Appendix

Organization The supplementary material is organized as follows: Section A presents a brief
review of the concepts concerning first-order logic that are used in our work. Section C presents a
proof of Theorem 1, our negative result concerning decision trees and OBDDs, while Section D is
devoted to our positive result. Section B proves that JFOIL™ is strictly more expressive than JFOIL,
justifying its independent study. Then, Section E is devoted to the tractability of IFOIL and IFOIL™;
it includes proofs both for Theorem 2 and Proposition 2, which together imply the tractability of
JFOIL™ for perceptrons. Next, Section F presents a proof of Theorem 3, implying the full tractability
of FOIL for a restricted class of OBDDs. Section G discusses details of the practical implementation,
while Section H explains the the methodology of our experiments. Then, Section I discusses details of
the high-level version we implemented, and also presents several examples of queries for the Student
Performance Data Set which serve to show the usability of our implementation in practice. Finally
Section J explains the binarization process for real-valued decision trees and high-level queries. A
repository with code with our implementation for FOIL and the high-level syntax as well as examples
and scripts to replicate our experiments can be found at

https://github.com/AngrySeal/FOIL-Prototype

A Syntax and semantics of first-order logic
We review the definition of first-order logic (FO) over vocabularies consisting only of relations.

Syntax of FO. A vocabulary o is a finite set { Ry, ..., R, }, where each R; is a relation symbol
with associated arity n; > 0, fori € {1,...,m}. We assume the existence of a countably infinite
set of variables {x, vy, z, . .. }, possibly with subscripts. The set of FO-formulas over o is inductively
defined as follows.

1. If z, y are variables, then z = y is an FO-formula over o.

2. If relation symbol R € o has arity n > 0 and x4, . .., x,, are variables, then R(x1,...,Z,)
is an FO-formula over o.

3. If p, ¢ are FO-formulas over o, then (—p), (¢ V 1), and (¢ A 1) are FO-formulas over o.
4. If z is a variable and ¢ is an FO-formula over o, then (3x ¢) and (Vx ) are FO-formulas

over o.

FO-formulas of type (1) and (2) are called atomic. A variable x in FO-formula ¢ appears free, if
there is an occurrence of x in ¢ that is not in the scope of a quantifier 3z or V. An FO-sentence is
an FO-formula without free variables. We often write (1, ..., xy) to denote that {z1, ...,z } is
the set of free variables of ¢.

Semantics of FO. FO-formulae over a vocabulary o are interpreted over o-structures. Formally, a
o-structure is a tuple

A = (A RY ... RY),
where A is the domain of 2, and for each relation symbol R € o of arity n, we have that R¥ is an
n-ary relation over A. We call R¥ the interpretation of R; in 2.

Let ¢ be an FO-formula over a vocabulary o, and 2 a o-structure. Consider a mapping v that
associates an element in A to each variable. We formally define the satisfaction of FO-formula ¢
over the pair (2, v), denoted by (2, V) = ¢, as follows.

1. If ¢ is an atomic formula of the form « = y, then (2, v) = ¢ < v(t1) = v(t2).

2. If  is an atomic formula of the form R(x1,...,x,) for some R € o, then (2, v) E ¢ <

(v(z1),...,v(x,)) € R
3. If ¢ is of the form (=), then (2, v) = ¢ < (A, v) E .
4. If @ is of the form (¢ V ¢)'), then (A, v) E @iff (A, v) E ¢ or (A, v) =o'
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5. If ¢ is of the form (¢) A 4)'), then (2, v) = @ iff (A, v) = ¢ and (A, v) E 9.

6. If pis of the form (Jz ¢), then (A, v) = piff there exists a € A for which (2, v[x/a]) = .
Here, v[z/a] is a mapping that takes the same value as v on every variable y # x, and takes
value a on z.

7. If ¢ is of the form (Vz ), then (A, v) = ¢ iff for every @ € A we have that
(A vlz/al) = .

For an FO-formula (1, ..., xy) and assignment v such that v(z;) = a;, foreachi € {1,... k},
we write A = ¢(ay, ..., ax) to denote that (2, ) = . If ¢ is a sentence, we write simply 2 = ¢,
as for any pair of mappings v1, o for the variables, it holds that (2(, v1) | @ iff (2, 12) E .

B Proof that the FULL predicate cannot be expressed in the existential
fragment of FOIL

This proof requires some background in model theory. Namely, it uses the following ideas:
¢ Given a structure 2( with dpmain A, aset S C A induces a sub-structure 2 such that the
domain of 2" is A’ and R* = R¥ N S™ for every relation R € o of arity n.

* Let 2, B be two structures over a vocabulary o with domains A and B, respectively. An
isomorphism f : A — B between 2l and B satisfies the following property for every
FO-formula ¢ over o, and every mapping v:

RLv)Ee = (B, fov)EFep

where (f o v) is a mapping that associates f(v(z)) to each variable z.

o If o(z1,...,xk) is an existential FO-formula over a vocabulary o, 2l is a o-structure with
domain A, 2 is an induced sub-structure of 2 with domain A’, and a1, ...,a; € A’

A Eplar,...,ar) = AEplar,... ax)

All these ideas are standard, and can be found for example in the reference book of Chang and
Keisler [11].

We now proceed with the actual proof. For the sake of contradiction, assume that FULL(z) can be
expressed in JFOIL. More precisely, assume that ¢(x) is a formula in JFOIL such that for every
n > 1, every model M of dimension n, and every partial instance e of dimension n:

Ar | ¢(e) ifandonlyif e is an instance. 3)
Let M; be a model of dimension 1 such that M (e) = 0 for every instance e. Then we have that:
An, = ({L,0,1}, Pos®ru, Cr),

where POs®*:1 = (). Moreover, given condition 3, we also know that 2 v, = ((0)). Let My be a
model of dimension 2 such that Ms(e) = 0 for every instance e. Then we have that:

A, = ({L,0,1}2 Pos¥ie, CHmz),

where Pos®M2 = (). Moreover, let 2’ be the sub-structure of 2l o, induced by the set of instances
{(L,L1),(0,L),(1,L)}. Then we have that function f : {(L), (0), (1)} — {(L,L),(0,L1),(1,L)}
defined as f((z)) = (z, L) is an isomorphism from 2, to 2’ such that f((0)) = (0, L). Hence,
given that () is a formula in first-order logic and 2 r4, = ©((0)), we conclude that 2" |= ((0, L)).
Moreover, given that 2’ is an induced sub-structure of 2 r(, and ¢(x) is an existential formula in
first-order logic, we have that 2 v, = ©((0, L)). Notice that this contradicts condition 3, as (0, L)
is not an instance.

C Proof of Theorem 1

Let us restate the theorem for the reader’s convenience.
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Theorem 1. There exists a formula (x) in FOIL for which EVAL(¢(x),DTree) and
EVAL(¢(z), OBDD) are NP-hard.

Proof. We show that the problem is NP-hard by reducing from the satisfiability problem for
propositional formulas in 3-CNF. We will in fact show that hardness holds already for the class
DTree N OBDD, which proves both cases a once. Let ¢ = C; A --- A C, be a propositional formula,
where each C} is a disjunction of three literal and does not contain repeated or complementary literals.
Moreover, assume that {x1, ..., 2, } is the set of variables occurring in ¢, and the proof will use
partial instances of dimension n + m. Notice that the last m features of such a partial instance
e naturally define a truth assignment for the propositional formula . More precisely, for every
i € {1,...,n}, we use notation e(C;) = 1 to indicate that there is a disjunct ¢ of C; such that { = z;
and e[n + j] = 1, or £ = —z; and e[n + j] = 0, for some j € {1,...,m}. Furthermore, we say
e(p) =1ife(C;) = 1foreveryi € {1,...,n}.

We will build an ordered decision tree (thus belonging to DTree N1 OBDD), over the natural ordering
1<2<---<n+m—1<n+ m. Letus denote this ordering with < in order to avoid confusion.
For each clause C; (i € {1,...,n}), let T¢, be a decision tree of dimension n + m (but that will
only use features n + 1, ..., n + m) such that for every entity e: 7¢,(e) = 1 if and only e(C;) = 1.
Moreover, we require each 7¢, to be ordered with respect to <, Notice that 7, can be constructed in
constant time as it only needs to contain at most eight paths of depth 3. For example, assuming that
C = (z1 V 29 V x3), a possible decision tree T¢ is depicted in the following figure:

Finally, define e as a partial instance of dimension n + m such that e[i] = 1 forevery i € {1,...,n},
and e[n+j] = L forevery j € {1,...,m}, and define ¢)(x) as the following formula in FOIL (equiv-
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alent to the formula presented in the body of the paper):

()

= Jy(x CyAFULL(y) AVz((: CyA—-yCz) —
Ju(z CuA-uC zA-FULL(u)) VVv((z CvA—wCz) = Pos(v)))). (4

Interestingly, 1(z) can be rewritten by using only two variables, which proves that an even more
restricted fragment of FOIL is hard to evaluate. The following two-variable formula is equivalent to

P():

Jy(x CyAFULL(y) AV ((x CyA—-y Cz) —

Jy(z CyA—y CaA-FULL(y)) VVy((z Sy A -y S z) = Pos(y)))).

In what follows, we prove that ¢ is satisfiable if and only if 27 |= 1/ (e), from which we conclude
that the theorem holds.

(<)

Assume that 27, |= 9 (e), and assume that e; is a witness for the variable y, that is,

27, = eCe AFULL(e1) AVz((z Cey A—e; Cz) —
Ju(z CuA—-uCzA-FULL(u)) VYo ((z CvA-wCz) = PosS(v))).
In what follows, we show that e;(¢) = 1, from which we conclude that ¢ is satisfiable.
Fix an arbitrary i € {1,...,n}. Then, let ez be a partial instance of dimension n + m
such that (i) ez[i] = L; (ii) eg[j] = 1 for each j € {1,...,n} with j # 4, and (iii)
ex[n + k| = e1[n + k| foreach k € {1,...,m}. Then given that (e2 C e; A —e; C e3),
we have that:

A7, F Ju(es CuA—uC ey AN—-FULL(u)) V
Vo ((e2 Cv A —w C ey) = POS(v)).

