
Supplementary Material for

Dual Parameterization of Sparse Variational

Gaussian Processes

A Tighter Bound for the M-step

We here study the role of parameterizations ξ in shaping the losses optimized during the M-step of
the EM learning procedure. Each parameterization ξ has associated natural parameters η.

We introduce an alternative expression of the loss L in terms of the natural parameters of the prior ηp

and of the approximate posterior ηq: L(q,θ) = L(ηq,ηp). To simplify the presentation but without
loss of generality, we consider the case θ = ηp, i.e. when the hyperparameters are directly the natural
parameters. The case we actually care about is when θ indexes natural parameters ηp(θ), in which
case, the natural parameters lie on a manifold in Ω.

We focus on the difference between parameterizations where the posterior statistics ηq depends on
the prior statistics ηp, as in the dual parameterization λ, where this dependence is linear ηq = ηp+λ,
versus parameterizations that don’t, as in the ξ = (µ,L) parameterization. To make this distinction
explicit we introduce the losses

l̃(ηp) = L(ηp + λ∗,ηp), (25)

l(ηp) = L(η∗
q ,ηp). (26)

For a matched optimal E-step, i.e. ηp + λ∗ = η∗
q = argmaxη L(η,ηp), the value of l and l̃ and their

gradient w.r.t. ηp are the same:

l̃(ηp) = l(ηp), (27)

∇ηp
l̃(ηp) = ∂η1L|ηq∗︸ ︷︷ ︸

=0

+∂η2L|ηp
= ∂η2L|ηp

= ∇ηp
l(ηp). (28)

In the conjugate regression case, we have that l̃(ηp) ≥ l(ηp):

l̃(ηp)− l(ηp) = −(log p(D)− l̃(ηp)) + (log p(D)− l(ηp)) (29)

= −DKL[ηp + λ∗ ‖ηpost]︸ ︷︷ ︸
=0

+DKL[ηq∗ ‖ηpost] (30)

= DKL[ηq∗ ‖ηpost] > 0. (31)

We can’t show this in the non-conjugate setting but instead focus on the local behavior of l̃(ηp) and
l(ηp). Specifically, since their gradients match, we study their Hessians, which are different:

∇2
ηpηp

l̃(ηp) = ∂2
η1η1

L|ηq∗
+ ∂2

η2η2
L|ηp

+ 2∂2
η1η2

L|ηq∗ηp
(32)

∇2
ηpηp

l(ηp) = ∂2
η2η2

L|ηp
(33)

The Hessian difference between the two conditions is

∆H = ∂2
η1η1

L|ηq∗
+ 2∂2

η1η2
L|ηq∗ηp

(34)

and using the identity

∂2
η1η2

L|ηq∗ηp
= −∂2

η1η2
DKL(ηt + ηp,ηp)|ηq∗ηp

= I[ηq∗ ]. (35)

The Hessian difference can be expressed as

∆H = ∂2
η1η1

L|ηq∗
+ 2I[ηq∗ ]. (36)
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l̃(ηp) is a local upper bound to l(ηp) if ∆H � 0

∆H � 0 ⇐⇒ ∂2
η1η1

L|ηq∗
� −2I[ηq∗ ]. (37)

This corresponds to a condition on the curvature of the optimization problem in the preceding E-step.
We can verify that this condition is met in the conjugate case where

∂2
η1η1

L|ηq∗
= −∂2

η1η1
DKL[ηq∗ ‖ηpost] = −I[ηq∗ ]. (38)

The condition is indeed met since the Fisher information matrix I[ηq∗ ] is positive semi-definite.

