distributional drift is to learn while the data distribution may change over time. More formally, one
problem formulation takes the form

min
x

E
w∼D(ut)

`(x,w) + r(x).

where D(ut) is a data distribution that depends on an unknown parameter sequence {ut}, which
itself may evolve stochastically. The evolution of ut is often assumed to be piecewise constant in t in
online learning [15, 30].

Algorithm 1 Online Proximal Stochastic Gradient PSG(x0, {ηt}, T )

Input: initial x0 and step size sequence {ηt}Tt=0 ⊂ (0,∞)
Step t = 0, . . . , T − 1:

Set gt = ∇̃ft(xt)
Set xt+1 = proxηtrt(xt − ηtgt)

Return xT

Online proximal stochastic gradient method. The main goal of a learning algorithm for prob-
lem (1) is to generate a sequence of points {xt} that minimize some natural performance metric. The
most prevalent performance metrics in the literature are the tracking error and the dynamic regret.
We will focus on two types of tracking error, ‖xt − x?t ‖2 and ϕt(xt)− ϕt(x?t ).

We make the standing assumption that at every time t, and at every query point x, the learner may
obtain an unbiased estimator ∇̃ft(x) of the true gradient∇ft(x) in order to proceed with a stochastic
gradient-like optimization algorithm. With this oracle access, the online proximal stochastic gradient
method—recorded as Algorithm 1 above—in each iteration t simply takes a stochastic gradient step
on ft at xt followed by a proximal operation on rt:

xt+1 := proxηtrt(xt − ηtgt) = arg min
u∈Rd

{
rt(u) + 1

2ηt
‖u− (xt − ηtgt)‖2

}
.

The goal of our work is to obtain efficiency estimates for this procedure that hold both in expectation
and with high probability.

Minimizer drift. The guarantees we obtain allow both the iterates xt and the minimizers x?t to
evolve stochastically. This is convenient for example when tracking a moving target x?t whose motion
may be governed by a stochastic process such as a random walk or a diffusion (see Example 2.1).
Throughout, we define the minimizer drift at time t to be the random variable

∆t := ‖x?t − x?t+1‖.
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Clearly, an efficiency estimate for Algorithm 1 must take into account the variation of the functions
ft in time t. Two of the most popular metrics for measuring such variations are the minimizer drift
∆t and the gradient variation supx ‖∇ft(x)−∇ft+1(x)‖. Given identical regularizers, a bound on
the gradient variation always implies a bound on the minimizer drift.

Lemma 2.3 (Gradient variation vs. minimizer drift). Suppose i, t ≥ 0 are such that the regularizers
ri and rt are identical. Then we have

µ‖x?i − x?t ‖ ≤ ‖∇fi(x?t )−∇ft(x?t )‖.

Proof. Let r denote the common regularizer: r = ri = rt. Then the first-order optimality condition

0 ∈ ∂ϕt(x?t ) = ∇ft(x?t ) + ∂r(x?t )

implies −∇ft(x?t ) ∈ ∂r(x?t ), so the vector v := ∇fi(x?t ) − ∇ft(x?t ) lies in ∂ϕi(x?t ). Hence the
µ-strong convexity of ϕi and the inclusion 0 ∈ ∂ϕi(x?i ) imply µ‖x?i − x?t ‖ ≤ ‖0− v‖.

2.2 Running assumption on the stochastic process

Setting the stage, given {xt} and {gt} as in Algorithm 1 we let

zt := ∇ft(xt)− gt
denote the gradient noise at time t and we impose the following assumption modeling stochasticity
in the online problem throughout Sections 3 and 4.

Assumption 2.4 (Stochastic framework). There exists a filtered probability space (Ω,F ,F,P) with
filtration F = (Ft)t≥0 such that F0 = {∅,Ω} and the following holds for all t ≥ 0:

(i) xt, x
?
t : Ω→ Rd are Ft-measurable,

(ii) zt : Ω→ Rd is Ft+1-measurable with E[zt | Ft] = 0.

The first item of Assumption 2.4 simply says that xt and x?t are fully determined by information up
to time t. The second item of Assumption 2.4 asserts that the gradient noise zt is fully determined
by information up to time t+ 1 and has zero mean conditioned on the information up to time t; for
example, this holds naturally in Example 2.2 if we take gt = ∇`(xt, wt) with wt ∼ D(ut) provided
the loss `(·, wt) is C1-smooth.

3 Tracking the minimizer with the last iterate

In this section, we present bounds on the tracking error ‖xt − x?t ‖2 that are valid both in expectation
and with high probability under light-tail assumptions. Further, we show that a geometrically decaying
learning rate schedule may be superior to a constant learning rate in terms of efficiency.

3.1 Bounds in expectation

We begin with bounding the expected value E‖xt − x?t ‖2. The starting point for our analysis is the
following standard one-step improvement guarantee.

Lemma 3.1 (One-step improvement). For all x ∈ Rd, the iterates {xt} produced by Algorithm 1
with ηt < 1/L satisfy the bound:

2ηt(ϕt(xt+1)− ϕt(x)) ≤ (1− µηt)‖xt − x‖2 − ‖xt+1 − x‖2 + 2ηt〈zt, xt − x〉+
η2t

1−Lηt ‖zt‖
2.

For simplicity, we state the main results under the assumption that the second moments E
[
∆2
t

]
and

E‖zt‖2 are uniformly bounded; more general guarantees that take into account weighted averages of
the moments and allow for time-dependent learning rates follow from Lemma 3.1 as well.
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Assumption 3.2 (Bounded second moments). There exist constants ∆, σ > 0 such that the following
holds for all t ≥ 0.

(i) (Drift) The minimizer drift ∆t satisfies E
[
∆2
t

]
≤ ∆2.

(ii) (Noise) The gradient noise zt satisfies E‖zt‖2 ≤ σ2.

The following theorem establishes an expected improvement guarantee for Algorithm 1, and serves
as the basis for much of what follows; see Section 5.1 for the precise statements and proofs of the
present section.

Theorem 3.3 (Expected distance). Suppose that Assumption 3.2 holds. Then the iterates produced
by Algorithm 1 with constant learning rate η ≤ 1/2L satisfy the bound:

E‖xt − x?t ‖2 . (1− µη)t‖x0 − x?0‖2︸ ︷︷ ︸
optimization

+
ησ2

µ︸︷︷︸
noise

+

(
∆

µη

)2

︸ ︷︷ ︸
drift

.

Interplay of optimization, noise, and drift. Theorem 3.3 states that when using a constant
learning rate, the error E‖xt − x?t ‖2 decays linearly in time t, until it reaches the “noise+drift” error
ησ2/µ + (∆/µη)2. Notice that the “noise+drift” error cannot be made arbitrarily small. This is
perfectly in line with intuition: a learning rate that is too small prevents the algorithm from catching
up with x?t . We note that the individual error terms due to the optimization and noise are classically
known to be tight for PSG; tightness of the drift term is proved in [25, Theorem 3.2].

With Theorem 3.3 in hand, we are led to define the following asymptotic tracking error of Algorithm 1
corresponding to E‖xt − x?t ‖2, together with the corresponding optimal step size:

E := min
η∈(0,1/2L]

{
ησ2

µ
+

(
∆

µη

)2
}

and η? := min

{
1

2L
,

(
2∆2

µσ2

)1/3
}
.

Plugging η? into the definition of E , we see that Algorithm 1 exhibits qualitatively different behaviors
in settings corresponding to high or low drift-to-noise ratio ∆/σ, explicitly given by

E �


σ2

µL +
(
L∆
µ

)2

if ∆
σ ≥

√
µ

16L3(
∆σ2

µ2

)2/3

otherwise.

Two regimes of variation are brought to light by the above computation: the high drift-to-noise regime
∆/σ ≥

√
µ/16L3, and the low drift-to-noise regime ∆/σ <

√
µ/16L3. The high drift-to-noise

regime is uninteresting from the viewpoint of stochastic optimization because the optimal learning
rate is as large as in the deterministic setting, η? = 1/2L. In contrast, the low drift-to-noise regime is
interesting because the optimal learning rate η? = (2∆2/µσ2)1/3 is smaller than 1/2L and exhibits
a nontrivial scaling with the problem parameters.

Learning rate vs. rate of variation. A central question is to find a learning rate schedule that
achieves a tracking error E‖xt − x?t ‖2 that is within a constant factor of E in the shortest possible
time. The answer is clear in the high drift-to-noise regime ∆/σ ≥

√
µ/16L3. Indeed, in this case,

Theorem 3.3 directly implies that Algorithm 1 with the constant learning rate η? = 1/2L will find a
point xt satisfying E‖xt−x?t ‖2 . E in time t . (L/µ) log(‖x0−x?0‖2/E). Notice that the efficiency
estimate is logarithmic in 1/E ; intuitively, the reason for the absence of a sublinear component is that
the error due to the drift ∆ dominates the error due to the variance σ2 in the stochastic gradient.

The low drift-to-noise regime ∆/σ <
√
µ/16L3 is more subtle. Namely, the simplest strategy is to

execute Algorithm 1 with the constant learning rate η? = (2∆2/µσ2)1/3. Then a direct application
of Theorem 3.3 yields the estimate E‖xt − x?t ‖2 . E in time t . (σ2/µ2E) log(‖x0 − x?0‖2/E).
This efficiency estimate can be significantly improved by gradually decaying the learning rate using a
“step-decay schedule”, wherein the algorithm is implemented in epochs with the new learning rate
chosen to be the midpoint between the current learning rate and η?. Such schedules are well known
to improve efficiency in the static setting, as was discovered in [11, 12], and can be used here. The
end result is the following theorem (see Theorem 5.5 for the precise statement).
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Theorem 3.4 (Time to track in expectation, informal). Suppose that Assumption 3.2 holds. Then
there is a learning rate schedule {ηt} such that Algorithm 1 produces a point xt satisfying

E‖xt − x?t ‖2 . E after time t .
L

µ
log

(‖x0 − x?0‖2
E

)
+

σ2

µ2E .

Remarkably, the efficiency estimate in Theorem 3.4 looks identical to the efficiency estimate in the
classical static setting [22], with E playing the role of the target accuracy ε. Theorems 3.3 and 3.4
provide useful baseline guarantees for the performance of Algorithm 1. Nonetheless, these guarantees
are all stated in terms of the expected tracking error E‖xt − x?t ‖2, and are therefore only meaningful
if the entire algorithm can be repeated from scratch multiple times. There is no shortage of situations
in which a learning algorithm is operating in real time and the time drift is irreversible; in such
settings, the algorithm may only be executed once. Such settings call for efficiency estimates that
hold with high probability, rather than only in expectation.

3.2 High-probability guarantees

We next present high-probability guarantees on the tracking error ‖xt − x?t ‖2. To this end, we make
the following standard light-tail assumptions on the minimizer drift and gradient noise [14, 22, 26].

Assumption 3.5 (Sub-Gaussian drift and noise). There exist constants ∆, σ > 0 such that the
following holds for all t ≥ 0.

(i) (Drift) The drift ∆2
t is sub-exponential conditioned on Ft with parameter ∆2:

E
[

exp(λ∆2
t ) | Ft

]
≤ exp(λ∆2) for all 0 ≤ λ ≤ ∆−2.

(ii) (Noise) The noise zt is norm sub-Gaussian conditioned on Ft with parameter σ/2:

P
{
‖zt‖ ≥ τ | Ft

}
≤ 2 exp(−2τ2/σ2) for all τ > 0.