Therefore, given that e, assigns value L to exactly one feature, we conclude that:

2T,

@

E Vo((es CvA-wCey) — Pos(v)). (5)

Define ez as an instance of dimension n + m such that eg[i] = 0, e3[j] = 1 for each
j€{l,...,n} with j # 4, and e3[n + k] = ez[n + k] for each k € {1,...,m}. Then,
by considering that (e2 C e3 A —es C es) holds, we conclude from 5 that POs(e3) holds.

Therefore, given that e3[i] = 0 and e3[j] = 1 foreach j € {1,...,n} with j < ¢, we have
that 7¢, (es) = 1, from which we deduce that ¢, (e1) = 1, since e1[n + j] = e2[n + j] =
es[n + j] forevery j € {1,...,m}. Asiis an arbitrary element in the set {1,...,n}, we

conclude that e, (C;) = 1 forevery i € {1,...,n} and, thus, e;(p) = 1, which was to be
shown.

Assume that ¢ is satisfiable, and let o be a truth assignment such that o(¢) = 1. Moreover,
define an instance e; of dimension 7 + m such that e;[i] = 1 foreach i € {1,...,n} and
ei[n + j| = o(z;) foreach j € {1,...,m}. Then we have that e;(¢) = 1, e C e; and
FULL(eq) hold. Next we show that:
Ar, F Vz((zCerA—-e; Cz) —
Ju(z CuA-uCzA-FULL(u)) VYo ((z CvA-wCz) = Pos(v))),

from which we conclude that 7. |= v(e). Let e, be a partial instance of dimension n +m
such that (e3 C e; A —e; C e5) holds. We need to prove that:

A7, F Ju(es CuA—uC ey AN-FULL(u)) V
Yo ((e2 Cv A -w Cey) = POs(v)).
Notice that e, assigns value L to at least one feature in X, since (e2 C e1 A —e; C e3)
holds. If e; assigns value L to at least two features, then clearly an E Ju(es Cun—uC

e2 A—FULL(u)). Hence, assume that e, assigns value L to exactly one feature, and consider
the following cases.
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— If es[n + j] = L for some j € {1,...,m}. Then for every partial instance ez of
dimension n + m such that (e2 C e3 A ez C e3) holds, we have that e3[i] = 1 for
every i € {1,...,n}. Therefore, from the definition of 7,,, we conclude that POS(e3)
holds. Thus, we have that 2l7, = Vv ((e2 C v A —v C ey) — POS(v)).

- If ex[i] = L forsome ¢ € {1,...,n}. Then assume that e is a partial instance of
dimension n+m such that (ex C e3A—ez C e2) holds. If e3[i] = 1, then we have that
es[j] = 1forevery j € {1,...,n}, and we conclude by definition of 7, that POS(e3)
holds. If e3[i] = 0, then we conclude that 7., (e3) = T¢, (e3), since e3[j] = 1 for every
j€{1,...,n} such that j < i. Given that e, es and e3 only differ in the value of f;,
we have that e3[n + k] = es[n + k] = ej[n + k] forevery k € {1,...,m}, so that
Te,(e3) = T, (e1). But then given that eq (¢) = 1, we know that ¢, (e1) = 1, which
implies that 7,(e3) = T¢,(es) = Tc,(e1) = 1. We conclude again that POS(e3)
holds, from which we deduce that 27, = Vv ((e2 € v A —v C ez) — POS(v)).

This concludes the proof of the theorem.

D Proof of Proposition 1

Let us restate and prove the corresponding proposition.

Proposition 1. Let ¢ be a query in IFOIL or VFOIL. Then EVAL(p, DTree) and EVAL(p, OBDD)
can be solved in polynomial time.

Proof. We will prove this for the more general class of FBDD, that contains both DTree and OBDD.
Assume that the input formula is of the form ¢ = x4, - -+, Jzp(ay, .. ., xx), with ¢ quantifier-free,
and let M be the input model with dim(M) = n. Our algorithm will try to construct a valuation
e, ..., e of the variables of ¢ such that M |= ¢(eq, ..., ex), and if this fails, it will be certain that
no satisfying valuation exists.

We assume as well the input formula has constants but no free-variables as if the input instance
has free variable we can simply replace them by the partial instances e; supplied in the input. Let
V ={a1,...,xi} be the variables mentioned in ¢, of which there is only a constant number as ¢ is
fixed. Let E = {ey,..., e} be their corresponding undetermined instances.

For each element in the domain of 2 4, that is, for each tuple in {0, 1, L }", we define its rype as the
set of unary predicates of JFOIL that it satisfies when interpreted over 2 »4. In the case of JFOIL,
this set corresponds either to {POs} or to {=P0Ss}, but we present the general strategy as it can be
used for bigger fragments of FOIL, as shown later in the proof of Theorem 2.

Let 7 be the set of types which is of course a fixed set independent of M. We will guess the type of
each instance e € E. More formally, we can iterate over all type assignments 7 : &/ — 7T as there is
only fixed number of them. Similarly, we can define a containment assignment ~ as an assignment
of all the ordered pairs (e;, e;) to {0, 1}, with the meaning that e; C e; iff y(e;,e;) = 1. Such an
assignment is said to be possible only if it holds the properties of a partial order. Given a possible
containment assignment -y, we can interpret it as a pair of sets

P ={(ei,e;) | y(ei,e;) =1} ; N ={(ei,e;)|(ei,e;) =0}

Note as well that there is a constant number of possibilities for the pair P, N. Because the formula ¢
is existential, if there is an determinization of E that models ¢, then there is a pair (7, = (P, N))
where 7 is a possible type assignment and v = (P, N) is a possible containment assignment, such
that F is consistent with both 7 and . More precisely, F is consistent with 7 and ~ iff:

* For every e € E and every unary predicate p,

pET(e) « ecpi

* For every pair e;,e; € E,

v(ei,e) =1 <= (e;,€;) eCm
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We can afford to iterate over the constantly many pairs (7, ), and for each pair (7,) it is trivial
to decide whether ¢ gets satisfied under said assignments (simply by replacing every atomic term
in ¢ by the value assigned to it by 7 or 7). Therefore, in order to prove the whole theorem, it is
enough to design a polynomial time algorithm that decides whether there determinization of F that
is a consistent with a given pair (7,~). More precisely, proving the next claim will be enough to
conclude our proof.

Claim 1. Given a pair (1,7 = (P, N)), one can check in polynomial time whether there is a
determinization of E that is consistent with (T,7).

Proof of Claim 1. First, as the desired determinization £ must be consistent with NV, it must hold
that for every fact (e;,e;) € N, there is an index 1 < k < n such that e;[k] # L and e;[k] # e;[k].
We can afford to guess, for each of the constantly many facts (e;,e;) € N, an index k and the
values of e;[k], e;[k], that certify the fact. After said guesses have been made, we can assume a set
F of guessed facts of the form e[k] = «, with o € {0, 1, L}. Then, for every fact in F’ of the form
elk] = B, with 8 € {0,1}, we include in F all facts of the form €’[k] = § for every €’ such that
(e,€’) € P. Also, for every fact in F of the form e[k] = L, we include €’[k] = L for every €’ such
that (e/,e) € P. As any determinization of F respecting F’ will at least be consistent with IV, it
remains only to check whether there is an interpretation E respecting to F' that is consistent with 7
and P.

If F fully determines some predicates that a certain instance e € E must satisfy, for example because
F contains facts e[k] = 8 € {0,1} forall 1 < k < n and thus we know that e must be a full instance,
we can check whether POS(e) and if that holds reject immediately if POS(e) ¢ 7(e). Therefore, we
can safely assume this is not the case, and that 7 is not directly contradicted by F'. We thus modify
the undetermined instances eq, . . ., e according to F. Let us now interpret P as a directed acyclic
graph G obtained in the following way: (i) create a node for every instance e € F, (ii) create an edge
e — €' iff (e,e’) € P, (iii) collapse strongly connected components to a single node. Note that, as
strongly connected components before the last step correspond to instances that must be equal, we
can think of them as a single instance, because forcefully 7 must assign the same to each of them.
We can now view our problem as that of determinizing every node in a DAG G, in such a way that
the containment dictated by the graph is satisfied, and so is 7.

If G has multiple connected components (it will only have a constant number of them), it is easy to see
that we can simply make the check for each of them separately, and return that the instance is positive
if every connected component holds the check. This is because different connected components do
not share instances e, and thus a determinization of a connected component is always compatible
with the determinization of another connected component. As a consequence, our problem is now
even smaller; we need to show that it is possible to determine in polynomial time if the undetermined
components in each node of a given connected DAG G can be assigned values that are consistent
with given assignments 7 and P, assuming the guessed facts F'.

We now show a direct simple algorithm for this problem:

1. Choose an arbitrary topological ordering ¢ of G.

2. Iterate over the nodes according to ¢, and for each node e do the next step.
3. If Pos € 7(e), go to step 4., otherwise go to 5.
4

. We determinize e in an arbitrary way that is accepted by M. This is easily done in
polynomial time for FBDDs; it is enough to prune the edges of the FBDD that contradict a
defined feature in e, and then find any positive leaf of the resulting model. Take e to be the
next node according to ¢ and go back to 3. If there is no next node, go to 6.

5. Assign every undetermined component of e to _L, as that does not restrict any future choices
while ensuring that POS ¢ 7(e). Take e to be the next node according to ¢ and go back to 3.
If there is no next node, go to 6.

