
A More on generalized contrastive loss

A.1 Experimental setup

We follow [13, 14] for the use of augmentations and architectures. By default, we use ResNet-50 [39]
and a 2-layer projection head [13, 14] after the ResNet’s average pooling layer. We set the output (z)
dimensionality to 64 for CIFAR10 and 128 for ImageNet, since increasing them has little effect on the
performance. We use a square root learning rate scaling with batch size with a LARS optimizer [21],
i.e., LearningRate = 0.075×

√
BatchSize for ImageNet and LearningRate = 0.2×

√
BatchSize

for CIFAR-10. The batch size and training epoch will be specified for each experiment. We use the
linear evaluation protocol, i.e. the accuracy of a trained linear classifier on the learned features is
used as a proxy for representation quality.

When comparing the standard contrastive loss (i.e. NT-Xent in Eq. 1) and other instantiations of
the generalized contrastive loss (in Table 1), we optimize the hyper-parameters for different losses
(for NT-Xent loss, we set τ = 0.2; for decoupled NT-Xent loss, we set τ = 1.0, λ = 0.1; for SWD
based losses, we set λ = 5 ; and since we use mean squared error instead of `2 distance in alignment
loss for losses in Table 1, we find it helpful to scale the loss by 1000 when the hidden vector z is
normalized). A batch size of 128 is used for CIFAR-10, and 1024 is used for ImageNet.

A.2 Temperature τ is (within a range) inversely correlated to weighting λ of distribution loss

Both temperature τ and weighting λ control how well the representations fit the prior. To see
how well the learned distribution matches the prior distribution (e.g. Gaussian), we randomly project
the (high-dimensional) representation vectors into 1-D space and plot the histogram distribution. For
prior distribution of Gaussian or uniform in hypersphere, these random projections in 1-D space
should be Gaussian like.

Figure A.1 shows random orthogonal projection of representation from CIFAR-10 test set. We see
that both weighting (λ in Eq. 2) and the temperature scaling (τ in Eq. 1) have the effect of controlling
distribution matching term, but they have an inverse correlation. In other words, using a higher
temperature has similar effect as setting a larger weighting of distribution matching term.
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(f) NT-XENT (τ = 0.1)

Figure A.1: Distribution of random orthogonal projection of output vectors on CIFAR-10 test set
(each small plot has its own random projection direction). For SWD (uniform hypersphere) loss,
distribution becomes more Gaussian as λ increases. For NT-Xent loss, the distribution becomes more
Gaussian as τ decreases.

Decoupled NT-Xent loss. It is worth noting that temperature τ in the rewritten NT-Xent loss (Eq. 3)
appears in two places, one as the scaling of the distribution loss term, and the other as the width of
Gaussian kernel. They do not necessarily need to be the same, so we could decouple them as follows.

LDecoupled NT-Xent = − 1

n

∑
i,j

sim(zi,zj) + λ
1

n

∑
i

log
2n∑
k=1

1[k 6=i] exp(sim(zi,zk)/τ) (4)
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The decoupling allows us to study the effects of them separately. So we tune τ and λ separately for
the decoupled NT-xent loss. Figure A.2 shows the linear evaluation of ResNet-18 trained in 200
epochs. We see that the temperature τ and the weighting λ are inversely correlated for most range. In
practice one could simply fix one and tune the other.
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Figure A.2: Linear evaluation of ResNet-18 trained on CIFAR-10 (200 epochs) using decoupled
NT-Xent loss (Eq. 4). The temperature τ and the weighting λ are mostly inverse correlated.

A.3 Linear evaluation of generalized contrastive losses on CIFAR-10 and ImageNet

Table A.1, A.2 and A.3 show linear evaluation performance of ResNet-50 trained with different
losses (numerical results of Figure 1). Similar to [13, 14], a square root learning rate is used. In
addition, results of different batch sizes are also compared, and we find the differences are small with
reasonable sizes (e.g. 128 for CIFAR-10 and 1024 for ImageNet).

Table A.1: Linear evaluation accuracy (top-1) of ResNet-50 trained with different losses on CIFAR-10.
Epoch 100 200 400 800

Loss Batch size

NT-Xent

128 87.4 91.0 93.0 93.9
256 88.0 91.3 93.0 93.6
512 87.9 91.3 92.9 93.7
1024 88.2 91.2 92.7 93.3

Decoupled NT-Xent

128 87.8 91.0 93.0 94.0
256 87.7 91.1 92.8 93.6
512 87.5 91.3 92.7 93.6
1024 87.5 91.0 92.6 93.7

SWD (normal)

128 86.3 90.5 92.8 93.8
256 86.2 90.8 93.1 94.1
512 85.0 90.7 92.9 94.1
1024 83.3 89.9 93.0 93.9

SWD (uniform hypercube)

128 85.1 90.1 92.6 93.4
256 84.6 89.9 92.9 93.8
512 83.1 89.8 92.8 93.8
1024 81.3 88.3 92.2 93.6

SWD (uniform hypersphere)

128 87.0 90.9 92.9 93.8
256 87.1 90.9 92.5 93.7
512 86.6 90.8 92.9 93.4
1024 86.0 90.3 92.5 93.2

B More on feature suppression

B.1 Extra results on CIFAR-10 and ImageNet with random bits added

Figure B.1 shows linear evaluation on CIFAR-10 with different random bits added trained with a
wider range of batch sizes. It is worth noting that the bits (in the x-axis) are calculated based on
the total size of uniform integer distribution. However, this is an overestimation of actual bits as
due to collision in generated integers. We observe that the linear evaluation accuracy decreases
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Table A.2: Linear evaluation accuracy (top-1) of ResNet-50 trained with different losses on ImageNet
(with 2-layer projection head).