Note that the first item of Assumption 3.5 is equivalent to asserting that the minimizer drift ∆t is
sub-Gaussian conditioned on Ft. Clearly Assumption 3.5 implies Assumption 3.2 with the same
constants ∆, σ. It is worthwhile to note some common settings in which Assumption 3.5 holds; the
claims in Remark 3.6 follow from standard results on sub-Gaussian random variables [19, 33].

Remark 3.6 (Common settings for Assumption 3.5). Fix constants ∆, σ > 0. If ∆t is bounded by
∆, then clearly ∆2

t is sub-exponential (conditioned on Ft) with parameter ∆2. Similarly, if ‖zt‖ is
bounded by σ, then zt is norm sub-Gaussian (conditioned on Ft) with parameter σ/2 (by Markov’s
inequality). Alternatively, if the increment x?t − x?t+1 is mean-zero sub-Gaussian conditioned on
Ft with parameter ∆/

√
d, then x?t − x?t+1 is mean-zero norm sub-Gaussian conditioned on Ft with

parameter 2
√

2 ·∆ and hence ∆2
t is sub-exponential conditioned on Ft with parameter c ·∆2 for

some absolute constant c > 0. Similarly, if zt is sub-Gaussian conditioned on Ft with parameter
σ/4
√

2d, then zt is norm sub-Gaussian conditioned on Ft with parameter σ/2.

The following theorem shows that if Assumption 3.5 holds, then the expected bound on ‖xt − x?t ‖2
derived in Theorem 3.3 holds with high probability.

Theorem 3.7 (High-probability distance tracking). Suppose that Assumption 3.5 holds and let {xt}
be the iterates produced by Algorithm 1 with constant learning rate η ≤ 1/2L. Then there is an
absolute constant c > 0 such that for any specified t ∈ N and δ ∈ (0, 1), the estimate

‖xt − x?t ‖2 ≤
(
1− µη

2

)t‖x0 − x?0‖2 + c

(
ησ2

µ
+

(
∆

µη

)2
)

log
(e
δ

)
(2)

holds with probability at least 1− δ.

The proof of Theorem 3.7 employs a technique used in [14]. The main idea is to build a careful
recursion for the moment generating function of ‖xt − x?t ‖2, leading to a one-sided sub-exponential
tail bound. As a consequence of Theorem 3.7, we can again implement a step-decay schedule in
the low drift-to-noise regime to obtain the following efficiency estimate with high probability; see
Section 5.2 for the formal statements and proofs.
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Theorem 3.8 (Time to track with high probability, informal). Suppose that Assumption 3.5 holds
and that we are in the low drift-to-noise regime ∆/σ <

√
µ/16L3. Then there is a learning rate

schedule {ηt} such that for any specified δ ∈ (0, 1), Algorithm 1 produces a point xt satisfying

‖xt − x?t ‖2 . E log
(e
δ

)
with probability at least 1−Kδ after time

t .
L

µ
log

(‖x0 − x?0‖2
E

)
+

σ2

µ2E , where K . log2

(
1

L
·
(
σ2µ

∆2

)1/3
)
.

4 Tracking the minimal value

The results outlined so far have focused on tracking the minimizer x?t . In this section, we present
results for tracking the minimal value ϕ?t . These two goals are fundamentally different. Generally
speaking, good bounds on the function gap along with strong convexity imply good bounds on
the distance to the minimizer; the reverse implication is false. To this end, we require a stronger
assumption on the variation of the functions ft in time t: rather than merely controlling the minimizer
drift ∆t, we will assume control on the gradient drift

Gi,t := sup
x
‖∇fi(x)−∇ft(x)‖.

Our strategy is to track the minimal value along a running average x̂t of the iterates xt produced
by Algorithm 1, as defined in Algorithm 2 below. The reason behind using this particular run-
ning average is brought to light in Section 5.3, where we apply a standard averaging technique
(Lemma A.1) to a one-step improvement along xt (Lemma 5.10) to obtain the desired progress along
x̂t (Proposition 5.11).

Algorithm 2 Averaged Online Proximal Stochastic Gradient PSG(x0, µ, {ηt}, T )

Input: initial x0 =: x̂0, strong convexity parameter µ, and step size sequence {ηt}Tt=0 ⊂ (0, 2µ−1)
Step t = 0, . . . , T − 1:

Set gt = ∇̃ft(xt)
Set xt+1 = proxηtrt(xt − ηtgt)
Set x̂t+1 =

(
1− µηt

2−µηt

)
x̂t + µηt

2−µηtxt+1

Return x̂T

4.1 Bounds in expectation

We begin with bounding the expected value E[ϕt(x̂t)−ϕ?t ]. Analogous to Assumption 3.2, we make
the following assumption regarding drift and noise.

Assumption 4.1 (Bounded second moments). The regularizers rt ≡ r are identical for all times t
and there exist constants ∆, σ > 0 such that the following properties hold for all 0 ≤ i < t:

(i) (Drift) The gradient drift Gi,t satisfies E
[
G2
i,t

]
≤ (µ∆|i− t|)2.

(ii) (Noise) The gradient noise zi satisfies E‖zi‖2 ≤ σ2 and E〈zi, x?t 〉 = 0.

These two assumptions are natural indeed. Taking into account Lemma 2.3, it is clear that Assump-
tion 4.1 implies the earlier Assumption 3.2 with the same constants ∆, σ. The assumption on the drift
intuitively asserts that gradient drift Gi,t can grow only linearly in time |i− t| (in expectation). In
particular, returning to Example 2.2, suppose that the distribution map D(·) is γ-Lipschitz continuous
in the Wasserstein-1 distance, the loss `(·, w) is C1 smooth for all w, and the gradient ∇`(x, ·) is
β-Lipschitz continuous for all x. Then the Kantorovich-Rubinstein duality theorem directly implies
E
[
G2
i,t

]
≤ (γβ)2E‖ui−ut‖2. Therefore, as long as the second moment E‖ui−ut‖2 scales quadrat-

ically in |i− t|, the desired drift assumption holds. The assumption on the noise requires a uniform
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bound on the second moment E‖zi‖2 and for the condition E〈zi, x?t 〉 = 0 to hold. The latter property
confers a weak form of uncorrelatedness between the gradient noise zi and the future minimizer x?t ,
and holds automatically if the gradient noise and the minimizers evolve independently of each other,
as would typically be the case for instance in Example 2.2.

The following theorem provides an expected improvement guarantee for Algorithm 2.

Theorem 4.2 (Expected function gap). Suppose that Assumption 4.1 holds, and let {x̂t} be the
iterates produced by Algorithm 2 with constant learning rate η ≤ 1/2L. Then the following bound
holds for all t ≥ 0:

E
[
ϕt(x̂t)− ϕ?t

]
.
(
1− µη

2

)t(
ϕ0(x0)− ϕ?0

)︸ ︷︷ ︸
optimization

+ ησ2︸︷︷︸
noise

+
∆2

µη2︸︷︷︸
drift

.

The “noise+drift” error term in Theorem 4.2 coincides with µ times the corresponding error term in
Theorem 3.3, as expected due to µ-strong convexity. With Theorem 4.2 in hand, we are led to define
the following asymptotic tracking error of Algorithm 2 corresponding to E[ϕt(x̂t)− ϕ?t ]:

G := µE = min
η∈(0,1/2L]

{
ησ2 +

∆2

µη2

}
.

The corresponding asymptotically optimal choice of η is again given by η?, and the dichotomy
governed by the drift-to-noise ratio ∆/σ remains:

G �


σ2

L + (L∆)2

µ if ∆
σ ≥

√
µ

16L3

µ
(

∆σ2

µ2

)2/3

otherwise.

In the high drift-to-noise regime ∆/σ ≥
√
µ/16L3, Theorem 4.2 directly implies that Algorithm 2

with the constant learning rate η? = 1/2L finds a point x̂t satisfying E[ϕt(x̂t) − ϕ?t ] . G in time
t . (L/µ) log((ϕ0(x0) − ϕ?0)/G). In the low drift-to-noise regime ∆/σ <

√
µ/16L3, another

direct application of Theorem 4.2 shows that Algorithm 2 with the constant learning rate η? =
(2∆2/µσ2)1/3 finds a point x̂t satisfying E[ϕt(x̂t)− ϕ?t ] . G in time t . (σ2/µG) log((ϕ0(x0)−
ϕ?0)/G). As before, this efficiency estimate can be significantly improved by implementing a step-
decay schedule. The end result is the following theorem; see Section 5.3 for the formal statements
and proofs.

Theorem 4.3 (Time to track in expectation, informal). Suppose that Assumption 4.1 holds. Then
there is a learning rate schedule {ηt} such that Algorithm 2 produces a point x̂t satisfying

E[ϕt(x̂t)− ϕ?t ] . G after time t .
L

µ
log

(
ϕ0(x0)− ϕ?0

G

)
+
σ2

µG .

4.2 High-probability guarantees

Our next result is an analogue of Theorem 4.2 that holds with high probability. Naturally, such a result
should rely on light-tail assumptions on the gradient drift Gi,t and the norm of the gradient noise
‖zi‖. We state the guarantee under the assumption that Gi,t and ‖zi‖ are conditionally sub-Gaussian
(Assumption 4.4). In particular, we require for the first time that the gradient noise zi is mean-zero
conditioned on the σ-algebra

Fi,t := σ(Fi, x?t )
for all 0 ≤ i < t; the property E[zi | Fi,t] = 0 would follow from independence of the gradient noise
zi and the future minimizer x?t and is reasonable in light of Examples 2.1 and 2.2.

Assumption 4.4 (Sub-Gaussian drift and noise). The regularizers rt ≡ r are identical for all times t
and there exist constants ∆, σ > 0 such that the following properties hold for all 0 ≤ i < t.

(i) (Drift) The square gradient drift G2
i,t is sub-exponential with parameter (µ∆|i− t|)2:

E
[

exp
(
λG2

i,t

)]
≤ exp

(
λ(µ∆|i− t|)2

)
for all 0 ≤ λ ≤ (µ∆|i− t|)−2.
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(ii) (Noise) The gradient noise zi is mean-zero norm sub-Gaussian conditioned on Fi,t with
parameter σ/2, i.e., E[zi | Fi,t] = 0 and

P
{
‖zi‖ ≥ τ | Fi,t

}
≤ 2 exp(−2τ2/σ2) for all τ ≥ 0.

Clearly the chain of implications holds:

Assumption 4.4 =⇒ Assumption 4.1 =⇒ Assumption 3.2.

Example 4.5 (Sub-Gaussian feature model). In the setting of logistic regression, sub-Gaussian
gradient noise naturally arises from sampling a sub-Gaussian feature model. Indeed, in this case
the objective takes the form f(x) = EA,b [

∑n
i=1 log(1 + exp〈ai, x〉)− 〈Ax, b〉] and drawing (A, b)

yields the sample gradient ∇̃f(x) = AT (S(Ax) − b), where A ∈ Rn×d has rows a1, ..., an ∈ Rd
and S denotes the sigmoid function. Being that S and b are bounded, it therefore follows that if the
rows of A are sub-Gaussian, then so is the gradient noise∇f(x)− ∇̃f(x).

The following theorem shows that if Assumption 4.4 holds, then the expected bound on ϕt(x̂t)− ϕ?t
derived in Theorem 4.2 holds with high probability.

Theorem 4.6 (Function gap with high probability). Suppose that Assumption 4.4 holds, and let {x̂t}
be the iterates produced by Algorithm 2 with constant learning rate η ≤ 1/2L. Then there is an
absolute constant c > 0 such that for any specified t ∈ N and δ ∈ (0, 1), the estimate

ϕt(x̂t)− ϕ?t ≤ c
((

1− µη
2

)t(
ϕ0(x0)− ϕ?0

)
+ ησ2 +

∆2

µη2

)
log
(e
δ

)
(3)

holds with probability at least 1− δ.