6. Now that nodes have no undetermined components, check that every fact dictated by 7 is
true for the values that have been determined. If all the facts are correctly satisfied, return
Yes, otherwise return No.
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It is clear that, if the preceding algorithm returns Yes, then it is correct, as it has a concrete deter-
minization consistent with 7, and it must be consistent with P as every undetermined component that
is assigned 0 or 1 its propagated to the successors in the graph. It only remains to justify that it is
correct when it returns No. Assume, looking for a contradiction, that the algorithm returns No but
there actually exists a determinization B of E that is consistent with 7 and P, assuming the guessed
facts F'. Let A be the determinization that the algorithm tested in step 6, and let 7 be the first node
according to ¢, the choice of the algorithm in step 1, such that A(¢;) # B(¢;). Such an index must
exists because A must differ from B. Among all determinizations that are consistent with 7 and
P, let B’ be the one that maximizes the index ¢ of its first difference with A. Then, let e be i-th
node according to ¢, and thus the first node where A and B’ differ. If POs € 7(e), the algorithm
determinized e in an arbitrary way that makes e a positive instance. But then, as e is positive (and
therefore a full instance), it cannot have any successors in G, and thus if we let B” := B’ except
for B"”(e) .= A(e), then B” must also be consistent with 7, which contradicts the maximality of
i. If POS ¢ 7(e) we have two cases, either B’(e) is a full instance or not. If it is, then again it has
no successors in G, so it must be that the inconsistency is that the algorithm determinized e in a
way that makes it a positive instance. This is clearly not possible, as the only step in the algorithm
that introduces values different from _L, and thus that makes feasible for e to be a positive instance,
is step 4, which occurs exactly when POS € 7(e). It remains to see the case where B’(e) is not
a full instance. Assume j is the first component for which A(e)[j] # B'(e)[j]. If A(e)[j] = L,
then note that every successor of B’(e) is also a successor of A(e) and thus if B’(e) is consistent
with 7, then so is A(e). This implies the inconsistency in 7 must appear later in ¢, and thus we can
again take B” equal to B’ except for B”(e) := A(e) which will contradict the maximality of . If
A(e)[j] # L, then said value need to come from F, as the algorithm only introduces the value |
for instances where POS ¢ 7(e), which means that B’(e)[j] = A(e)[j], as B’ must also respect F,
which contradicts the minimality of j.

O

As the preceding claim has been proved, and there are constantly many pairs (7, ) to consider, there
is a polynomial time algorithm for the whole problem. O

E Proof of Theorem 2, Proposition 2 and Proposition 3

Before the proofs, let us gain a better understanding on the PARTIALALLPOS and PARTIALALLNEG
formulas. Recall that

PARTIALALLPOS(z,y,2) = Ju|x C u A ALLPOS(u) A
Wy CovAuCo)AFw(zCwAuCw) (6)

We will prove that this query captures an important computational problem. Let us introduce a fourth
kind of value: <>, so we now define undetermined instances as tuples in {0,1, L, {$}™ for some
n > 1. A component with value < is said to be undetermined. Given an undetermined instance e
of dimension n, we say that a partial instance €’ of dimension n is a determinization of e if for e
matches €’ in every component that is not undetermined. Note that e cannot have undetermined
components as it is a partial instance (i.e., a tuple in {0, 1, L }"™).

Consider now the following computational problem:

Problem: DETERMINIZATIONALLPOS(C)
Input: A model M € C of dimension n, and an undetermined instance e of dimension n
Output:  YES, if there is a determinization €’ of e such that all completions of e’ are positive,
and NO otherwise

It turns out that DETERMINIZATIONALLPOS is intimately related to PARTIALALLPOS:

Lemma 1. Let C be any class of models. Then EVAL(PARTIALALLPOS,C) can be solved in
polynomial time if and only if DETERMINIZATIONALLPOS(C) can also be solved in polynomial
time.
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Proof. We prove both directions as separate claims for an arbitrary class of models C.

Claim 2. [f EVAL(PARTIALALLPOS,C) can be solved in polynomial time then
DETERMINIZATIONALLPOS(C) can also be solved in polynomial time.

Proof. Assume that EVAL(PARTIALALLPOS,C) can be solved in polynomial time for C. Then,
consider an instance (M, e) of DETERMINIZATIONALLPOS, and let n be the dimension of said
instance. From e, we build three partial instances e, e,, e, in the following way:

* e, is a determinization of e such that every undetermined component of e is replaced by L
ine,.

* e, is a partial instance that has a 1 in every component where e has L, and L in every other
component.

* e, is a partial instance that has a 0 in every component where e has 1, and L in every other
component.

We now claim that M |= PARTIALALLPOS(e,, e,, e,) if and only if (M, e) is a positive instance
of DETERMINIZATIONALLPOS.

Indeed, assume first that M |= PARTIALALLPOS(e,, ey, €. ), and let be e,, e,, e,, be their wit-
nesses. Trivially, e,, is a partial instance for which every completion is positive. Note that because
M = e, C e, and the definition of e,, we have that the defined components of e,, and e match. It
only remains to see that if e[;] = L for some 1 < i < n, then e,[i] = L as well. Assume to the
contrary that for some ¢ it happens that e[i] = L but e, [i] # L. If e,[i] = 0, then e,[i] = 0, as
M = e, Ce,. Bute,[i] = 0 contradicts the fact that e, [i] = 1 (by construction) as M = e, C e,
Similarly, if e, [i] = 1, then e, [i] = 1, as M = e, C e,,. But e,[i] = 1 contradicts the fact that
e, [i] = 0 (by construction) as M |= e, C e,,.

For the other direction, assume (M, e) is a positive instance of DETERMINIZATIONALLPOS, and
let € be the determinization of e that serves as a witness. We claim that e,, := €’ is a witness
for M |= PARTIALALLPOS(e,, e,,e;). Indeed, it is trivial that M |= e, C e, as both e, and
e, are determinization of e, but e, replaced undetermined components by L. It is also clear that
M E ALLPOS(e,, ), as all completions of e’ are positive by definition. Then, let e, be the completion
of e, that replaces every _L component of e,, with 1. Let e, be defined analogously but replacing L
with 0. It is then easy to check that

ME(e,Ce,Ne, Cey)A(e; CeyAe, Cey)
and thus M = PARTIALALLPOS(e,, e,, e.), which is enough to conclude the proof. O

Claim 3. If DETERMINIZATIONALLPOS(C) can be solved in polynomial time then
EVAL(PARTIALALLPOS, C) can also be solved in polynomial time.

Proof. Assume that DETERMINIZATIONALLPOS(C) can be solved in polynomial time. Then, let
(M, ez, ey, e;) be an input of EVAL(PARTIALALLPOS, C), and let n = dim(M).

First, we claim that if for some 1 < 4 < n it happens that e [i] # L # e.[i] or
e.[i] # L # e,[i], then we can trivially deduce that (M, e, e,,e.) is a negative instance of
EVAL(PARTIALALLPOS,C). Indeed, if e,[i] # L, and (M, e,,e,,e,) were to be a positive in-
stance, then there would exists witnesses e, €,, €,,, which would hold the following properties:

1. ey[i] = e,[i], as M = e, C e, and e,[i] is assumed to not be L.

2. eyfil = eyli],as M = e, Ce,ifeyfi] # L.
3. eylil =e.fi,as M [=e, Ce,ife.[i] # L.
4
5

. eyli] = eyli],as M = e, C e, and e, [i] = e,[i] is assumed to not be L.

. eyli] = eyli], as M = e, C e, and e,[i] = e,[i] is assumed to not be L.
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Transitively, it would follow if e, [i] # L, then e,[i] = e,[i], and if e, [i| # L, then e,[i] = e.[],
which contradicts the assumption.

Therefore, we can safely assume from now on that, if e, [i] # L, then either e, [i] = L or e,[i] =
e.[i], and the same holds for e, [i]. We now define e as an undetermined instance that is equal to
e, except that it has ¢ in every component where e, has L. We now claim that (M, e;, e, e;)
is a positive instance of EVAL(PARTIALALLPOS, C) if and only if (M, e) is a positive instance of
DETERMINIZATIONALLPOS.

Indeed, assume that (M, e,, ey, €,) is a positive instance of EVAL(PARTIALALLPOS, C). Then,
it is trivial that its witness e,, is a determinization of e with only positive completions. For the
other direction, if (M, e) is a positive instance of DETERMINIZATIONALLPOS with witness €,
then it is easy to see that taking e, = e, = e, := € proves that (M, e,,e,,e;) is a positive
instance of EVAL(PARTIALALLPOS,C), as clearly M |= e, C e, A ALLPOS(e,,) and also trivially
MEe, Ce, Ney, C ey, thus leaving only M = e, C e, Ae, C e, to justify, which we do
simply by using the previous fact that if e, [¢] # L for some 4, e, [i] = e, [i], from which we know
that e, [i] = ey [i],as M |= e, C e, C e,. The same reasoning justifies that M = e, C e,

O
The lemma follows directly from the combination of both claims. O

It is easy to see that the same proof applies to PARTIALALLNEG and DETERMINIZATIONALLNEG.
We now restate the main theorem of this section and proceed to prove it.

Theorem 2. For every class C of models, the following conditions are equivalent: (a) EVAL(¢,C)

can be solved in polynomial time for each query @ in IFOIL™; (b) EVAL(PARTIALALLPOS, C) and
EVAL(PARTIALALLNEG, C) can be solved in polynomial time.

Proof. The fact that (a) implies (b) is trivial as PARTIALALLPOS and PARTIALALLNEG can be
written in IFOIL™ as shown in the body of the paper. It remains to prove that (b) implies (a). The
proof is an extension of the proof of Proposition 1. As it is again constructive and technical, let us
first present a sketch. We assume unary predicates EXISTSNEG, EXISTSPOS, that trivially allow for
expressing ALLPOS and ALLNEG.