Epoch 100 200 400 800
Loss Batch size

NT-Xent
512 65.4 67.3 68.7 69.3
1024 65.6 67.6 68.8 69.8
2048 65.3 67.6 69.0 70.1

Decoupled NT-Xent
512 65.8 67.6 68.9 69.5
1024 66.0 67.9 69.0 70.1
2048 65.8 67.9 69.3 70.2

SWD (normal)
512 64.9 66.8 68.0 69.0
1024 65.0 67.1 68.2 69.3
2048 65.0 66.9 68.4 69.7

SWD (uniform hypercube)
512 64.3 66.4 67.8 68.7
1024 64.2 66.5 67.9 68.9
2048 63.9 66.6 67.9 69.0

SWD (uniform hypersphere)
512 65.6 67.7 69.0 70.0
1024 65.8 67.9 69.0 69.6
2048 65.6 67.8 69.2 69.8

Table A.3: Linear evaluation accuracy (top-1) of ResNet-50 trained with different losses on ImageNet
(with 3-layer projection head).

Epoch 100 200 400 800
Loss Batch size

NT-Xent
512 66.6 68.4 70.0 71.0
1024 66.8 68.9 70.1 70.9
2048 66.8 69.1 70.4 71.3

Decoupled NT-Xent
512 66.8 68.4 69.6 70.6
1024 66.6 68.9 69.9 70.8
2048 66.6 69.0 70.1 70.8

SWD (normal)
512 66.5 68.4 69.8 70.8
1024 66.6 68.8 70.1 71.1
2048 66.7 69.1 70.2 71.1

SWD (uniform hypercube)
512 66.1 68.3 69.7 70.7
1024 66.3 68.5 70.0 71.3
2048 65.8 68.2 70.1 71.1

SWD (uniform hypersphere)
512 66.5 68.3 69.5 70.5
1024 66.6 68.6 69.8 70.8
2048 66.5 68.7 70.2 70.9

quickly with a few bits of the extra channel competing feature added. And this detrimental effect
on the representation quality cannot be avoided by different contrastive loss functions, batch sizes,
or memory mechanism in momentum contrast [10]. Although a smaller temperature (τ ) or larger
weighting (λ) slightly mitigate the degeneration effect, its baseline performance when no extra bits
are added is also worse. With less than 15 bits of competing features added, the representation quality
degenerates to the level where RGB channels are completely ignored.

Similar results are shown for ImageNet as shown in Figure B.2.
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(a) Standard NT-Xent
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(b) NT-Xent with Momentum Contrast (MoCo)
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Figure B.1: Linear evaluation accuracy on CIFAR-10 of ResNet-18 (400 epochs) when different
random bits are added. Different contrastive losses and batch sizes are compared.
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(a) ImageNet.
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Figure B.2: Linear evaluation of learned features when a few bits of competing features added on
ImageNet. A few bits added completely disable contrastive learning (across various batch size or
losses).
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B.2 Distribution matching loss, LogSumExp or SWD, saturates with a few bits of entropy

Here we study the saturation of distribution matching loss (based on LogSumExp or SWD), without
presence of the alignment term. To do so, we create square images with k binary channels (instead of
RGB channels), and all pixels at different locations of a 32× 32 image share the same value, this
allows us to use the same architecture as one for CIFAR-10 (i.e. ResNet-18 and 2-layer projection
head with output dimensionality of 64). We note that this experiment can also be conducted on
images of 1× 1 size with other architecture. It is not difficult to see the entropy of this dataset is k
bits. A mini-batch of data points (without augmentations) are first encoded via the network, and then
the distribution matching loss is defined on the network’s outputs. The network is trained for 400
epochs, and longer training epochs makes little difference.

Figure B.3 shows that distribution loss saturates quickly with a few bits of entropy in the dataset (same
or less bits in representations), and both temperature and batch sizes have effects on the saturation
behavior. It also shows that linear increase of bits in representation requires exponentially increase of
batch size, which is not sustainable as the required batch size can quickly go beyond the size of the
dataset (e.g., 30 bits would require more than 1 billion batch size, which is larger than most of the
existing datasets). This is one of the main reasons why data augmentation is critical for contrastive
learning - that the network can learn a few bits that give rise to useful representations.
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Figure B.3: Distribution matching loss saturates quickly with a few bits of entropy. The saturation
varies slightly across batch sizes.
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