The proof of Theorem 4.6 is based on combining the generalized Freedman inequality of [14]
with careful control on the drift and noise in improvement guarantees for the proximal stochastic
gradient method. The key observation is that although we do not have simple recursive control on
the moment generating function of ϕt(x̂t) − ϕ?t (as we do with ‖xt − x?t ‖2), we can control the
tracking error ϕt(x̂t)− ϕ?t by leveraging control on the martingale

∑t−1
i=0〈zi, xi − x?t 〉ζt−1−i, where

ζ = 1−µη/(2−µη). This martingale is self-regulating in the sense that its total conditional variance
is bounded by the history of the process; the generalized Freedman inequality is precisely suited to
bound such martingales with high probability.

With Theorem 4.6 in hand, we may implement a step-decay schedule as before to obtain the following
efficiency estimate; see Section 5.4 for the formal statements and proofs.

Theorem 4.7 (Time to track with high probability, informal). Suppose that Assumption 4.4 holds
and that we are in the low drift-to-noise regime ∆/σ <

√
µ/16L3. Fix δ ∈ (0, 1). Then there is a

learning rate schedule {ηt} such that Algorithm 2 produces a point x̂t satisfying

ϕt(x̂t)− ϕ?t . G log
(e
δ

)
with probability at least 1−Kδ after time

t .
L

µ
log

(
ϕ0(x0)− ϕ?0

G

)
+
σ2

µG log
(

log
(e
δ

))
, where K . log2

(
1

L
·
(
σ2µ

∆2

)1/3
)
.
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5 Proofs of results in Sections 3 and 4

Roadmap. Throughout this section, we enforce the assumptions and notation of Section 2 and
let {xt} denote the iterates generated by Algorithm 1 with ηt < 1/L. Sections 5.1 and 5.2 handle
distance tracking under time drift: Section 5.1 derives the results of Section 3.1, while Section 5.2
derives the results of Section 3.2. Then Sections 5.3 and 5.4 handle function gap tracking under
time drift: Section 5.3 derives the results of Section 4.1, while Section 5.4 derives the results of
Section 4.2.

5.1 Tracking the minimizer: bounds in expectation

The proof of Theorem 3.3 follows a familiar pattern in stochastic optimization. We begin by recalling
Lemma 3.1, which gives a standard one-step improvement guarantee [22] for the proximal stochastic
gradient method on the fixed problem minϕt.

Lemma 5.1 (One-step improvement). The estimate

2ηt(ϕt(xt+1)− ϕt(x)) ≤ (1− µηt)‖xt − x‖2 − ‖xt+1 − x‖2 + 2ηt〈zt, xt − x〉+
η2t

1−Lηt ‖zt‖
2

holds for all points x ∈ Rd and for all indices t ≥ 0.

Proof. Since ft is L-smooth, we have

ϕt(xt+1) = ft(xt+1) + rt(xt+1)

≤ ft(xt) + 〈∇ft(xt), xt+1 − xt〉+ L
2 ‖xt+1 − xt‖2 + rt(xt+1)

= ft(xt) + rt(xt+1) + 〈gt, xt+1 − xt〉+ L
2 ‖xt+1 − xt‖2 + 〈zt, xt+1 − xt〉.

Next, given any δt > 0, Young’s inequality yields

〈zt, xt+1 − xt〉 ≤ δt
2 ‖zt‖2 + 1

2δt
‖xt+1 − xt‖2.

Therefore, given any x ∈ Rd, we have

ϕt(xt+1) ≤ ft(xt) + rt(xt+1) + 〈gt, xt+1 − xt〉+
δ−1
t +L

2 ‖xt+1 − xt‖2 + δt
2 ‖zt‖2

= ft(xt) + rt(xt+1) + 〈gt, xt+1 − xt〉+ 1
2ηt
‖xt+1 − xt‖2

+
δ−1
t +L−η−1

t

2 ‖xt+1 − xt‖2 + δt
2 ‖zt‖2

≤ ft(xt) + rt(x) + 〈gt, x− xt〉+ 1
2ηt
‖x− xt‖2 − 1

2ηt
‖x− xt+1‖2

+
δ−1
t +L−η−1

t

2 ‖xt+1 − xt‖2 + δt
2 ‖zt‖2,

where the last inequality holds because xt+1 = proxηtrt(xt − ηtgt) is the minimizer of the η−1
t -

strongly convex function rt + 〈gt, · − xt〉+ 1
2ηt
‖ · −xt‖2. Now we estimate

ft(xt) + rt(x) + 〈gt, x− xt〉 = ft(xt) + 〈∇ft(xt), x− xt〉+ rt(x) + 〈zt, xt − x〉
≤ ft(x)− µ

2 ‖x− xt‖2 + rt(x) + 〈zt, xt − x〉
= ϕt(x)− µ

2 ‖x− xt‖2 + 〈zt, xt − x〉
using the µ-strong convexity of ft. Thus,

ϕt(xt+1) ≤ ϕt(x)− µ
2 ‖x− xt‖2 + 〈zt, xt − x〉+ 1

2ηt
‖x− xt‖2 − 1

2ηt
‖x− xt+1‖2

+
δ−1
t +L−η−1

t

2 ‖xt+1 − xt‖2 + δt
2 ‖zt‖2.

Finally, taking δt = ηt/(1− Lηt) and rearranging (note that ϕt(xt+1) is finite) yields

2ηt(ϕt(xt+1)− ϕt(x)) ≤ (1− µηt)‖xt − x‖2 − ‖xt+1 − x‖2 + 2ηt〈zt, xt − x〉+
η2t

1−Lηt ‖zt‖
2,

as claimed.

It is critically important that the one-step improvement estimate in Lemma 5.1 holds with respect to
any reference point x. In particular, setting x = x?t yields the following lemma.
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Lemma 5.2 (Distance recursion). The estimate

‖xt+1 − x?t+1‖2 ≤ (1− µηt)‖xt − x?t ‖2 + 2ηt〈zt, xt − x?t 〉+
η2t

1−Lηt ‖zt‖
2 +

(
1 + 1

µηt

)
∆2
t

holds for all indices t ≥ 0.

Proof. Note that the µ-strong convexity of ϕt implies µ
2 ‖xt+1−x?t ‖2 ≤ ϕt(xt+1)−ϕ?t . Combining

this estimate with Lemma 5.1 under the identification x = x?t yields

(1 + µηt)‖xt+1 − x?t ‖2 ≤ (1− µηt)‖xt − x?t ‖2 + 2ηt〈zt, xt − x?t 〉+
η2t

1−Lηt ‖zt‖
2.

Next, an application of Young’s inequality reveals

‖xt+1 − x?t+1‖2 ≤ (1 + µηt)‖xt+1 − x?t ‖2 + (1 + (µηt)
−1)‖x?t − x?t+1‖2,

thereby completing the proof.

Applying Lemma 5.2 recursively furnishes a bound on ‖xt − x?t ‖2. When the step size is constant,
the next proposition follows immediately.

Proposition 5.3 (Last-iterate progress). Suppose ηt ≡ η. Then the following bound holds for all
t ≥ 0:

‖xt − x?t ‖2 ≤ (1− µη)t‖x0 − x?0‖2 + 2η

t−1∑
i=0

〈zi, xi − x?i 〉(1− µη)t−1−i

+ η2

1−Lη

t−1∑
i=0

‖zi‖2(1− µη)t−1−i +
(

1 + 1
µη

) t−1∑
i=0

∆2
i (1− µη)t−1−i.

By taking expectations in Proposition 5.3, we obtain the following precise version of Theorem 3.3.

Corollary 5.4 (Expected distance). Suppose that Assumption 3.2 holds. Then the iterates {xt}
generated by Algorithm 1 with constant learning rate η ≤ 1/2L satisfy the bound:

E‖xt − x?t ‖2 ≤ (1− µη)t‖x0 − x?0‖2 + 2

(
ησ2

µ
+

(
∆

µη

)2
)
.

With Corollary 5.4 in hand, we can now prove an expected efficiency estimate for the online proximal
stochastic gradient method using a step-decay schedule, wherein the algorithm is implemented in
epochs with the new learning rate chosen to be the midpoint between the current learning rate and η?.
The following is the formal statement of Theorem 3.4 (as previously noted, in the high drift-to-noise
regime ∆/σ ≥

√
µ/16L3, Theorem 3.4 holds trivially with the constant learning rate η? = 1/2L).

The argument is close in spirit to the justifications of the restart schemes in [11, 12].

Theorem 5.5 (Time to track in expectation). Suppose that Assumption 3.2 holds and that we are in
the low drift-to-noise regime ∆/σ <

√
µ/16L3. Set η? = (2∆2/µσ2)1/3 and E = (∆σ2/µ2)2/3.

Suppose moreover that we have available a positive upper bound on the initial square distance
D ≥ ‖x0 − x?0‖2. Consider running Algorithm 1 in k = 0, . . . ,K − 1 epochs, namely, set X0 = x0

and iterate the process

Xk+1 = PSG(Xk, ηk, Tk) for k = 0, . . . ,K − 1,

where the number of epochs is

K = 1 +

⌈
log2

(
1

L
·
(
σ2µ

∆2

)1/3
)⌉

and we set

η0 =
1

2L
, T0 =

⌈
2L

µ
log

(
µLD

σ2

)+
⌉

and ηk =
ηk−1 + η?

2
, Tk =

⌈
log(4)

µηk

⌉
∀k ≥ 1.
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Then the time horizon T = T0 + · · ·+ TK−1 satisfies

T .
L

µ
log

(
µLD

σ2

)+

+
σ2

µ2E ≤
L

µ
log

(
D

E

)+

+
σ2

µ2E ,

while the corresponding tracking error satisfies E‖XK − X?
K‖2 . E , where X?

K denotes the
minimizer of ϕT .

Proof. For each index k, let tk := T0 + · · · + Tk−1 (with t0 := 0), X?
k be the minimizer of the

corresponding function ϕtk , and

Ek :=
2

µ

(
ηkσ

2 +
∆2

µη2
?

)
.

Then taking into account ηk ≥ η?, Corollary 5.4 directly implies

E‖Xk+1 −X?
k+1‖2 ≤ (1− µηk)TkE‖Xk −X?

k‖2 +
2

µ

(
ηkσ

2 +
∆2

µη2
k

)
≤ e−µηkTkE‖Xk −X?

k‖2 + Ek.

We will verify by induction that the estimate E‖Xk+1 −X?
k+1‖2 ≤ 2Ek holds for all indices k. To

see the base case, observe

E‖X1 −X?
1‖2 ≤ e−µη0T0‖X0 −X?

0‖2 + E0 ≤ 2E0.

Assume next that the claim holds for index k − 1. We then conclude

E‖Xk+1 −X?
k+1‖2 ≤ e−µηkTkE‖Xk −X?

k‖2 + Ek

≤ 1

4
E‖Xk −X?

k‖2 + Ek ≤
Ek

2Ek−1
E‖Xk −X?

k‖2 + Ek ≤ 2Ek,

thereby completing the induction. Hence E‖XK −X?
K‖2 ≤ 2EK−1. Next, observe

EK−1 − 3
√

54

(
∆σ2

µ2

)2/3

=
2σ2

µ
(ηK−1 − η?) =

2σ2

µ
· η0 − η?