Sketch of proof Assume that the input formula is of the form ¢ = x4, -+, Jzp(xy, ..., k),
with ¢ quantifier-free, and let M be the input model with dim(M) = n. Our algorithm will try to
construct a valuation eq, . . . , e, of the variables of ¢ such that M |= v (eq, ..., ey), and if this fails,
it will be certain that no satisfying valuation exists. In order to do so, the algorithm starts taking
e, ..., e as undetermined instances, and in particular it starts setting e; = ey = =e, = O
Then as k is a fixed constant, the algorithm can afford to guess which unary predlcates of IFOIL™
will be satisfied by each e;, and also all the containments e; C e; that hold. Note that some of such
guesses might be inconsistent, as for example, they could fail to respect the transitive property of C,
or guess that an e; will hold both PoOs and EXISTSNEG, which is not possible either. Inconsistent
guesses are simply discarded. As only constantly many guesses exists, the complicated part of
the algorithm is: given a consistent guess, check if it is possible to determinize all instances e;
through e; while respecting the guess. One can show that the complicated cases are captured
by the DETERMINIZATIONALLPOS and DETERMINIZATIONALLNEG problems, which because of
Lemma | are solvable in polynomial time given condition (b).

We assume as well the input formula has no free-variables, as it complicates the exposition without
adding combinatorial insight. Let V' = {1, ..., x\} be the variables mentioned in ¢, of which there
is only a constant number as ¢ is fixed. Let E = {ey, ..., e} be their corresponding undetermined
instances, as the proof sketch suggests. Also, let M be the input model, and let n = dim(M). For
each element in the domain of 2( v, that is, for each tuple in {0, 1, L }", we define its rype as the set of
unary predicates of IFOIL™ that it satisfies when interpreted over 2l »(. Note that not all sets of unary
predicates are possible types, as for example no tuple can satisfy the set {P0OS, EXISTSNEG}. Let T
be the set of types that are possible, which is of course a fixed set independent of M. We will guess
the type of each instance e € E. More formally, we can iterate over all type assignments 7 : £ — T
as there is only fixed number of them. Similarly, we can define a containment assignment -y as an
assignment of all the ordered pairs (e;, e;) to {0, 1}, with the meaning that e; C e; iff v(e;, e;) = 1.
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Such an assignment is said to be possible only if it holds the properties of a partial order. Given a
possible containment assignment «y, we can interpret it as a pair of sets

P ={(ei,e;) |y(ei,e;) =1} ; N ={(ei,e;)|(ei,e;) =0}

Note as well that there is a constant number of possibilities for the pair P, V. Because the formula ¢
is existential, if there is an determinization of E that models ¢, then there is a pair (7,7 = (P, N))
where 7 is a possible type assignment and v = (P, N) is a possible containment assignment, such
that F is consistent with both 7 and . More precisely, E is consistent with 7 and - iff:

» For every e € I and every unary predicate p,

pET(e) = ecpM

* For every pair e;,e; € I,

v(eie;) =1 <= (e;,e;) €CM
We can afford to iterate over the constantly many pairs (7, ), and for each pair (7,) it is trivial
to decide whether ¢ gets satisfied under said assignments (simply by replacing every atomic term
in ¢ by the value assigned to it by 7 or 7). Therefore, in order to prove the whole theorem, it is
enough to design a polynomial time algorithm that decides whether there determinization of E that
is a consistent with a given pair (7,~). More precisely, proving the next claim will be enough to
conclude our proof.

Claim 4. Given a pair (1,7 = (P, N)), one can check in polynomial time whether there is a
determinization of E that is consistent with (T, 7).

Proof. First, as the desired determinization £ must be consistent with IV, it must hold that for every
fact (e;,e;) € N, there is an index 1 < k < n such that e;[k] # L and e;[k] # e;[k]. We can
afford to guess, for each of the constantly many facts (e;,e;) € N, an index k and the values of
e;[k], e;[k], that certify the fact. Also, for every FULL ¢ 7(e), we can guess a component e[k] = L.
After said guesses have been made, we can assume a set F' of guessed facts of the form e[k] = «,
with o € {0,1, L}. Then, for every fact in F of the form e[k] = 3, with 8 € {0, 1}, we include in
F all facts of the form €’[k] = §3 for every €’ such that (e,e’) € P. Also, for every fact in F' of the
form e[k] = L, we include €'[k] = L for every €’ such that (¢/,e) € P. As any determinization
of E respecting F' will at least be consistent with N, it remains only to check whether there is an
interpretation F respecting to F' that is consistent with 7 and P.

If F fully determines some predicates that a certain instance e € E must satisfy, for example because
F contains facts e[k] = 8 € {0,1} forall 1 < k& < n and thus we know that e must be a full instance,
we can reject immediately if FULL ¢ 7(e). Therefore, we can safely assume this is not the case,
and that 7 is not directly contradicted by F'. Let us now interpret P as a directed acyclic graph G
obtained in the following way: (i) create a node for every instance e € F, (ii) create an edge e — €’
iff (e, e’) € P, (iii) collapse strongly connected components to a single node. Note that, as strongly
connected components before the last step correspond to instances that must be equal, we can think
of them as a single instance, because forcefully 7 must assign the same to each of them. We can now
view our problem as that of determinizing every node in a DAG G, in such a way that the containment
dictated by the graph is satisfied, and so is 7.

If G has multiple connected components (it will only have a constant number of them), it is easy to see
that we can simply make the check for each of them separately, and return that the instance is positive
if every connected component holds the check. This is because different connected components do
not share instances e, and thus a determinization of a connected component is always compatible
with the determinization of another connected component. As a consequence, our problem is now
even smaller; we need to show that it is possible to determine in polynomial time if the undetermined
components in each node of a given connected DAG G can be assigned values that are consistent
with given assignments 7 and P.

We now show a direct simple algorithm for this problem:

1. Choose an arbitrary topological ordering ¢ of G.
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2. Iterate over the nodes according to ¢, and for each node e do the next step.
3. If FULL € 7(e), go to step 4., otherwise go to 5.

4. We either have POs € 7(e) or EXISTSNEG € 7(e), but not both. On the first case, solve
the DETERMINIZATIONALLPOS problem with input (M, e) and determinize e accordingly.
On the second case, solve the DETERMINIZATIONALLNEG problem. Take e to be the next
node according to ¢ and go back to 3. If there is no next node, go to 6.

5. We either have EXISTSPOS € 7(e) or EXISTSNEG € 7(e), or both. If both, assign
every undetermined component of e to L, as that only gives more room for comple-
tions of e to be both positive and negative. If only EXISTSPOS € 7(e), solve the
DETERMINIZATIONALLPOS problem with input (M, e). If only EXISTSNEG € 7(e),
solve the DETERMINIZATIONALLNEG problem. Then, propagate each value O or 1 that
was assigned to an undetermined component of e to its successors in GG. Take e to be the
next node according to ¢ and go back to 3. If there is no next node, go to 6.

6. Now that nodes have no undetermined components, check that every fact dictated by 7 is
true for the values that have been determined. If all the facts are correctly satisfied, return
Yes, otherwise return No.

It is clear that, if the preceding algorithm returns Yes, then it is correct, as it has a concrete deter-
minization consistent with 7, and it must be consistent with P as every undetermined component
that is assigned 0 or 1 its propagated to the successors in the graph. It only remains to justify that
it is correct when it returns No. Assume, looking for a contradiction, that the algorithm returns No
but there actually exists a determinization B of E that is consistent with 7 and P. Let A be the
determinization that the algorithm tested in step 6, and let i be the first node according to ¢, the
choice of the algorithm in step 1, such that A(¢;) # B(¢;). Such an index must exists because A
must differ from B. Among all determinizations that are consistent with 7 and P, let B’ be the one
that maximizes the index 7 of its first difference with A. Then, let e be i-th node according to ¢,
and thus the first node where A and B’ differ. If FULL € 7(e), then the algorithm determinized e
according to step 4. If POs € 7(e), the algorithm determinized e according to the algorithm for
DETERMINIZATIONALLPOS, and thus if B(e) is effectively positive, then A(e) must also be, by
Lemma 1 and the theorem hypothesis. Therefore, the inconsistency between A and 7 is not created
by A(e). But then, as e is full, it cannot have any successors in G, and thus if we let B” := B’ except
for B”(e) := A(e), then B” must also be consistent with 7, which contradicts the maximality of ¢.
The case in which EXISTSNEG € 7(e) is analogous.

It remains to see the case where FULL ¢ 7(e). Assume j is the first component for which A(e)[j] #
B'(e)[j]. If A(e)[j] = L, then it must be the case that both EXISTSPOS € 7(e) and EXISTSNEG €
7(e). Note that every completion of B’(e) is also a completion of A(e) and thus if B’(e) is consistent
with 7, then so is A(e). This implies the inconsistency in 7 must appear later in ¢, and thus we can
again take B equal to B’ except for B”(e) :== A(e) which will contradict the maximality of i.

If A(e)[j] =1 or A(e)[j] = 0, it must be the case that EXISTSPOS € 7(e) but EXISTSNEG ¢ 7(e),
or vice-versa. This means that determinizations of e must have either all positive completions or
all negative completions. Again because of Lemma | and the theorem hypothesis, A(e) must hold
ALLPOS or ALLNEG if it was possible to determinize e in that way, which is the case because B(e)
does so. Then note that by taking B” which is equal to B" except that it B”(e’)[j] = A(e)[j] for
every successor € of e (itself included), we get an assignment that must also be consistent with 7,
as EXISTSNEG ¢ 7(e) implies that EXISTSNEG does not hold for any of the successors of e either.
Moreover, no fact of the form FULL can be broken either, as for every non-full variable we already
included in F' a guess of an undefined component for it. Thus B” is consistent with 7, and it either
contradicts the maximality of ¢ or the minimality of j. Having explored all possible cases of failure,
we can conclude that the algorithm is correct, and as it is clearly polynomial, we finish the proof of
this claim.