2K−1
≤
(

∆σ2

µ2

)2/3

,

so

E‖XK −X?
K‖2 ≤ 2(1 +

3
√

54)

(
∆σ2

µ2

)2/3

� E .
Finally, note

T .
L

µ
log

(
µLD

σ2

)+

+
1

µ

K−1∑
k=1

1

ηk

and
K−1∑
k=1

1

ηk
≤ 2L

K−1∑
k=1

2k ≤ 2L · 2K = 8L · 2K−2 ≤ 8

(
σ2µ

∆2

)1/3

=
8σ2

µ
·
(

∆σ2

µ2

)−2/3

� σ2

µE .

This completes the proof.

5.2 Tracking the minimizer: high-probability guarantees

The proof strategy of Theorem 3.7 follows a similar argument as in [14, Claim D.1], which recursively
controls the moment generating function of ‖xt−x?t ‖2. Namely, Lemma 5.2 in the regime ηt ≤ 1/2L
directly yields

‖xt+1 − x?t+1‖2 ≤ (1− µηt)‖xt − x?t ‖2 + 2ηt〈zt, ut〉‖xt − x?t ‖+ 2η2
t ‖zt‖2 + 2

µηt
∆2
t , (4)

where we set ut :=
xt−x?

t

‖xt−x?
t ‖

if xt is distinct from x?t and set it to zero otherwise. The right-hand side
has the form of a contraction factor, gradient noise, and drift. The goal is now to control the moment
generating function E

[
eλ‖xt−x?

t ‖
2]

through this recursion. The basic probabilistic tool for similar

12



settings under bounded noise assumptions was developed in [14]. The following proposition is a
slight generalization of [14, Claim D.1] to a light-tail setting.

Proposition 5.6 (Recursive control on MGF). Consider scalar stochastic processes (Vt), (Dt), and
(Xt) on a probability space with filtration (Ht), which are linked by the inequality

Vt+1 ≤ αtVt +Dt

√
Vt +Xt + κt

for some deterministic constants αt ∈ (−∞, 1] and κt ∈ R. Suppose the following properties hold.

• Vt is nonnegative andHt-measurable.

• Dt is mean-zero sub-Gaussian conditioned onHt with deterministic parameter σt:

E[exp(λDt) |Ht] ≤ exp(λ2σ2
t /2) for all λ ∈ R.

• Xt is nonnegative and sub-exponential conditioned onHt with deterministic parameter νt:

E[exp(λXt) |Ht] ≤ exp(λνt) for all 0 ≤ λ ≤ 1/νt.

Then the estimate

E[exp(λVt+1)] ≤ exp
(
λ(νt + κt)

)
E
[

exp

(
λ

(
1 + αt

2

)
Vt

)]
holds for any λ satisfying 0 ≤ λ ≤ min

{
1−αt

2σ2
t
, 1

2νt

}
.

Proof. For any index t and any scalar λ ≥ 0, the tower rule implies

E[exp(λVt+1)] ≤ E
[

exp
(
λ
(
αtVt +Dt

√
Vt +Xt + κt

))]
= exp(λκt)E

[
exp(λαtVt)E

[
exp

(
λDt

√
Vt
)

exp(λXt) |Ht
]]
.

Hölder’s inequality in turn yields

E
[

exp
(
λDt

√
Vt
)

exp(λXt) |Ht] ≤
√
E
[

exp
(
2λ
√
VtDt

)
|Ht] · E[exp(2λXt) |Ht]

≤
√

exp(2λ2Vtσ2
t ) exp(2λνt)

= exp(λ2σ2
t Vt) exp(λνt)

provided 0 ≤ λ ≤ 1
2νt
. Thus, if 0 ≤ λ ≤ min

{
1−αt

2σ2
t
, 1

2νt

}
, then the following estimate holds:

E[exp(λVt+1)] ≤ exp(λκt)E
[

exp(λαtVt) exp(λ2σ2
t Vt) exp(λνt)

]
= exp

(
λ(νt + κt)

)
E
[

exp(λ(αt + λσ2
t )Vt)

]
≤ exp

(
λ(νt + κt)

)
E
[

exp

(
λ

(
1 + αt

2

)
Vt

)]
.

The proof is complete.

We may now use Proposition 5.6 to derive the following precise version of Theorem 3.7.

Theorem 5.7 (High-probability distance tracking). Suppose that Assumption 3.5 holds and let {xt}
be the iterates produced by Algorithm 1 with constant learning rate η ≤ 1/2L. Then there exists an
absolute constant1 c > 0 such that for any specified t ∈ N and δ ∈ (0, 1), the estimate

‖xt − x?t ‖2 ≤
(
1− µη

2

)t‖x0 − x?0‖2 +

(
8η(cσ)2

µ
+ 4

(
∆

µη

)2
)

log
(e
δ

)
holds with probability at least 1− δ.

1Explicitly, one can take any c ≥ 1 such that ‖zt‖2 is sub-exponential conditioned on Ft with parameter
cσ2 and zt is mean-zero sub-Gaussian conditioned on Ft with parameter cσ for all t.
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Proof. Note first that under Assumption 3.5, there exists an absolute constant c ≥ 1 such that ‖zt‖2 is
sub-exponential conditioned on Ft with parameter cσ2 and zt is mean-zero sub-Gaussian conditioned
on Ft with parameter cσ for all t. Therefore 〈zt, ut〉 is mean-zero sub-Gaussian conditioned on Ft
with parameter cσ, while ∆2

t is sub-exponential conditioned on Ft with parameter ∆2 by assumption.
Thus, in light of inequality (4), we may apply Proposition 5.6 with Ht = Ft, Vt = ‖xt − x?t ‖2,
Dt = 2ηt〈zt, ut〉, Xt = 2η2

t ‖zt‖2 + 2∆2
t/µηt, αt = 1 − µηt, κt = 0, σt = 2ηtcσ, and νt =

2η2
t cσ

2 + 2∆2/µηt, yielding the estimate

E
[

exp
(
λ‖xt+1 − x?t+1‖2

)]
≤ exp

(
λ

(
2η2
t cσ

2 +
2∆2

µηt

))
E
[

exp
(
λ
(
1− µηt

2

)
‖xt − x?t ‖2

) ]
(5)

for all

0 ≤ λ ≤ min

{
µ

8ηt(cσ)2
,

1

4η2
t cσ

2 + 4∆2/µηt

}
.

Taking into account ηt ≡ η and iterating the recursion (5), we deduce

E
[

exp
(
λ‖xt − x?t ‖2

)]
≤ exp

(
λ
(
1− µη

2

)t‖x0 − x?0‖2 + λ

(
2η2cσ2 +

2∆2

µη

) t−1∑
i=0

(
1− µη

2

)i)

≤ exp

(
λ

((
1− µη

2

)t‖x0 − x?0‖2 +
4ηcσ2

µ
+ 4

(
∆

µη

)2
))

for all

0 ≤ λ ≤ min

{
µ

8η(cσ)2
,

1

4η2cσ2 + 4∆2/µη

}
.

Moreover, setting

ν :=
8η(cσ)2

µ
+ 4

(
∆

µη

)2

and taking into account c ≥ 1 and µη ≤ 1, we have

4ηcσ2

µ
+ 4

(
∆

µη

)2

≤ ν

and
1

ν
=

µ

8η(cσ)2 + 4∆2/µη2
≤ min

{
µ

8η(cσ)2
,

1

4η2cσ2 + 4∆2/µη

}
.

Hence

E
[

exp
(
λ
(
‖xt − x?t ‖2 −

(
1− µη

2

)t‖x0 − x?0‖2
)) ]

≤ exp(λν) for all 0 ≤ λ ≤ 1/ν.

Taking λ = 1/ν and applying Markov’s inequality completes the proof.

With Theorem 3.7 in hand, we can now prove a high-probability efficiency estimate for the online
proximal stochastic gradient method using a step-decay schedule. The following theorem is the
precise form of Theorem 3.8. The argument follows the same reasoning as in the proof of Theorem 5.5,
with Theorem 3.7 playing the role of Corollary 5.4 while using a union bound over the epochs. The
proof appears in the appendix (see Section A.1).

Theorem 5.8 (Time to track with high probability). Suppose that Assumption 3.5 holds and that
we are in the low drift-to-noise regime ∆/σ <

√
µ/16L3. Set η? = (2∆2/µσ2)1/3 and E =

(∆σ2/µ2)2/3. Suppose moreover that we have available an upper bound on the initial square
distance D ≥ ‖x0 − x?0‖2. Consider running Algorithm 1 in k = 0, . . . ,K − 1 epochs, namely, set
X0 = x0 and iterate the process

Xk+1 = PSG(Xk, ηk, Tk) for k = 0, . . . ,K − 1,

where the number of epochs is

K = 1 +

⌈
log2

(
1

L
·
(
σ2µ

∆2

)1/3
)⌉
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and we set

η0 =
1

2L
, T0 =

⌈
4L

µ
log

(
µLD

σ2

)+
⌉

and ηk =
ηk−1 + η?

2
, Tk =

⌈
2 log(4)

µηk

⌉
∀k ≥ 1.

Then the time horizon T = T0 + · · ·+ TK−1 satisfies

T .
L

µ
log

(
µLD

σ2

)+

+
σ2

µ2E ≤
L

µ
log

(
D

E

)+

+
σ2

µ2E ,

and for any specified δ ∈ (0, 1), the corresponding tracking error satisfies

‖XK −X?
K‖2 . E log

(e
δ

)
with probability at least 1−Kδ, where X?

K denotes the minimizer of ϕT .

5.3 Tracking the minimal value: bounds in expectation

We turn now to tracking the minimal value. Henceforth, we suppose ηt ≤ 1/2L and that the
regularizers rt ≡ r are identical for all times t. Setting the stage, fix a time horizon t. Then
Lemma 5.1 directly yields the following one-step improvement guarantee for all indices i:

2ηi(ϕi(xi+1)− ϕi(x?t )) ≤ (1− µηi)‖xi − x?t ‖2 − ‖xi+1 − x?t ‖2 + 2ηi〈zi, xi − x?t 〉+ 2η2
i ‖zi‖2.

Notice that this provides an estimate on the “wrong quantity” ϕi(xi+1)− ϕi(x?t ), whereas we would
like to obtain an estimate on the suboptimality gap ϕt(xi+1) − ϕt(x?t ). In words, we would like
to replace ϕi with ϕt, while the controlling the incurred error. Lemma 5.9 shows that the incurred
error can by controlled by the gradient drift Gi,t, while Lemma 5.10 deduces the desired one-step
improvement guarantee on ϕt.

Lemma 5.9 (Gradient drift vs. gap variation). For all indices i, t ∈ N and points x, y ∈ dom r, the
estimate holds: ∣∣[ϕi(y)− ϕi(x)]− [ϕt(y)− ϕt(x)]

∣∣ ≤ Gi,t‖y − x‖.
Proof. Taking into account rt ≡ r and using the fundamental theorem of calculus, we may write

[ϕi(y)− ϕi(x)]− [ϕt(y)− ϕt(x)] =

∫ 1

0

〈∇fi(x+ s(y − x))−∇ft(x+ s(y − x)), y − x〉 ds

≤ Gi,t‖y − x‖,
where the last inequality follows from Cauchy-Schwarz. Switching x and y completes the proof.

Lemma 5.10 (One-step improvement). For all indices i, t ∈ N, points x ∈ dom r, and arbitrary
α > 0, we have

2ηi(ϕt(xi+1)− ϕt(x)) ≤ (1− µηi)‖xi − x‖2 − (1− αηi)‖xi+1 − x‖2

+ 2ηi〈zi, xi − x〉+ 2η2
i ‖zi‖2 + ηi

αG
2
i,t.

Proof. This follows immediately from combining Lemmas 5.1 and 5.9 and Young’s inequality,
2Gi,t‖xi+1 − x‖ ≤ α−1G2

i,t + α‖xi+1 − x‖2.

Turning the estimate in Lemma 5.10 into an efficiency guarantee on the average iterate is essentially
standard and follows for example from the averaging techniques in [10, 11, 12, 20]. The resulting
progress along the average iterate is summarized in the following proposition, while the description
of the key averaging lemma is placed in the appendix (see Section A.2).

Proposition 5.11 (Progress along the average iterate). Let {x̂t} be the iterates produced by Algorithm
2 with constant step size η ≤ 1/2L; thus, setting ρ̂ := µη/(2 − µη), we have x̂0 = x0 and
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x̂t = (1− ρ̂) x̂t−1 + ρ̂xt for all t ≥ 1. Then the following bound holds for all t ≥ 0 and x ∈ dom r:

ϕt(x̂t)− ϕt(x) ≤ (1− ρ̂)t
(
ϕt(x0)− ϕt(x) + µ

4 ‖x0 − x‖2
)

+ ρ̂

t−1∑
i=0

〈zi, xi − x〉(1− ρ̂)t−1−i

+ ρ̂η

t−1∑
i=0

‖zi‖2(1− ρ̂)t−1−i + ρ̂
µ

t−1∑
i=0

G2
i,t(1− ρ̂)t−1−i.

Proof. Setting α = µ/2 in Lemma 5.10, we obtain the following recursion for all indices k ≥ 0 and
t ≥ 1 and points x ∈ dom r:

ρ(ϕk(xt)− ϕk(x)) ≤ (1− c1ρ)Vt−1 − (1 + c2ρ)Vt + ωt,

where ρ = 2η, c1 = µ/2, c2 = −µ/4, Vi = ‖xi−x‖2, and ωt = 2η〈zt−1, xt−1−x〉+2η2‖zt−1‖2 +
(2η/µ)G2

t−1,k. The result follows by applying the averaging Lemma A.1 with h = ϕt − ϕt(x).

Taking expectations in Proposition 5.11, we obtain the following precise version of Theorem 4.2.

Corollary 5.12 (Expected function gap). Suppose that Assumption 4.1 holds, let {x̂t} be the iterates
produced by Algorithm 2 with constant step size η ≤ 1/2L, and set ρ̂ := µη/(2 − µη). Then the
following bound holds for all t ≥ 0:

E
[
ϕt(x̂t)− ϕ?t

]
≤ (1− ρ̂)t · E

[
ϕt(x0)− ϕ?t + µ

4 ‖x0 − x?t ‖2
]

+ ησ2 +
8∆2

µη2
. (6)

Consequently, we have

E
[
ϕt(x̂t)− ϕ?t

]
. (1− ρ̂)t

(
ϕ0(x0)− ϕ?0

)
+ ησ2 +

∆2

µη2

for all t ≥ 0, and the following asymptotic error bound holds:

lim sup
t→∞

E
[
ϕt(x̂t)− ϕ?t

]
≤ ησ2 +

8∆2

µη2
.

Proof. The bound (6) follows by setting x = x?t in Proposition 5.11, taking expectations, and noting
t−1∑
i=0

E‖zi‖2(1− ρ̂)t−1−i ≤ σ2

ρ̂
and

t−1∑
i=0

E
[
G2
i,t

]
(1− ρ̂)t−1−i ≤ (µ∆)2(2− ρ̂)

ρ̂3

by Assumption 4.1. Next, applying Lemma 5.9 and Young’s inequality together with the µ-strong
convexity of ϕ0 and Lemma 2.3 yields

ϕt(x0)− ϕ?t + µ
4 ‖x0 − x?t ‖2 ≤ 3

(
ϕ0(x0)− ϕ?0

)
+ 2µ−1G2

0,t, (7)

and then taking expectations and invoking Assumption 4.1 gives

E
[
ϕt(x0)− ϕ?t + µ

4 ‖x0 − x?t ‖2
]
≤ 3
(
ϕ0(x0)− ϕ?0

)
+ 2µ∆2t2. (8)

Further, the inequality
e−µηt/2µt2 ≤ 16/µη2 ∀µ, η, t > 0 (9)

combines with inequality (8) to yield

(1− ρ̂)t · E
[
ϕt(x0)− ϕ?t + µ

4 ‖x0 − x?t ‖2
]
≤ 3(1− ρ̂)t

(
ϕ0(x0)− ϕ?0

)
+

32∆2

µη2

and the remaining assertions of the corollary follow.

We may now apply Corollary 5.12 to obtain the formal version of Theorem 4.3; the proof closely
follows that of Theorem 5.5 and is included in the appendix (see Section A.3).

Theorem 5.13 (Time to track in expectation). Suppose that Assumption 4.1 holds and that we are in
the low drift-to-noise regime ∆/σ <

√
µ/16L3. Set η? = (2∆2/µσ2)1/3 and G = µ(∆σ2/µ2)2/3.

Suppose moreover that we have available a positive upper bound on the initial gapD ≥ ϕ0(x0)−ϕ?0.

16



Consider running Algorithm 2 in k = 0, . . . ,K − 1 epochs, namely, set X0 = x0 and iterate the
process

Xk+1 = PSG(Xk, µ, ηk, Tk) for k = 0, . . . ,K − 1,

where the number of epochs is

K = 1 +

⌈
log2

(
1

L
·
(
σ2µ

∆2

)1/3
)⌉

and we set

η0 =
1

2L
, T0 =

⌈
4L

µ
log

(
LD

σ2

)+
⌉

and ηk =
ηk−1 + η?

2
, Tk =

⌈
2 log(12)

µηk

⌉
∀k ≥ 1.

Then the time horizon T = T0 + · · ·+ TK−1 satisfies

T .
L

µ
log

(
LD

σ2

)+

+
σ2

µG ≤
L

µ
log

(
D

G

)+

+
σ2

µG
and the corresponding tracking error satisfies E[ϕT (XK)− ϕ?T ] . G.

5.4 Tracking the minimal value: high-probability guarantees

In this section, we derive the high-probability analogues of the results in Section 5.3. In light of
Proposition 5.11, we seek upper bounds on the sums

t−1∑
i=0

〈zi, xi − x?t 〉(1− ρ̂)t−1−i,

t−1∑
i=0

‖zi‖2(1− ρ̂)t−1−i,

t−1∑
i=0

G2
i,t(1− ρ̂)t−1−i

that hold with high probability. The last two sums can easily be estimated under boundedness or
light-tail assumptions on ‖zi‖ and Gi,t. Controlling the first sum is more challenging because the
error ‖xi − x?t ‖ may in principle grow large. In order to control this term, we use a remarkable
generalization of Freedman’s inequality, recently proved in [14] for the purpose of analyzing the
stochastic gradient method on static nonsmooth problems (without a regularizer).

The main idea is as follows. Fix a horizon t, assume E[zi | Fi,t] = 0 for all 0 ≤ i < t (recall that
Fi,t := σ(Fi, x?t )), and define the martingale difference sequence

di := 〈zi, xi − x?t 〉(1− ρ̂)t−1−i

adapted to the filtration (Fi+1,t)
t−1
i=0 . Roughly speaking, under mild light-tail assumptions, the

total conditional variance of the corresponding martingale
∑t−1
i=0 di can be bounded above with

high probability by an affine transformation of itself, i.e., by an affine combination of the sequence
{di}t−1

i=0 . In this way, the martingale is self-regulating. This is the content of the following proposition.
The proof follows from Lemma 5.10 and algebraic manipulation and is placed in the appendix (see
Section A.4).

Proposition 5.14 (Self-regulation). The iterates {xt} produced by Algorithm 1 with rt ≡ r and
constant step size η ≤ 1/2L satisfy the following bound for all λ ∈ (0, µη]:

t−1∑
i=0

‖xi − x?t ‖2(1− λ)2(t−1−i) ≤
t−2∑
j=0

2η

t−1∑
i=j+1

(1− λ)t−2−i

 〈zj , xj − x?t 〉(1− λ)t−1−j

+ 1
λ (1− λ)t−1‖x0 − x?t ‖2 + 2η2

λ

t−2∑
j=0

‖zj‖2(1− λ)t−2−j

+ η
µλ

t−2∑
j=0

G2
j,t(1− λ)t−2−j .

In order to bound the self-regulating martingale
∑t−1
i=0 di, we use the following direct consequence of

the generalized Freedman inequality developed in [14].
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Theorem 5.15 (Consequence of generalized Freedman). Let (Di)
n
i=0 and (Vi)

n
i=0 be scalar stochastic

processes on a probability space with filtration (Hi)n+1
i=0 satisfying

E[exp(λDi) |Hi] ≤ exp(λ2Vi/2) for all λ ≥ 0.

Suppose thatDi isHi+1-measurable with E|Di| <∞ and E[Di |Hi] = 0, and that Vi is nonnegative
and Hi-measurable. Suppose moreover that there are constants α0, . . . , αn ≥ 0, δ ∈ [0, 1], and
β(δ) ≥ 0 satisfying

P

{
n∑
i=0

Vi ≤
n∑
i=0

αiDi + β(δ)

}
≥ 1− δ.

Set α := max{α0, . . . , αn}. Then for all τ > 0, the following bound holds:

P

{
n∑
i=0

Di ≥ τ
}
≤ δ + exp

(
− τ

4α+ 8β(δ)/τ

)
.

Combining Proposition 5.14 and Theorem 5.15 yields the following tail bound for
∑t−1
i=0 di.

Proposition 5.16 (Noise martingale tail bound). Suppose that Assumption 4.4 holds, let {xt} be the
iterates produced by Algorithm 1 with constant step size η ≤ 1/2L, and set ρ̂ := µη/(2− µη). Then
there is an absolute constant c > 0 such that for any specified t ∈ N, δ ∈ (0, 1), and τ > 0, the
following bound holds:

P

{
t−1∑
i=0

〈zi, xi − x?t 〉(1− ρ̂)t−1−i ≥ τ
}
≤ δ + exp

(
− τ

4α+ 8βt log(3e/δ)/τ

)
,

where α := 3η(cσ)2/ρ̂ and

βt := (1− ρ̂)t−1
(
‖x0 − x?0‖2 + ∆2t2

) 2(cσ)2

ρ̂
+

2η2(cσ)4

ρ̂2
+

3µ∆2η(cσ)2

ρ̂4
.

Proof. By Assumption 4.4, there exists an absolute constant c ≥ 1 such that ‖zi‖2 is sub-exponential
conditioned on Fi,t with parameter cσ2 and zi is mean-zero sub-Gaussian conditioned on Fi,t with
parameter cσ for all indices 0 ≤ i < t. Then for each 0 ≤ i < t, the Fi+1,t-measurable random
variable 〈zi, xi−x?t 〉 is mean-zero sub-Gaussian conditioned on Fi,t with parameter cσ‖xi−x?t ‖, so

E
[

exp
(
λ〈zi, xi−x?t 〉(1−ρ̂)t−1−i) | Fi,t] ≤ exp

(
λ2(cσ)2‖xi−x?t ‖2(1−ρ̂)2(t−1−i)/2

)
∀λ ∈ R.

Now fix t ≥ 1 and observe that Proposition 5.14 yields the total conditional variance bound
t−1∑
i=0

(cσ)2‖xi − x?t ‖2(1− ρ̂)2(t−1−i) ≤
t−2∑
j=0

αj〈zj , xj − x?t 〉(1− ρ̂)t−1−j +Rt,

where 0 ≤ αj ≤ α for all 0 ≤ j ≤ t− 2 and

Rt := (cσ)2

ρ̂ (1− ρ̂)t−1‖x0−x?t ‖2 + 2η2(cσ)2

ρ̂

t−2∑
j=0

‖zj‖2(1− ρ̂)t−2−j + η(cσ)2

µρ̂

t−2∑
j=0

G2
j,t(1− ρ̂)t−2−j .