O

As the preceding claim has been proved, and there are constantly many pairs (7, ) to consider, there
is a polynomial time algorithm for the whole problem.
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In order to finish this section, we restate and prove Proposition 2.

Proposition 2. The problems EVAL(PARTIALALLPOS, Ptron) and
EVAL(PARTIALALLNEG, Ptron) can be solved in polynomial time.

Proof. Based on Lemma I, it 1is enough to show that the problems
DETERMINIZATIONALLPOS(Ptron) and DETERMINIZATIONALLNEG(Ptron) can be solved
in polynomial time. Let us focus on the case of DETERMINIZATIONALLPOS, as the other case is
analogous. Thus, an input instance consists of a perceptron M = (w, t) of dimension n, and an
undetermined instance e of dimension n. A polynomial time algorithm follows directly from the next
claim.

Claim 5. (M, e) a YES instance of DETERMINIZATIONALLPOS(Ptron) if and only if the following
equation holds

S wieli] |+ Y] minOw) |+ Y max(0,w) | >t

i,e[i]e{0,1} i,ei]l=L i,ei]=

Proof of Claim 4. For the forward direction, assume (M, e) a YES instance, and let €’ the deter-
minization of e such that all its completions are positive under M. In particular, consider the
completion e* such that if €'[i] = L, then e*[i] = min(0, w;), and e*[{] = €'[i] otherwise. The fact
that this completion is positive means that

Z wie'[i] | + Z min(0,w;) | >t

i,e’[i]e{0,1} i,e’[i]=L

Now, the components in €’ can be separated according to whether they were determined or not in e
already:

Z wseld] | + Z min(0,w;) | +

i,e[i]€{0,1} iefi]=L

Z wie'[i] | + Z min(0,w;) | >t

i,e[i]=<,e’[i]€{0,1} i,e[i]=<,e’[i]=L1

By noting that max(0, w;) > w;e’[{] and max(0, w;) > min(0, w;) we have that

Z max(0,w;) | > Z wie'[i] | + Z min(0, w;)

i,e[i]= 1,ei]=<,e’[i]e{0,1} i,e[i]=0,e/[i]=1

and thus we conclude simply by combining the three previous equations. For the backward direction,
assume the equation holds, and let define the determinization e* such that

efi] ifefi] # <
e*li]<1  ife[i] =< and w; >0
0 otherwise.

Note that this implies that if e[i] = ¢ then e*[i]w; = max(0,w;). Now let €’ be any completion of
e*, and we aim to prove that
Z wie'[i] >t

By construction, we have that

Zwie’[i]: Z wieli] | + Z max (0, w;) | + w;e'[1]

i,e[1]€{0,1} i,e[i]=0 iefi]=L



But

wie/ [Z] > Z min(07 wi)

i,efi]=1 i,ei]=1L
and thus

Zwie’[i]z Z wield | + Z min(0, w;) | + Z max (0, w;)

i,e[1]€{0,1} i,eli]=1 i,e[i|=

which is at least ¢ by hypothesis. Therefore, any completion ¢’ is positive, which concludes the
proof. O

O

In order to make the previous result more meaningful, we show explicitly that the class of perceptrons
is not tractable for unrestricted FOIL.

Proposition 4. The problem of deciding whether a model is biased [16], expressible in FOIL through
the formula BIASEDMODEL, is NP-hard for the class of perceptrons.

Proof. In order to show hardness we will reduce from the subset sum problem, which is well known to
be NP-hard. Recall that the subset sum problem consists on, given natural numbers s1, ..., s,,k € N,
to decide whether there is a subset S C {1,...,n} suchthat ), s s; = k. Let us proceed with the
reduction. Based on a subset sum instance sy, ..., S,, k, we create a perceptron with n unprotected
features (that we assume to have indices 1 through n) with associated weights s1, ..., s, and a single
protected feature, with index n + 1 and weight 1. Given the described weights, let M be the resulting
perceptron that has those weights and bias' —k — 1. The following claim is enough to establish the
reduction.

Claim 6. The perceptron M is biased if and only if s1, . .., sy, k is a positive instance of the subset
sum problem.

For the forward direction, consider M to be biased. That means there are instances e; and e;
such that M(e;) # M (ez), that differ only on the n + 1-th feature, as it is the only protected one.
Assume wlog that M(e;) = 1 and M(e3) = 0, by swapping the variables if it is not already the
case. Thisimpliesw -e; > k+ landw-e; < k+ 1. Asw - e; > w - ey, and e; differs from
eo only on the n + 1-th feature, it must hold that e;[n 4+ 1] = 1 and ez[n + 1] = 0, as wy,+1 = 1.
Let P be the set of unprotected features of e; (and thus e,) that are set to 1. Then we can write
w-e; = (Ziep sz) + 1, as each weight w; was chosen to be equal to s;. Then when considering
e; we have that (ZiEP si) + 1 > k 4 1 and, by considering es, that (Ziep sl) < k+1, from
which we deduce that ), s; = k. We have found a subset of {1, ..., s, } that adds up to k, which
is enough to conclude the forward direction of the proof. For the backward direction, consider an
arbitrary set P C {1,...,n} suchthat ), . s; = k. Itis then easy to verify that the instance e; that
has a 1 in every feature whose index belongs to P, a 1 in the n + 1-th feature, and 0 on the rest, is
a positive instance of M. Furthermore, e that differs from e; only in the n + 1-th feature can be
checked to be a negative instance. As we have found a pair of instances that differ only on protected
features, and yet have opposite classifications, the model M must be biased.

We now restate and prove Proposition 3.

Proposition 3. Ler C be OBDD or DTree. The problems EVAL(PARTIALALLPOS,C) and
EVAL(PARTIALALLNEG, C) are NP-hard.

Proof. . It is enough to prove that hardness holds already for the class of ordered decision trees
(i.e., DTree N OBDD). Moreover, based on Lemma 1, it is enough to show that the problems
DETERMINIZATIONALLPOS and DETERMINIZATIONALLNEG are NP-hard for ordered decision
trees. We focus on the case of DETERMINIZATIONALLPOS, as the other one is analogous.

'Recall that the bias of a perceptron has nothing to do with the notion of bias that relates to fairness.
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We do this by reducing from 3-SAT. Indeed, let ¢ be a formula in 3CNF, with m clauses and
n variables. Let us assume that m = 2% for some integer k, as otherwise one can simply add
2Mog2m1 _ 1y € O(m) clauses consisting of new fresh variables. Then, create an ordered decision
tree 7 of dimension k + n in the following way:

* The first k features are labeled a1, . . . , ag, and then n features corresponding to the variables
of ¢ are labeled x4, . . ., z,. The features in 7 are ordered

a1 Rax =X Rap 30 202 X0 2Ty

* Start creating 7 by building a complete binary ordered tree over the features a1, ..., a,
where the root has label a;, and all nodes at distance ¢ from the root have label a; ;. The
last layer of said tree consists exactly of 2*~! nodes labeled ay,.

» Foreachclause C; (1 <i< 2’“) create an ordered (according to the ordering described
above) decision tree 7; equivalent to said clause. Note that as each clause mentions exactly
3 variables, each of the 7; can be built in constant time from clause C;.

* Let L be the set of 2°~! nodes labeled with ay, in 7. Let £1, - - - , {511 be any ordering of
L, and to node ¢; connect T5;_1 with an edge labeled 0 and 75; with an edge labeled 0.

Note that this construction can trivially be performed in polynomial time. Now build an undetermined
instance e of dimension k 4 n, where e[i] = L for 1 <14 < k and e[i] = { otherwise. We claim that
there exists a determinization €’ of e such that all its completions are positive, if and only if, ¢ is
satisfiable. Indeed, assume first that such a determinization €’ exists. Then, define €” in the following
way:

oli] ifefi] # O
e'[i] = < €'[i] ifefi]=<ande'[i] € {0,1}
0 otherwise.

As by construction €’ C e’ it must also hold that all completions of e” are positive. Moreover, note
thate’[i] = L forall 1 <i < kande”’[i] € {0,1} forall k+ 1 < i < k + n. We build an ¢ of
variables of ¢ based on e’ by setting variable z; to €[k + i, for 1 < i < n. Now, we claim that o
is a satisfying assignment. Indeed, to see that o satisfies clause C;, consider the completion e* of
€’ that sets the features ay, . .., ax in such a way that the path of e* over T arrives to 7;. As e* is a
positive instance of 7, it must be a positive instance of 7;, and thus by construction ¢ satisfies C;.

For the other direction, let o be a satisfying assignment to ¢, and build the determinization e* such
that e*[k + i] = o(z;) for 1 < i < n. As o satisfies every clause, e* is a positive instance of every
T;, and thus any completion of e* is a positive instance of 7. [

F Proof of Theorem 3

In order to make the proof more readable, let us first prove a lemma about simple operations over
k-COBDDs.

Lemma 2. The following operations can be performed in polynomial time:

* (Negation) Given a k-COBDD M of dimension n, compute a k-COBDD —M over the
same ordering of variables, such that - M (e) = 1—M(e) for every instance e of dimension
n.

* (Disjunction) Given k-COBDDs M1 and Ms, of dimension n, with a common linear
ordering < on the set {1,...,n} compute a COBDD M = My V My over the same
linear ordering <, and width at most 2k, such that M(e) = max(M;(e), Mz (e)) for
every instance e of dimension n.