We claim that

P
{
Rt ≤ βt log

(
3e

δ

)}
≥ 1− δ ∀δ ∈ (0, 1). (10)

To verify (10), observe first that for all n ≥ 0, the sum
∑n
i=0 ‖zi‖2(1 − ρ̂)n−i is sub-exponential

with parameter
∑n
i=0 cσ

2(1− ρ̂)n−i ≤ (cσ)2/ρ̂, so Markov’s inequality implies

P

{
n∑
i=0

‖zi‖2(1− ρ̂)n−i ≤ (cσ)2

ρ̂
log
(e
δ

)}
≥ 1− δ ∀δ ∈ (0, 1). (11)

Further, for all 0 ≤ n < t, it follows from Assumption 4.4 and Lemma 2.3 that ‖x0 − x?t ‖2 is sub-
exponential with parameter 2

(
‖x0 − x?0‖2 + ∆2t2

)
and

∑n
i=0G

2
i,t(1 − ρ̂)n−i is sub-exponential
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with parameter
n∑
i=0

(µ∆)2(t− i)2(1− ρ̂)n−i = (µ∆)2(1− ρ̂)n+1−t
n∑
i=0

(t− i)2(1− ρ̂)t−i−1 ≤ 2(µ∆)2

ρ̂3(1− ρ̂)t−1−n ,

so Markov’s inequality implies

P
{
‖x0 − x?t ‖2 ≤ 2

(
‖x0 − x?0‖2 + ∆2t2

)
log
(e
δ

)}
≥ 1− δ ∀δ ∈ (0, 1) (12)

and

P

{
n∑
i=0

G2
i,t(1− ρ̂)n−i ≤ 2(µ∆)2

ρ̂3(1− ρ̂)t−1−n log
(e
δ

)}
≥ 1− δ ∀δ ∈ (0, 1). (13)

Thus, (11)–(13) and a union bound yield (10). Consequently, Theorem 5.15 implies that the following
bound holds for all δ ∈ (0, 1) and τ > 0:

P

{
t−1∑
i=0

〈zi, xi − x?t 〉(1− ρ̂)t−1−i ≥ τ
}
≤ δ + exp

(
− τ

4α+ 8βt log(3e/δ)/τ

)
,

as claimed.

We may now deduce the following precise version of Theorem 4.6 using the tail bound furnished by
Proposition 5.16.

Theorem 5.17 (Function gap with high probability). Suppose that Assumption 4.4 holds, let {x̂t} be
the iterates produced by Algorithm 2 with constant step size η ≤ 1/2L, and set ρ̂ := µη/(2− µη).
Then there is an absolute constant c > 0 such that for any specified t ∈ N and δ ∈ (0, 1), the
following estimate holds with probability at least 1− δ:

ϕt(x̂t)−ϕ?t ≤ (1−ρ̂)t
(
ϕt(x0)− ϕ?t + µ

4 ‖x0 − x?t ‖2
)
+

(
η(cσ)2 +

8∆2

µη2
+ 9ρ̂

√
8βt

)
log

(
4e

δ

)
,

where

βt := (1− ρ̂)t−1
(
‖x0 − x?0‖2 + ∆2t2

) 2(cσ)2

ρ̂
+

2η2(cσ)4

ρ̂2
+

3µ∆2η(cσ)2

ρ̂4
.

Proof. A quick computation shows that given any δ ∈ (0, 1), we may take

τ = (2 +
√

5)
√

8βt log

(
3e

δ

)
in Proposition 5.16 to obtain

P

{
t−1∑
i=0

〈zi, xi − x?t 〉(1− ρ̂)t−1−i < (2 +
√

5)
√

8βt log

(
3e

δ

)}
≥ 1− 2δ. (14)

We may now combine (11), (13), and (14) together with Proposition 5.11 and a union bound to
conclude that for all δ ∈ (0, 1), the estimate

ϕt(x̂t)− ϕ?t ≤ (1− ρ̂)t
(
ϕt(x0)− ϕ?t + µ

4 ‖x0 − x?t ‖2
)

+

(
η(cσ)2 +

2µ∆2

ρ̂2

)
log
(e
δ

)
+ (2 +

√
5)ρ̂
√

8βt log

(
3e

δ

)
holds with probability at least 1− 4δ; hence

ϕt(x̂t)− ϕ?t ≤ (1− ρ̂)t
(
ϕt(x0)− ϕ?t + µ

4 ‖x0 − x?t ‖2
)

+

(
η(cσ)2 +

8∆2

µη2
+ 9ρ̂

√
8βt

)
log
(e
δ

)
.

with probability at least 1− 4δ.
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Remark 5.18. To see that Theorem 5.17 entails Theorem 4.6, fix t ∈ N and observe that upon setting
C := max{c, 1}, we have

ρ̂
√

8βt ≤ 4C2

(√
(1− ρ̂)t (‖x0 − x?0‖2 + ∆2t2)µησ2 + ησ2 +

√
6

∆σ√
µη

)
,

while the AM-GM inequality implies

2
√

(1− ρ̂)t (‖x0 − x?0‖2 + ∆2t2)µησ2 ≤ (1− ρ̂)t
(
µ‖x0 − x?0‖2 + µ∆2t2

)
+ ησ2,

inequality (9) implies

(1− ρ̂)t
(
µ‖x0 − x?0‖2 + µ∆2t2

)
≤ 2(1− ρ̂)t

(
ϕ0(x0)− ϕ?0

)
+

16∆2

µη2
,

and Young’s inequality implies
2∆σ√
µη
≤ ησ2 +

∆2

µη2
.

Hence

ρ̂
√

8βt . (1− ρ̂)
t (
ϕ0(x0)− ϕ?0

)
+ ησ2 +

∆2

µη2
.

Further, inequalities (7) and (9) together with Assumption 4.4 imply that for all δ ∈ (0, 1), the
estimate

(1− ρ̂)t
(
ϕt(x0)− ϕ?t + µ

4 ‖x0 − x?t ‖2
)
≤ 3(1− ρ̂)t

(
ϕ0(x0)− ϕ?0

)
+

32∆2

µη2
log
(e
δ

)
holds with probability at least 1− δ. Thus, under the assumptions of Theorem 5.17, a union bound
reveals that for all t ∈ N and δ ∈ (0, 1), the estimate

ϕt(x̂t)− ϕ?t ≤ (1− ρ̂)t
(
ϕt(x0)− ϕ?t + µ

4 ‖x0 − x?t ‖2
)

+

(
η(cσ)2 +

8∆2

µη2
+ 9ρ̂

√
8βt

)
log

(
8e

δ

)
.

(
(1− ρ̂)

t (
ϕ0(x0)− ϕ?0

)
+ ησ2 +

∆2

µη2

)
log
(e
δ

)
holds with probability at least 1− δ.

We may now apply Theorem 4.6 to obtain the formal version of Theorem 4.7; the proof is analogous
to that of Theorem 5.8 and appears in the appendix (see Section A.5).

Theorem 5.19 (Time to track with high probability). Suppose that Assumption 4.4 holds and
that we are in the low drift-to-noise regime ∆/σ <

√
µ/16L3. Set η? = (2∆2/µσ2)1/3 and

G = µ(∆σ2/µ2)2/3. Suppose moreover that we have available a positive upper bound on the initial
gap D ≥ ϕ0(x0)−ϕ?0. Fix δ ∈ (0, 1) and consider running Algorithm 2 in k = 0, . . . ,K−1 epochs,
namely, set X0 = x0 and iterate the process

Xk+1 = PSG(Xk, µ, ηk, Tk) for k = 0, . . . ,K − 1,

where the number of epochs is

K = 1 +

⌈
log2

(
1

L
·
(
σ2µ

∆2

)1/3
)⌉

and we set

η0 =
1

2L
, T0 =

⌈
4L

µ
log

(
LD

σ2

)+
⌉

and ηk =
ηk−1 + η?

2
, Tk =

⌈
2 log

(
4c log(e/δ)

)+
µηk

⌉
for all k ≥ 1, where c > 0 is the absolute constant furnished by the bound (3). Then the time horizon
T = T0 + · · ·+ TK−1 satisfies

T .
L

µ
log

(
LD

σ2

)+

+
σ2

µG
(

1 ∨ log log
e

δ

)
≤ L

µ
log

(
D

G

)+

+
σ2

µG
(

1 ∨ log log
e

δ

)
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and the corresponding tracking error satisfies

ϕT (XK)− ϕ?T . G log
(e
δ

)
with probability at least 1−Kδ.

6 Numerical illustrations

We investigate the empirical behavior of our finite-time bounds on numerical examples with synthetic
data. We consider examples of a) least-squares recovery; b) sparse least-squares recovery; c) `22-
regularized logistic regression; and investigate the behavior of ‖xt − x?t ‖2 and ϕt(x̂t) − ϕ?t in
each case. The main findings are that our bounds exhibit: 1) the correct dependence on η, σ,
and ∆; 2) excellent coverage in Monte-Carlo simulations. Code is available online at https:
//github.com/joshuacutler/TimeDriftExperiments.
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Figure 1: Semilog plots of guaranteed bounds and empirical tracking errors with respect to iteration t for
least-squares recovery. Shaded regions indicate the 95% confidence intervals for ‖xt − x?t ‖2 and ϕt(x̂t)− ϕ?

t ;
empirical averages and confidence intervals are computed over 100 trials. Default parameter values: µ = 1,
L = 1, σ = 10, ∆ = 1, and η = η?.

Least-squares recovery. Fix x0, x
?
0 ∈ Rd with standard Gaussian entries, and consider a Gaussian

random walk (x?t ) given by x?t+1 = x?t + vt, where vt is drawn uniformly from the sphere of radius
∆ in Rd. Given a fixed matrix A ∈ Rn×d, we aim to recover the vectors (x?t ) via least-squares:

min
x∈Rd

E
w∼Pt

1
2‖Ax− w‖2,

where Pt = N (Ax?t , C) with C = (σ2/n‖A‖2op)In. This amounts to the target problem (1)
under the identifications ft(x) = Ew∼Pt

1
2‖Ax − w‖2 and rt = 0; clearly ‖x?t − x?t+1‖ = ∆ and

supx ‖∇ft(x)−∇ft+1(x)‖ ≤ ‖A‖2op∆. We implement Algorithms 1 and 2 initialized at x0 using
the sample gradient gt = AT (Axt − w) at step t, where w ∼ Pt; hence E‖∇ft(xt)− gt‖2 ≤ σ2.

In our simulations, we take d = 50, n = 100, and randomly generate A via its singular value
decomposition (using Haar-distributed orthogonal matrices) so that its minimal singular value is√
µ and its maximal singular value is

√
L. In Figures 1 and 2, we use default parameter values

µ = 1, L = 1, σ = 10, ∆ = 1, and the corresponding asymptotically optimal step size η = η?.
Since ft is µ-strongly convex and L-smooth, this puts us in the low drift/noise regime in Figure 1:
∆/σ <

√
µ/16L3 = 1/4. To estimate the empirical averages and confidence intervals of ‖xt−x?t ‖2

and ϕt(x̂t)− ϕ?t , we run 100 trials with horizon T = 100. The results confirm our bounds and show
that they capture the correct dependence on η, σ, and ∆.
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Figure 2: Semilog plots of guaranteed bounds and empirical tracking errors at horizon T = 100 with respect to
η, σ, and ∆ for least-squares recovery. Shaded regions indicate the 95% confidence intervals for ‖xT − x?T ‖2
and ϕT (x̂T )−ϕ?

T ; empirical averages and confidence intervals are computed over 100 trials. Default parameter
values: µ = 1, L = 1, σ = 10, ∆ = 1, and η = η?.

Sparse least-squares recovery. Next, we consider least-squares recovery constrained to the closed
`1-ball in Rd, which we denote byB1. We aim to recover a sparse sequence of vectors inB1 defined as
follows. Set s = blog dc, draw a vector u uniformly from the `1-ball in Rs, fix x?0 = (u, 0) ∈ Rd, and
select ∆ ∈ (0,

√
2]. At step t, with probability p = (4−2∆2)/(4−∆2), we set x?t+1 = x?t +v, where

v is selected to have the same support as x?t and satisfy ‖v‖ = ∆/
√

2 and x?t + v ∈ B1; otherwise,
with probability 1− p, we obtain x?t+1 from x?t by swapping precisely one nonzero coordinate with
a zero coordinate. Then the resulting sparse sequence (x?t ) in B1 satisfies E‖x?t − x?t+1‖2 ≤ ∆2.
Given a fixed matrix A ∈ Rn×d, we aim to recover (x?t ) via constrained least-squares:

min
x∈B1

E
w∼Pt

1
2‖Ax− w‖2,

where Pt = N (Ax?t , C) with C = (σ2/n‖A‖2op)In. This amounts to the target problem (1) under
the identifications ft(x) = Ew∼Pt

1
2‖Ax− w‖2 and rt = δB1 (the convex indicator of B1); clearly

E[supx ‖∇ft(x)−∇ft+1(x)‖2] ≤ (‖A‖2op∆)2. Fixing x0 drawn uniformly from B1, we implement
Algorithms 1 and 2 initialized at x0 using the sample gradient gt = AT (Axt − w) at step t, where
w ∼ Pt; hence E‖∇ft(xt)− gt‖2 ≤ σ2.

In our simulations, we take d = 50, n = 100, and randomly generate A via its singular value
decomposition (using Haar-distributed orthogonal matrices) so that its minimal singular value is√
µ and its maximal singular value is

√
L. In Figures 3 and 4, we use default parameter values

µ = 1, L = 1, σ = 1/2, ∆ = 1/20, and the corresponding asymptotically optimal step size η = η?.
Since ft is µ-strongly convex and L-smooth, this puts us in the low drift/noise regime in Figure 3:
∆/σ <

√
µ/16L3 = 1/4. To estimate the empirical averages and confidence intervals of ‖xt−x?t ‖2

and ϕt(x̂t)− ϕ?t , we run 100 trials with horizon T = 100. The results confirm our bounds and show
that they capture the correct dependence on η, σ, and ∆.
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Figure 3: Semilog plots of guaranteed bounds and empirical tracking errors with respect to iteration t for sparse
least-squares recovery. Shaded regions indicate the 95% confidence intervals for ‖xt − x?t ‖2 and ϕt(x̂t)− ϕ?

t ;
empirical averages and confidence intervals are computed over 100 trials. Default parameter values: µ = 1,
L = 1, σ = 1/2, ∆ = 1/20, and η = η?.
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Figure 4: Semilog plots of guaranteed bounds and empirical tracking errors at horizon T = 100 with respect
to η, σ, and ∆ for sparse least-squares recovery. Shaded regions indicate the 95% confidence intervals for
‖xT − x?T ‖2 and ϕT (x̂T ) − ϕ?

T ; empirical averages and confidence intervals are computed over 100 trials.
Default parameter values: µ = 1, L = 1, σ = 1/2, ∆ = 1/20, and η = η?.

`22-regularized logistic regression. Finally, we consider the time-varying `22-regularized logistic
regression problem

min
x∈Rd

1

n

(
n∑
i=1

log(1 + exp〈ai, x〉)− 〈Ax, bt〉
)

+
µ

2
‖x‖2,

where the fixed matrix A ∈ Rn×d has standard Gaussian rows a1, ..., an ∈ Rd, (bt) is a random
sequence of label vectors in {0, 1}n such that bt and bt+1 differ in precisely one coordinate for
each t, and µ > 0. This amounts to the target problem (1) under the identifications ft(x) =
1
n (
∑n
i=1 log(1 + exp〈ai, x〉)− 〈Ax, bt〉)+ µ

2 ‖x‖2 and rt = 0; setting L = 1
4n‖A‖2op +µ, it follows
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Figure 5: Semilog plots of guaranteed bounds and empirical tracking errors with respect to iteration t for
`22-regularized logistic regression. Shaded regions indicate the 95% confidence intervals for ‖xt − x?t ‖2 and
ϕt(x̂t) − ϕ?

t ; empirical averages and confidence intervals are computed over 100 trials. Default parameter
values: µ = 1 and η = η?.
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Figure 6: Semilog plots of guaranteed bounds and empirical tracking errors at horizon T = 600 with respect
to the strong convexity parameter µ for `22-regularized logistic regression. Shaded regions indicate the 95%
confidence intervals for ‖xT − x?T ‖2 and ϕT (x̂T ) − ϕ?

T ; empirical averages and confidence intervals are
computed over 100 trials, using the asymptotically optimal step size η? (which itself depends on µ).

that ft is µ-strongly convex and L-smooth. Letting (x?t ) denote the corresponding sequence of
minimizers and setting ∆ = 1

µn maxi=1,...,n ‖ai‖, it follows that supx ‖∇ft(x)−∇ft+1(x)‖ ≤ µ∆

and hence ‖x?t − x?t+1‖ ≤ ∆. Fixing the initial label b0 (drawn uniformly from {0, 1}n) and a
standard Gaussian vector x0 ∈ Rd, we implement Algorithms 1 and 2 initialized at x0 using the
following random summand sample gradient at each step t:

gt =

(
exp〈ak, xt〉

1 + exp〈ak, xt〉
− bkt

)
ak + µxt,

where k ∼ U{1, . . . , n} and bkt denotes the kth coordinate of bt. Then E‖∇ft(xt) − gt‖2 ≤ σ2,
where

σ2 =
1

n2

(n− 2)

n∑
i=1

‖ai‖2 +

n∑
i,j=1

‖ai‖‖aj‖

 ≤ max
i=1,...,n

2‖ai‖2.
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Figure 7: Semilog plots of guaranteed bounds and empirical tracking errors at horizon T = 600 with respect
to the step size η for `22-regularized logistic regression. Shaded regions indicate the 95% confidence intervals
for ‖xT − x?T ‖2 and ϕT (x̂T )− ϕ?

T ; empirical averages and confidence intervals are computed over 100 trials.
Default parameter value: µ = 1. Observe that η? is close to empirically optimal.

In our simulations, we take d = 20 and n = 200, and we generate bt+1 from bt by flipping a single
coordinate selected uniformly at random. In Figure 5, we use default parameter values µ = 1 and the
corresponding asymptotically optimal step size η = η?. In Figure 6, we illustrate the dependence of
tracking error on the regularization parameter µ; here, the asymptotically optimal step size η? is used
(which itself depends on µ). In Figure 7, we use the default parameter value µ = 1. To estimate the
empirical averages and confidence intervals of ‖xt − x?t ‖2 and ϕt(x̂t)− ϕ?t , we run 100 trials with
horizon T = 600. The results confirm our bounds and show that they capture the correct dependence
on µ and η. In particular, Figure 7 illustrates that η? is close to empirically optimal.
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A Additional proofs

A.1 Proof of Theorem 5.8

For each index k, let tk := T0 + · · ·+Tk−1 (with t0 := 0), X?
k be the minimizer of the corresponding

function ϕtk , and

Ek := c

(
ηkσ

2

µ
+

(
∆

µη?

)2
)
,

where c ≥ 1 is an absolute constant satisfying the bound (2) in Theorem 3.7. Taking into account
ηk ≥ η? and our selection of c, Theorem 3.7 implies that for any specified k ≥ 0 and δ ∈ (0, 1) the
following estimate holds with probability at least 1− δ:

‖Xk+1 −X?
k+1‖2 ≤

(
1− µηk

2

)Tk

‖Xk −X?
k‖2 + c

(
ηkσ

2

µ
+

(
∆

µηk

)2
)

log
(e
δ

)
≤ e−µηkTk/2‖Xk −X?

k‖2 + Ek log
(e
δ

)
.

We will verify by induction that for all indices k ≥ 1, the estimate ‖Xk −X?
k‖2 ≤ 3Ek−1 log(e/δ)

holds with probability at least 1− kδ for all δ ∈ (0, 1). To see the base case, observe that the estimate

‖X1 −X?
1‖2 ≤ e−µη0T0/2‖X0 −X?

0‖2 + E0 log
(e
δ

)
≤ 3E0 log

(e
δ

)
holds with probability at least 1− δ for all δ ∈ (0, 1). Now assume the claim holds for some index
k ≥ 1, and let δ ∈ (0, 1); then ‖Xk − X?

k‖2 ≤ 3Ek−1 log(e/δ) with probability at least 1 − kδ.
Thus, since we also have

‖Xk+1 −X?
k+1‖2 ≤ e−µηkTk/2‖Xk −X?

k‖2 + Ek log
(e
δ

)
≤ 1

4
‖Xk −X?

k‖2 + Ek log
(e
δ

)
≤ Ek

2Ek−1
‖Xk −X?

k‖2 + Ek log
(e
δ

)
with probability at least 1 − δ, a union bound reveals ‖Xk+1 − X?

k+1‖2 ≤ 3Ek log(e/δ) with
probability at least 1− (k + 1)δ, thereby completing the induction. Hence, upon fixing δ ∈ (0, 1),
we have ‖XK −X?

K‖2 ≤ 3EK−1 log(e/δ) with probability at least 1−Kδ.

Next, observe

2

c
EK−1 − 3

√
54

(
∆σ2

µ2

)2/3

=
2σ2

µ
(ηK−1 − η?) =

2σ2

µ
· η0 − η?

2K−1
≤
(

∆σ2

µ2

)2/3

= E ,

so

‖XK −X?
K‖2 ≤

3c

2

(
1 +

3
√

54
)
E log

(e
δ

)
� E log

(e
δ

)
with probability at least 1−Kδ. Finally, note

T .
L

µ
log

(
µLD

σ2

)+

+
1

µ

K−1∑
k=1

1

ηk

and
K−1∑
k=1

1

ηk
≤ 2L

K−1∑
k=1

2k ≤ 2L · 2K = 8L · 2K−2 ≤ 8

(
σ2µ

∆2

)1/3

=
8σ2

µ
·
(

∆σ2

µ2

)−2/3

� σ2

µE .

This completes the proof.
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A.2 The averaging lemma

We will use a small variation of the averaging lemma in [11]. To this end, consider a convex function
h : Rd → R ∪ {∞} and let {xt}t≥0 be a sequence of vectors in domh. Suppose that there are
constants c1, c2 ∈ R, a nonnegative sequence of weights {ρt}t≥1, and scalar sequences {Vt}t≥0 and
{ωt}t≥1 satisfying the recursion

ρth(xt) ≤ (1− c1ρt)Vt−1 − (1 + c2ρt)Vt + ωt (15)

for all t ≥ 1. The goal is to bound the function value h(x̂t) evaluated along an “average iterate” x̂t.