* (Conjunction) Given k-COBDDs M and Ms, of dimension n, with a common linear
ordering < on the set {1,...,n} compute a COBDD M = M; A My over the same
linear ordering <, and width at most 2k, such that M(e) = min(M;(e), Ma(e)) for
every instance e of dimension n.
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Proof. Negation is trivial, it suffices to interchange the labels true and false in every leaf of
M. Disjunction and Conjunction follow the classical algorithm for OBDDs by Bryant [7], and in
what follows we argue that width is no more than doubled. Let us introduce some notation; the
inductive structure of OBDDs allows us to say that M has a root node labeled with r € {1,...,n}
connected to OBDDs MY and M1 by edges labeled with 0 and 1 respectively, which we denote as
My = (r, MY, M9). Analogously, let My = (r, M9, M3}), as M and My share the ordering <
and are complete, their root must have the same label. Then, for op € {Conjunction, Disjunction},
Bryant’s algorithm inductively computes operations according to the following equation

Op(MlaMQ) = (Ta Op(M?aMg)aOp(M%aM%)) . (N
Let us use notation M — j for the number of nodes in M labeled with j. We are now ready to prove

a stronger claim by induction on n, the dimension of the models, from which the lemma trivially
follows.

Claim 7. Let My and My be COBDDs of dimension n with a common ordering <, and let j be any
label in {1, ... ,n}. Then Bryant’s algorithm guarantees that

op(M1, Mz) = j < (M1 = j) + (M2 = j).
Proof of Claim 7. If n = 1, the claim is trivial, so we assume n > 1. Trivially, op(My, M3) —

r = 1, so the claim is also trivial for j = . We now examine the general case of j # r, for which we
will use the inductive hypothesis of n — 1. Based on Equation 7, we have that

op(M1, M2) = j = (op(MY, M3) = j) + (op(M], M3) = j)

Note that op(M, M3) and op(M], M3) are COBDDs of dimension n — 1, as they do not include
label r. Then, by inductive hypothesis, we have that

(0p(M§, M3) = j)+(op (M, M3) = j) < (M = j)+(M3 = j)+(M] = j)+(M3 — j)
But by definition,
Mi—=j =M =)+ M —j5) ({12}
By combining the three previous equations, we get the desired result:
op(M, Ma) = j < (M = j) + (Ma — j).
O
We are now ready to finish the proof of the lemma. As for a model M of dimension n we have that
width(M) = max;<j<, (M — j), it follows from Claim 7 that
width (op(M7, M3)) < lrél]agxn(/\/ll = j) + (My = j) < width(M;) 4+ width(Ma)

which concludes the proof. O

We now state a lemma of Capelli and Mengel [8, 9] that will be used in our proof, but before let us
introduce appropriate notation. Given a COBDD M of dimension n, and a set S C {1,...,n} we
define 35 M as a COBDD of dimension n — |S|, such that for every instance e of dimension n — | S|,
we have that 3g M (e) = 1 iff there is an instance €’ of dimension 7 that holds both:

e M(e') =1
s Letthelistty,...,t,_|g correspond to {1,...,n}\S inincreasing order. Then e'[t;] = eli],
foreveryi € {1,...,n—|S|}.

For example, if M is a model of dimension 3 equivalent to (z1 A z2) V (z2 A —x3), then if we take
S = {1,3}, 3gM is equivalent to x5, as if x5 is true, then there exists values of 1 and x5 that satisfy
M (namely 1 and 0) respectively, whereas if x5 is false, then no values of z; and x3 will help satisfy

Lemma 3 (Lemma 1, [8]). Fix an integer k > 0. Given a COBDD M of dimension n and width k,
and a set S C {1,...,n}, one can compute a COBDD 35 M of width at most 2% in polynomial time.
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We can define Vs M as ~3s—M, and thus the previous lemma applies as well to Vg M.

In our case, however, partial instances can have three possible values: 0, 1, and L. Therefore, we
define Complete Ordered Ternary Decision Diagrams (COTDDs) analogously to COBDDs but with
nodes having three outgoing edges labeled with 0, 1, L. Note that, given a COBDD M of dimension
n, we can build in polynomial time a COTDD M3 of dimension n such that for every partial instance
e of dimension n, M3(e) = 1 iff e is a full instance and M(e) = 1. This can be done by first
creating a path P of nodes according to the underlying order of M, starting from the second label in
the ordering, such that each node is connected to the next one by its three outgoing edges, and the
last one is connected to a leaf labeled false. Then, start by M 3 := M, and to each node labeled « in
M3, connect it with its outgoing L edge to the node labeled with the successor of u in P.

We now state the equivalent lemmas for COTDDs.

Lemma 4. The following operations can be performed in polynomial time:

* (Negation) Given a COTDD M of dimension n and width k, compute a COTDD —M
of width k and the same ordering of variables, such that —~M(e) = 1 — M(e) for every
instance e of dimension n.

* (Disjunction) Given COTDDs M and My of width at most k, of dimension n, with a
common linear ordering < on the set {1, ... ,n} compute a COTDD M = My V M over
the same linear ordering <, and width at most 3k, such that M(e) = max(M; (e), Ms(e))
for every instance e of dimension n.

* (Conjunction) Given COTDDs M and My of width at most k, of dimension n, with a
common linear ordering < on the set {1, ... ,n} compute a COTDD M = My A My over
the same linear ordering <, and width at most 3k, such that M(e) = min(Mj(e), Mz (e))
for every instance e of dimension n.

Proof. The case of negation is exactly as before. For disjunction and conjunction the proof works in
the same way but by considering that if M; = (r, M{, M1, M{) and My = (r, M9, M3, M),
then the following equations hold:

Op(Mla MQ) = (Ta Op(M?a Mg)a Op(M%a M%)a Op(MlL7 MQL)) (®)

M == (M=) + (M =)+ (M —j)  ((€{1,2},Vj #r1<j<dim(M))
)
O

Lemma 5 ( Lemma 1, [8]). Fix an integer k > 0. Given a COTDD M of dimension n and width k,
and a set S C {1,...,n}, one can compute a COBDD 35 M of width at most 2% in polynomial time.

Proof. Direct from the proof in [8], as the same construction can be done in the ternary case. O
We are finally ready to restate our theorem and prove it.
Theorem 3. Let k > 1 and query ¢ in FOIL. Then EVAL(p, k-COBDD) can be solved in polyno-

mial time.

Proof. We assume that ¢ alternates quantifiers and starts with an existential one without loss of

generality as one can trivially enforce this by adding dummy variables. Thus, let (1, ..., 2¢) =
Fxp11V2ppo - VTopm—13Torm¥(21, - . ., Torm), Where ¥ is quantifier-free, and let M, ey, ..., ey
be an input of the EVAL(y, k-COBDD) problem. Let n = dim(M).

Let us introduce a final piece of notation: from a list of partial instances ey, . .., e, of dimension
n each, we can define a unique instance ey ;) of dimension pn that is simply the concatenation of
instances eq, . . ., e,. More in general, we will use notation [¢, j] for ¢ < j to denote the set {7, ..., j}.
We use as well ei : j] with ¢ < j referring to the partial instance (e[i], ..., e[j]) of dimension

7 — 1+ 1, where e is a a partial instance of dimension at least j.
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Now, the proof consists of two parts. First, we will show that based on M one can build a COTDD
M’ of width at most f (k) for a suitable function f, such that

M ': w(el, . ,eg+m) — M’(e[l’prm]) =1

We will do this by induction over [¢| in the next claim, but first let us define a linear ordering < of
[1,n(£+ m)] as follows. If 7(1), ..., 7(n) is the ordering of M, then

7)) <7 +n<al)+2n<...<7(1)+ L +m—1)n <
continued by

7(2)<7m2)+n<7m12)+2n<...<7(2)+ (L +m—1)n <
and so on, all the way up to

mn) <7mn)+n<mn)+2n<...<7n)+L+m—1)n
We now formalize the desired claim.

Claim 8. Let ¢ be any formula in FOIL mentioning a set of variables
{zi,...,z;} < A{z1,...,Z04m}, that has at most c logical connectives (i.e., NA,V,—).
Then, we can build in polynomial time a COTDD M, over the ordering <, of dimension n({ + m)
and width at most f(c, k) for a suitable function f, such that for any partial instance e of dimension
n(¢+m)

Mple)=1 <= MEgei:i+n—1],...,e[j:j+n—1])

Proof. The proof is by induction on c. The base cases (¢ = 0) are constructive and relatively involved,
so let us start by the inductive cases, where ¢ > 0.

e If ¢ = ¢1 V ¢, simply use the inductive hypothesis to build models My, and
My, and then use Lemma 4 to build My = My, V Mgy, of width is at most
3 max(width(M, , width(M,))). It is not hard to see that the resulting model satisfies
the desired conditions.

e If ¢ = ¢1 N ¢, simply use the inductive hypothesis to build models My, and
My, and then use Lemma 4 to build My = My, A My, of width is at most
3 max(width(M, , width(M,))). It is not hard to see that the resulting model satisfies
the desired conditions.

* If ¢ = =1, simply use the inductive hypothesis to build model M, and then use Lemma 4
to build My = - M,, of width is at most width(M,, ). It is not hard to see that the
resulting model satisfies the desired conditions.

For the base cases let us introduce some notation to facilitate our construction. We will use Plu, v],
for u < v, to mean a path of nodes labeled from u up to v following the ordering < and where each
node is connected to the next one by its three outgoing edges. Also, if a and b are nodes, a — b
with z € {0, 1, L} means that a’s outgoing edge labeled with x goes to b. If P is a path of nodes,
then P 5 o means that the outgoing edge labeled with z of the last node in P goes to . Similarly,
a < P means means the outgoing edge labeled with z of o (which could be the last node of a path

if o is one) goes to the first node in P. We can now prove that the base cases, when ¢ = 0, are also
satisfied.

o If ¢ = Pos(x;) for i € [1,£ + m], then we build M, recursively as follows. Assume
M = (r, M°, M?'), and create a path P, = P[r,r + (i — 1)n]. Then create three identical
paths P, = P,_,1 = P, == P[r +in,m(n) + ({ 4+ m — 1)n]. Then, add connections

1 0,1,1 e 0
P, = P._,; —— false, as positive instances have no occurrences of L. Connect P, —

P,_oand P, N P,_.. Finally, if we let R(M?), R(M?) be the results of the recursive

procedure applied to M and M, respectively, then we connect P,_, BLLEN R(M") and

P e R(M?1). The recursive procedure applied to a leaf will just keep it as such.