Suppose that the relations c1 + c2 > 0, 1− c1ρt > 0, and 1 + c2ρt > 0 hold for all t ≥ 1. Define
the augmented weights and products

ρ̂t =
ρt(c1 + c2)

1 + c2ρt
and Γ̂t =

t∏
i=1

(1− ρ̂i)

for each t ≥ 1, while setting Γ̂0 = 1. A straightforward induction yields the relation

1 +

t∑
i=1

ρ̂i

Γ̂i
=

1

Γ̂t
.

Now set x̂0 = x0 and recursively define the average iterates

x̂t = (1− ρ̂t)x̂t−1 + ρ̂txt

for all t ≥ 1. Unrolling this recursion, we may equivalently write

x̂t = Γ̂t

(
x0 +

t∑
i=1

ρ̂i

Γ̂i
xi

)
. (16)

The following is the key estimate we will need.

Lemma A.1 (Averaging). The following estimate holds for all t ≥ 0:

h(x̂t)

c1 + c2
+ Vt ≤ Γ̂t

(
h(x0)

c1 + c2
+ V0 +

t∑
i=1

ωi

Γ̂i(1 + c2ρi)

)
.

Proof. Observe that (16) expresses x̂t as a convex combination of x0, . . . , xt. Therefore, by the
convexity of h we may apply Jensen’s inequality to obtain

h(x̂t) ≤ Γ̂th(x0) +

t∑
i=1

Γ̂tρ̂i

Γ̂i
h(xi).

On the other hand, for each i ≥ 1, we may divide the recursion (15) by Γ̂i(1 + c2ρi) to obtain

ρ̂i

Γ̂i(c1 + c2)
h(xi) ≤

Vi−1

Γ̂i−1

− Vi

Γ̂i
+

ωi

Γ̂i(1 + c2ρi)
,

which telescopes to yield

1

c1 + c2

t∑
i=1

ρ̂i

Γ̂i
h(xi) ≤ V0 −

Vt

Γ̂t
+

t∑
i=1

ωi

Γ̂i(1 + c2ρi)
.

Hence
h(x̂t)

c1 + c2
≤ Γ̂t

(
h(x0)

c1 + c2
+ V0 −

Vt

Γ̂t
+

t∑
i=1

ωi

Γ̂i(1 + c2ρi)

)
,

as claimed.
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A.3 Proof of Theorem 5.13

For each index k, let tk := T0 + · · · + Tk−1 (with t0 := 0) and Gk := ηkσ
2 + 8∆2/µη2

?. Then
taking into account ηk ≥ η?, Corollary 5.12 and inequality (7) directly imply

E
[
ϕtk+1

(Xk+1)− ϕ?tk+1

]
≤
(

1− µηk
2

)Tk

E
[
3
(
ϕtk(Xk)− ϕ?tk

)
+ 2µ∆2T 2

k

]
+ ηkσ

2 +
8∆2

µη2
k

≤ 3e−µηkTk/2E
[
ϕtk(Xk)− ϕ?tk

]
+ 2e−µηkTk/2µ∆2T 2

k +Gk.

We will verify by induction that the estimate E
[
ϕtk+1

(Xk+1)− ϕ?tk+1

]
≤ 7Gk holds for all indices

k. To see the base case, observe that inequality (9) facilitates the estimation

E
[
ϕt1(X1)− ϕ?t1

]
≤ 3e−µη0T0/2(ϕ0(x0)− ϕ?0) + 2e−µη0T0/2µ∆2T 2

0 +G0 ≤ 7G0.

Assume next that the claim holds for index k − 1. We then conclude

E
[
ϕtk+1

(Xk+1)− ϕ?tk+1

]
≤ 3e−µηkTk/2E

[
ϕtk(Xk)− ϕ?tk

]
+ 2e−µηkTk/2µ∆2T 2

k +Gk

≤ 1

4
E
[
ϕtk(Xk)− ϕ?tk

]
+

16∆2

µη2
k

+Gk

≤ Gk
2Gk−1

E
[
ϕtk(Xk)− ϕ?tk

]
+

16∆2

µη2
k

+Gk ≤ 7Gk,

completing the induction. Hence E
[
ϕT (XK)− ϕ?T

]
≤ 7GK−1.

Next, observe

GK−1 − 3
√

250 · µ
(

∆σ2

µ2

)2/3

= σ2(ηK−1 − η?) = σ2 · η0 − η?
2K−1

≤ µ

2

(
∆σ2

µ2

)2/3

=
1

2
G,

so

E
[
ϕT (XK)− ϕ?T

]
≤ 7
(

1
2 +

3
√

250
)
· µ
(

∆σ2

µ2

)2/3

� G.
Finally, note

T .
L

µ
log

(
LD

σ2

)+

+
1

µ

K−1∑
k=1

1

ηk

and
K−1∑
k=1

1

ηk
≤ 2L

K−1∑
k=1

2k ≤ 2L · 2K = 8L · 2K−2 ≤ 8

(
σ2µ

∆2

)1/3

= 8σ2 · µ−1

(
∆σ2

µ2

)−2/3

� σ2

G .

This completes the proof.

A.4 Proof of Proposition 5.14

Fix t ≥ 1. Given i ≥ 1 and α > 0, the µ-strong convexity of ϕt and Lemma 5.10 imply

µη‖xi − x?t ‖2 ≤ 2η(ϕt(xi)− ϕ?t ) ≤ (1− µη)‖xi−1 − x?t ‖2 − (1− αη)‖xi − x?t ‖2

+ 2η〈zi−1, xi−1 − x?t 〉+ 2η2‖zi−1‖2 + η
αG

2
i−1,t,

hence (
1 + (µ− α)η

)
‖xi − x?t ‖2 ≤ (1− µη)‖xi−1 − x?t ‖2 + 2η〈zi−1, xi−1 − x?t 〉

+ 2η2‖zi−1‖2 + η
αG

2
i−1,t.

Taking α = µ, we obtain

‖xi − x?t ‖2 ≤ (1− µη)‖xi−1 − x?t ‖2 + 2η〈zi−1, xi−1 − x?t 〉+ 2η2‖zi−1‖2 + η
µG

2
i−1,t.
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Thus, given any λ ∈ (0, µη] and proceeding by induction, we conclude

‖xi − x?t ‖2 ≤ (1− λ)i‖x0 − x?t ‖2 + 2η

i−1∑
j=0

〈zj , xj − x?t 〉(1− λ)i−1−j

+ 2η2
i−1∑
j=0

‖zj‖2(1− λ)i−1−j + η
µ

i−1∑
j=0

G2
j,t(1− λ)i−1−j

for all i ≥ 1. Therefore
t−1∑
i=0

‖xi − x?t ‖2(1− λ)2(t−1−i)

≤ ‖x0 − x?t ‖2
t−1∑
i=0

(1− λ)2(t−1)−i + 2η

t−1∑
i=1

i−1∑
j=0

〈zj , xj − x?t 〉(1− λ)2t−3−j−i

+ 2η2
t−1∑
i=1

i−1∑
j=0

‖zj‖2(1− λ)2t−3−j−i + η
µ

t−1∑
i=1

i−1∑
j=0

G2
j,t(1− λ)2t−3−j−i.

Now we compute
t−1∑
i=0

(1− λ)2(t−1)−i = (1− λ)t−1
t−1∑
i=0

(1− λ)t−1−i < 1
λ (1− λ)t−1

and observe that for any scalar sequence (Xj)
t−2
j=0, we have

t−1∑
i=1

i−1∑
j=0

Xj(1− λ)2t−3−j−i =

t−2∑
j=0

 t−1∑
i=j+1

(1− λ)t−2−i

Xj(1− λ)t−1−j .

Further, if Xj ≥ 0 for all j = 0, . . . , t− 2, then we have

t−1∑
i=1

i−1∑
j=0

Xj(1− λ)2t−3−j−i =

t−2∑
j=0

 t−1∑
i=j+1

(1− λ)t−1−i

Xj(1− λ)t−2−j

≤ 1
λ

t−2∑
j=0

Xj(1− λ)t−2−j .

Hence the following estimation holds:

t−1∑
i=0

‖xi − x?t ‖2(1− λ)2(t−1−i) ≤
t−2∑
j=0

2η

t−1∑
i=j+1

(1− λ)t−2−i

 〈zj , xj − x?t 〉(1− λ)t−1−j

+ 1
λ (1− λ)t−1‖x0 − x?t ‖2 + 2η2

λ

t−2∑
j=0

‖zj‖2(1− λ)t−2−j

+ η
µλ

t−2∑
j=0

G2
j,t(1− λ)t−2−j .

This completes the proof.
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A.5 Proof of Theorem 5.19

For each index k, let tk := T0 + · · ·+ Tk−1 (with t0 := 0) and Gk := ηkσ
2 + ∆2/µη2

? . Then taking
into account ηk ≥ η? and our selection of the absolute constant c via (3), it follows that for all indices
k the estimate

ϕtk+1
(Xk+1)− ϕ?tk+1

≤ c
((

1− µηk
2

)Tk(
ϕtk(Xk)− ϕ?tk

)
+ ηkσ

2 +
∆2

µη2
k

)
log
(e
δ

)
≤ c
(
e−µηkTk/2

(
ϕtk(Xk)− ϕ?tk

)
+Gk

)
log
(e
δ

)
holds with probability at least 1− δ.

We will verify by induction that for all indices k ≥ 1, the estimate

ϕtk(Xk)− ϕ?tk ≤ 3cGk−1 log
(e
δ

)
holds with probability at least 1− kδ. To see the base case, observe that the estimate

ϕt1(X1)− ϕ?t1 ≤ c
(
e−µη0T0/2(ϕ0(x0)− ϕ?0) +G0

)
log
(e
δ

)
≤ 3cG0 log

(e
δ

)
holds with probability at least 1 − δ. Now assume the claim holds for some index k ≥ 1. Then
because we also have

ϕtk+1
(Xk+1)− ϕ?tk+1

≤ c
(
e−µηkTk/2

(
ϕtk(Xk)− ϕ?tk

)
+Gk

)
log
(e
δ

)
≤ c
( 1

4c log(e/δ)

(
ϕtk(Xk)− ϕ?tk

)
+Gk

)
log
(e
δ

)
≤ c
( Gk

2cGk−1 log(e/δ)

(
ϕtk(Xk)− ϕ?tk

)
+Gk

)
log
(e
δ

)
with probability at least 1− δ, a union bound reveals that the estimate

ϕtk+1
(Xk+1)− ϕ?tk+1

≤ 3cGk log
(e
δ

)
holds with probability at least 1−(k+1)δ, thereby completing the induction. In particular, ϕT (XK)−
ϕ?T ≤ 3cGK−1 log(e/δ) with probability at least 1−Kδ.

Next, observe

GK−1 − 3

√
27
4 · µ

(
∆σ2

µ2

)2/3

= σ2(ηK−1 − η?) = σ2 · η0 − η?
2K−1

≤ µ

2

(
∆σ2

µ2

)2/3

,

so

ϕT (XK)− ϕ?T ≤ 3c
(

1
2 + 3

√
27
4

)
· µ
(

∆σ2

µ2

)2/3

log
(e
δ

)
� G log

(e
δ

)
with probability at least 1−Kδ. Finally, note

T .
L

µ
log

(
LD

σ2

)+

+
(

1 ∨ log log
e

δ

) 1

µ

K−1∑
k=1

1

ηk

and
K−1∑
k=1

1

ηk
≤ 2L

K−1∑
k=1

2k ≤ 2L · 2K = 8L · 2K−2 ≤ 8

(
σ2µ

∆2

)1/3

= 8σ2 · µ−1

(
∆σ2

µ2

)−2/3

� σ2

G .

This completes the proof.
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