It is easy to see that this can be done in polynomial time, and it is not hard to see that
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the desired equation for M is satisfied. Moreover, note that for each node r in M, we
introduce three nodes with the same label (namely, when creating the paths P, Pr—1
and P,_, ¢, noting that nodes in P,_, ; can be shared for every ¢ such that r < ¢) which
implies the width of M is no more than 3k.

o If ¢ = z; C x;, we build M, as follows. We first build a path Py = [1,7(n) + (¢ +
m — 1)n] — false. For each 1 < ¢ < n we will build a gadget that checks that e;[t] =
1 V e;[t] = e;[t]. The gadget for m(1) will be connected to that of 7(2) and so on, so
the ordering < is respected. The exact form of each gadget depends on whether ¢ < j
or the opposite, as in the first case t + (i — 1)n < ¢t + (j — 1)n, foreach 1 < ¢t < n,
and vice-versa if 7 < 4. Consider first the case where ¢ < j. Then, for the gadget
fort € {1,...,n} we build a path P! := P[n(t), 7(t) + (i — 1)n], two identical paths
P? = P = P[n(t) +in,7(t) + (j — 1)n]. and P* := Plx(t) +jn,n(t) + (L +m —1)n].
We then connect P! % P2 % P4and P! L P8 Ly P4, Also, for a label u, let us denote
s(u) to its successor according to <, and let f(s(u)) be the node in Py with label s(u). Next,

connect Pt L P3 % f(s(n(t) + (j — 1)n)) and P S P3 L f(s(x(t) + (j — 1)n)).

0,1,1 . .
If t = n, we connect P ——= true and otherwise, if t < n and G is the gadget for

0,1,L1 .
t + 1, we connect P* ——= G, 1. The case when j < i is similar, but every gadget for

1 <t < n checks first the value of the ¢-th feature in the j-th variable, and then checks that
the t¢-th variable is either | or matches the previously mentioned value. We omit the details
as they are a trivial modification of the previous construction.

It is clear that this procedure takes polynomial time, and it is not hard to see that this
procedure satisfies the desired condition. Moreover the resulting COTDD has width 3, as
P? and P> make for two occurrences of the labels appearing in them, and a final one comes
from Py.

As each recursive step reduces c by one, and can at most increase the width by a factor of 3, it follows
that the width of the resulting model is at most k3¢, and thus f(c, k) = k3¢ is a suitable function.
This concludes the proof of the claim. O

Now, for the second part of the proof, assume we have already built M’ by using the previous claim
noting that as % is a fixed formula, c is a fixed constant which implies that the function f of the
previous claim depends thus solely on k. Let us now state a simpler claim.

Claim 9. For appropriate sets S, ..., Sy, subsets of [1,n(¢ + m)|, that can be determined in
polynomial time, the following holds:

MEg(er,...,e) < Fg, Vs, Vs HSmM/(e[l,E]) =1

m—1
Proof. Trivial by the definition of 35 and Vg when defining each S; as [n({+i—1)+1,n({+i)]. O

In order to finish the proof, we use the previous claim and simply compute M* =

3s,Vs, -+ Vs,,_, Is,, M’ by m repeated applications of Lemma 35, and computing two negations for
‘23|‘P“€

m—1

each Vg, according to Lemma 4. This results in AM* having width at most f (k) = 22" , where
the tower has m times the number 2. Then we build the partial instance e[ 4 and finally evaluate
M*(e[1,q), which thanks to the previous claim is enough to solve the whole problem. As every part
of the algorithm is proven to be correct, and the running time of each component is polynomial, we
conclude the whole proof.

O

G Details of the FOIL implementation and the experimental setting

All our code and instructions to run experiments can be found at the following URL

https://github.com/AngrySeal/FOIL-Prototype
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For the implementation of the algorithms we used C++ to assure efficiency. For parsing queries
we used the ANTLR (v4.9.1) parser generator. Queries can be specified in a straightforward way
in plain text by using tokens Exists and ForAll for quantification, tokens ~, =, V, for logical
connectives —, A and V. respectively, and tokens of the form x1, x2, x3, u, v, z, etc. for variables,
plus parentheses for stating precedence. Instances mentioned in the queries are written as (0,1,7,0)
where 7 represents the L value (for defining partial instances). Besides that, we used P( ) for the
unary operator POS(+) and <= for the containment C. The following is an example query.

Exists x, Exists y, (P(x) VP(y)) ~ C(x <=y ) =~ “(y <= (7,7,7,0,1,7,7)))

For debugging purposes we implemented a naive evaluation method (126 lines of code) that considers
models as black boxes for evaluating P0OS, and that evaluates a query by testing all possible combina-
tions for the mentioned variables. For the obvious reasons, this implementation is not practical but it
is straightforward to prove its correctness. Thus we use it to check the correctness of the evaluation
process of the more efficient algorithms.

We implemented versions for the query evaluator for perceptrons (not described in the paper),
decision trees and a modification of FBDDs (see Section J for details). For these last two cases,
the implementation had 660 lines of code. Trees and BDDs are passed to the implementation in a
straightforward JSON format. We checked the correctness by generating a set of random queries over
random models and comparing the output of each algorithm against our naive implementation.

H Details of the experimental setting

We used Python for the query and models generation process. We generated random queries with
the following recursive process. We initially fix the dimension of the queried model, the number
of quantified variables allowed to be used in the complete query, and whether they are going to be
universally or existentially quantified. We then construct the quantified-free part as follows. When
asking for an expression of size n, the query generator method chooses a random size k from 1 to
n — 1, then generates two expressions of size k£ and n — k and joined them choosing either ~ or
V randomly. The base case is when asking for an expression of size 1 in which case we choose
randomly between P(z), C' <= z, x <= C and = <= y, where C represents a random partial
instance constructed according to the dimension of the queried model as a tuple using values 0, 1 and
7, and z and y represents randomly chosen variables from all of the variables allowed to be used in
the query. Every random choice was done with numpy’s default_rng. Before returning from every
recursive call, the method choose randomly whether a negation (7) is added in fron of the expression.

For generating the decision-tree models to be queried, we used the Scikit-learn library. We first select
an input dimension, and then we generated a random dataset of that dimension. All input data that we
generate are random binary tuples and the target value (classification) is a random bit. Then we select
the size N for the tree and trained a decision-tree model with NV leaves. Finally, we transformed the
obtained decision-tree into a binary one in the JSON format that our implementation can consume.

For the experiments shown in Figure 2a and 2b and using the methods described above, we generanted
60 random queries and trained 24 random decision trees of different sizes (see Section 6.1). The
performance tests were done in a small personal computer: 64-bits, 2.48GHz, Dual Core Intel Celeron
N3060 with 2GB of RAM and Linux Mint 20.1 Ulyssa. Even in this modest machine, the evaluation
time for random queries and models was extremely short (see Section 6.1). This gives evidence that
our methods can be run even for trees and queries of considerable size in a personal machine without
the need of a big computer infrastructure.

I A high-level language for FOIL

As we described in the body of the paper, we designed a high-level user-friendly syntax tailored for
general models with numerical and categorical features. As FOIL does not allow the use of features
beyond binary ones, we need to develop a way for binarizing queries and models. We describe the
binarization in the next section, and we only describe here the main features of our user-friendly
language.
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Figure 3 shows examples of queries written for the Student Performance Data Set [29]. In the high-
level syntax we use the expressions exists and for every that represents the logical quantification,
and tokens and, or, not and implies for typical logical connectives. Variables can be any string that
is not a reserved keyword. In the examples in Figure 3 we use student, st1 and st2 as variables.

Our implementation allows for loading a trained model before evaluating queries (see details on
model loading below). Whenever a model is loaded the meta information about features and types
as well as the classification is also loaded to be interpreted in the queries. A main difference with
basic FOIL is that in our high-level syntax we allow for the use of named features. For example in
the first query in Figure 3 we use student.male to refer to the binary feature male of a student
instance. Moreover we can refer to different classes (the output of the model) with names. For our
example, we trained a binary classifier in which the positive class name is goodFinalGrades. Thus,
the expression goodFinalGrades (student) is equivalent to the P( ) expression in the basic FOIL
implementation. With all this we can intuitively interpret the first query in Figure 3 as asking if
having a male gender is enough for the model to make a decision about the final grades.

Besides naming features, our syntax also allows the comparison of with numerical thresholds. In
this case we use the typical <= and > with their natural meaning. For instance, in our example using
the Student Performance Data Set, the feature alcoholWeek states the level of alcohol consumption
during week days, with value 1 begin low, and value 5 being high. Thus, the second query in
Figure 3 asks if it is possible that the trained model classify a student with a high alcohol consumption
during week days (student .alcoholWeek > 3) as having good final grades. The comparison with
numerical thresholds departs significantly from the base FOIL formalization, and thus it is not trivial
how to compile this type of queries into FOIL. We describe the process in the next section.

Finally, in order to have meaningful answers for existential queries of the form Jz(—P0Ss(z)), that is,
asking for the existence of instances that are classified as negative for the model, we implemented
the operator full( ) that essentially requires an instance to be not partial, that is, not using _L (the
formal definition of this property is in Equation 1). The reason for this is that only total instances can
be positive in models and since queries are evaluated over the set of all partial instances, the query
Jz(—Pos(x)) is trivially true. Having full( ) as part of the language allows us to more easily deal
with this case. For example, the third query in Figure 3 uses full( ) to ask if there is a student with
low alcohol consumption during the week and that is classified as not getting good grades.

All our queries have as possible answer either YES or NO. It is not difficult to extend our implementation
such that, whenever the answer for an existential query is a YES then we can provide an instance as
witness for that answer. One can similarly provide a witness when the answer for a universal query is
a NO. This is part of our ongoing work.

Finally, we handcrafted over 20 queries similar to the ones in Figure 3 and tested them over a decision
tree with no more than 400 leaves. You can find the complete set of queries that we tested in our
companion code.

J Binarization of queries and models

The definition of FOIL considers only binary instances (i.e., tuples in {0,1}" for some n > 1),
and consequently, binary classifiers M : {0,1}" — {0,1} for some n > 1. As many real life
classification problems involve a combination of categorical and numerical features, this could
present a limitation to our approach. However, in this section we show that it is possible to overcome
this apparent drawback by binarizing queries and models. A recent article by Choi et al. [12], studies
binary encodings for decision trees as well. Our approach is slightly different, as we are concerned as
well with the issue of binarizing queries.

Let us define HL-FOIL as a high-level equivalent of FOIL. First, we define a schema for HL-FOIL
as a mapping from feature names to feature types, which can be either R or B = {0, 1}, intuitively
meaning that said feature is numerical or Boolean, respectively. We use notation S(f) to obtain the
type of a feature by its name. Moreover, if a schema .S defines the type of a feature f, we say f € S.

For example, consider the following possible schema for the Student Performance Data Set:

’Download dataset at: https://archive.ics.uci.edu/ml/datasets/Student+Performance
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for every student,
student.male = true
implies goodFinalGrade (student)

exists student,
student.alcoholWeek > 3
and goodFinalGrade (student)

exists student,
student.alcoholWeek < 2
and full(student) and not goodFinalGrade(student)

for every student,
student.alcoholWeekend > 3 and student.alcoholWeek > 3
implies not goodFinalGrade (student)

exists student,
(student.alcoholWeekend > 3 or student.alcoholWeek > 3)
and student.gradePartial2 <= 6 and student.male = false
and goodFinalGrade(student)

exists stl, exists st2,
stl.studyTime > 2 and st2.studyTime <= 3
and goodFinalGrade(stl) and
full(st2) and not goodFinalGrade(st2)

Figure 3: Example queries in high-level syntax

S = {(age, R), (alcoholWeek, R), (parentsTogether, B), . . .}.

We say a real-valued decision tree 7 is compatible with a schema S if each internal node u € T
holds one of the following conditions:

* (Numerical) Node v has label (f, 7) for some f € S,7 € R, and S(f) = R.

* (Boolean) Node u has label f with f € S, and S(f) = B.

Given a schema .S, the following are atomic HL-FOILg formulas:

* Pos(z), where x is a variable.

» FULL(x), where z is a variable.

* (<,z, f,7), where x is a variable, S(f) = R, and 7 € R.

* (=,z, f,b), where x is a variable, S(f) =B, and b € B.
Naturally, the domain of HL-FOILg consists of functions from feature names f € S to values in
S(f) U{L}, which we call instances of HL-FOILg. Continuing with our running example, the
function e such that e(age) = 19.4, e(parentsTogether) = 0, . . .. is an instance of HL-FOILg. The
semantics for the atomic formulas FULL(z), (<, z, f,7), and (=, z, f, b) is naturally defined as one

would expect, by checking whether e, (f) < 7, and e, (f) = b, respectively. In order to clarify the
semantics of POs, we detail how instances of HL-FOILg are evaluated by a decision tree.

For a decision tree 7 compatible with S and an instance e of HL-FOILg, we define 7 (e) inductively:

o If 7 is a leaf labeled with true, then 7 (e) = 1, and 7 (e) = 0 if the label is false.

 If 7 has a root labeled with (f, 7), left sub-tree 7y, and right sub-tree 77, then 7 (e) is
defined as follows. If e(f) < 7, then T (e) = T1(e), and otherwise 7 (e) = Ty(e).
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age < 21

Figure 4: Example of real-valued decision tree. For the sake of clarity, labels are written as f < 7
instead of (f, 7).

 If 7 has aroot labeled with f, left sub-tree 7, and right sub-tree 77, then 7 (e) is defined
as Ty (e) (e).

It is important to stress that Boolean decision trees, in order to prevent inconsistencies, cannot repeat
node labels in any path from the root a leaf. For real-valued decision trees we need a stronger
requirement to avoid inconsistencies: if 7 has a root labeled with ( f, 7), left sub-tree Ty, and right
sub-tree 77, then all nodes labeled with ( f, 7o) in T must hold 79 > 7, and similarly all nodes labeled
with (f,71) in 73 must hold 7 < 7.

We are now ready to define a binarization procedure.

Definition 1. A binarization procedure B is an algorithm that takes: (i) a schema S; (ii) an
existential formula  in HL-FOILg ; (iii) a decision tree T compatible with S, and returns a formula
1 € (IFOIL U FULL) together with a binary model M, such that

TEe < ME?Y.

The rest of this section is dedicated to show an efficient binarization procedure B. First, let us show
the intuition behind the procedure with a simple example. Figure 4 depicts a real-valued decision tree
T over the schema S of our running example. Note that, although an instance e can have any real
value as e(age), 7 only distinguishes 4 intervals:

(=00, 16], (16,21], (21,25], (25, 00)

Now consider the HL-FOIL g query:
¢ = JxPos(z) A (<, x, age, 27)

Consider now instances e1, e such that e; (age) = 26 and e;(age) = 28. While T accepts both e;
and e, by traversing the same path, only e; is a witness for (. This implies that we require a finer
partition of the real line into intervals. Namely,

Toee = (—00,16], (16,21], (21,25], (25,27], (27, 00)

is a correct partition for the tuple (7, ¢, age). Based on this, as |Zy| = 5, we willuse 5 — 1 =4
binary features to encode the age of instances. In particular, the leftmost 1 among those 4 binary
features will indicate the interval to which the age of an instance belongs, interpreting that if there
is no 1 among the 4 binary features, it belongs to the last interval. This will then allow to do the
following compilation from HL-FOILg to FOIL:

(<, x,age,27) ~ = (2 € (0,0,0,0, L, L,...))

As a FOIL instance e not having 0 in the first four Boolean features that encode age must have at
least a 1 in one of those Boolean features, and thus, it corresponds to a HL-FOIL g instance whose
age lies in one of the first four intervals of Z,, and therefore have age < 27.
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Figure 5: Ilustration of B(T, ¢), assuming age is the only feature, and considering a query ¢ =
JzPos(z) that does not mention any threshold 7.

More formally, assume a real-valued decision tree 7 and a HL-FOILg query ¢. Then, for every
feature name f € S such that S(f) = R, we define its partition set as follows:

Py ={r| (f,7)labels anode in T, or (<, z, f, T) appears in ¢ for some variable x}

Feature f will be encoded using | Py| Boolean features. The resulting dimension of instances of
HL-FOILg compiled into FOIL instances will therefore be n =} ;¢ | P¢|, taking the convention

that if S(f) = B then | P¢| = 1.

As S is unordered, but instances of FOIL have an ordering of their features, we choose an arbitrary
ordering of features names fi,..., fi, and we associate to them ranges of Boolean features as
follows. To f; we associate the components in the range [1,|Py,|], and then for f;,i > 1, we
associate [¢, £ + | Py,| — 1], where ¢ is end of the range associated to f;_; plus 1.

Therefore comparison of the form (<, z, f, 7), for some variable x, will thus be compiled as:
(<2, f,m) = (z Cep)

where, if 7 is the i-th smallest element in Py, then e, is an instance having 0 in the first ¢ Boolean
features associated to f, and L in the rest.

We now need to binarize the decision tree 7 accordingly. We do so by transforming 7 into a BDD
B(T, ) (not necessarily free) that is almost-free, in a precise sense that we will detail. If 7 was
using a single node w to test whether the age of an instance was at most 27, we now require several
nodes to test for the different Boolean features encoding the age of said instance. In particular, if age
is encoded with Boolean features of indices [z, . . ., j|, and 27 is the k-th smallest value in Piyge, then
B(T, ) needs to test that there is a 1 in among the features of indices [i, ..., 7 + k — 1]. Thus, we
create in B(7T ) a gadget for node u of T that tests whether

eli]ve[i+1]V---Ve[i+k—1].

Correctness is clear from the construction of the binarization procedure. Figure 5 illustrates B(7T, ¢)
continuing with the previous example.

While B(T, ) is not necessarily an FBDD, we claim that it is close enough to one in what concerns
the evaluation of JFOIL formulas. As the proof of Proposition 1 implies, the only characteristic of
models we require for efficient evaluation in the existential fragment is that one can find in polynomial
time a determinization of an undetermined instance that is positive for said models. This is clearly
not possible for general BDDs, as even checking if there is one positive instance for a BDD is
NP-hard [38]. Surprisingly, the same algorithm for FBDDs presented in the proof of Proposition 1
turns out to work for B(T, ).

In order to see illustrate why this is true, we consider a more sophisticated example of a real-valued
decision tree T, presented in Figure 6. Note that both the gadgets for nodes labeled (age, 21) and
(age, 25) will use the Boolean features associated to age, and thus the freeness property will be broken.
The reason the presented algorithm does not work in general BDDs is that a positive leaf could only
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age < 21

age < 16

Figure 6: Example of real-valued decision tree. For the sake of clarity, labels are written as f < 7
instead of (f, 7).

be reachable through inconsistent paths, i.e., paths that contain both edges representing that a feature
has value 0 and 1. In the case of B(T, ¢), features may appear multiple times in a path from root to
leaf, but always as part of different gadgets associated to different nodes in 7. This implies that, even
if an inconsistent choice is made for a particular Boolean feature of B(7, ), an inconsistent path in
B(T, ¢) still corresponds as a consistent path in 7, because paths in B(7, ) translate back to paths
in T by considering if gadgets where exited by failing or succeeding the disjunction they represent.
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