B Proposed Objective for the M-step of t-SVGP

Starting from hyperparameter θold, an E-step gives the optimal dual parameters λ∗. The objective for
the proposed M-step of t-SVGP is the ELBO in Eq. (8) for the variational distribution qu(u; η̂u(θ))
with θ dependent parameters η̂u(θ) expressed in terms of the mean and covariance matrix as

Ŝ−1
u m̂u = K−1

uu

(∑n
i=1 kuiλ

∗
1,i

)
︸ ︷︷ ︸

=λ̄1

and Ŝ−1
u = K−1

uu +K−1
uu

(∑n
i=1 kuiλ

∗
2,ik

⊤
u,i

)
︸ ︷︷ ︸

=Λ̄2

K−1
uu. (39)

Introducing q(f ,u;θ) = pθ(f |u)qu(u; η̂u(θ)), the ELBO for our proposed M-step is given by:

Lηu
(η̂u(θ),θ) = Eq(f ,u;θ)

[
log

pθ(y, f ,u)

q̂t(f ,u;θ)

]

= Eq(f ,u;θ)

[
log

∏n
i=1 p(yi | fi)✭✭

✭
✭
✭
✭✭

pθ(f |u)pθ(u)
1

Z(θ) t
∗(u)

✭
✭

✭
✭
✭
✭✭

pθ(f |u)pθ(u)

]

= logZ(θ) + c(θ), (40)

where c(θ) =
∑n

i=1 Eqt(fi;θ)[log p(yi | fi)]− Eqt(u;θ)[log t∗(u)] and logZ(θ) is the log-partition

of the Gaussian qu(u; η̂u(θ))

logZ(θ) = −
m

2
log(2π)−

1

2
log |Kuu(θ)Λ̄

−1
2 Kuu(θ) +Kuu(θ)|

−
1

2
ỹ⊤

[
Kuu(θ)Λ̄

−1
2 Kuu(θ) +Kuu(θ)

]−1
ỹ, (41)

with ỹ = Kuu(θ)Λ̄
−1
2 λ̄1.

C Efficient ELBO Computation for t-SVGP

We here detail the computations required to perform inference and learning using the dual parame-
terization. To perform inference, the variational expectations need to be evaluated. These require
the evaluation of the marginal predictions q(f(xi)) for all inputs xi in D. For learning, the ELBO in
Eq. (8) needs to be evaluated which requires the computation of a KL divergence.

In t-SVGP, the variational distribution q(u) = N(u|m,S) is parameterized in terms of its natural
parameters:

S−1 = K−1
uu +K−1

uuΛ̄2K
−1
uu, (42)

S−1m = K−1
uuλ̄1, (43)

where
λ̄1 =

∑n
i=1 k

⊤
iuλ1,i and Λ̄2 =

∑n
i=1 k

⊤
iukiuλ2,i. (44)

Introducing R = Kuu + Λ̄2, the mean and covariance q(u) can be rewritten as:

S = (K−1
uu +K−1

uuΛ̄2K
−1
uu)

−1 (45)

= Kuu(Kuu + Λ̄2)
−1Kuu (46)

= KuuR
−1Kuu, (47)

m = KuuR
−1λ̄1. (48)
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This leads to simple closed form expressions for the marginal predictions:

q(f⋆) = N(f⋆|K⋆uR
−1λ̄1,K⋆⋆ −K⋆uK

−1
uuKu⋆ +K⋆uR

−1Ku⋆), (49)

and for the and KL divergence Eq. (8):

DKL (q(u) ‖ p(u)) =
1
2

(
tr
(
K−1

uuS
)
+m⊤K−1

uum− k + ln |KuuS
−1|

)
(50)

= 1
2

(
tr(KuuR

−1)− k + λ⊤
1 R

−1KuuR
−1λ̄1 − ln |Kuu|+ ln |R|

)
. (51)

D Pseudocode for the q-SVGP Algorithm

We here detail the q-SVGP algorithm for inference and learning with the E-step as described in [2],
for parameterization ξ = (m,L). The pseudocode shows an E-step comprised of K iterations of
natural gradient descent, followed by an M-step comprised of S gradient descent iterations with
learning rate γ.

Algorithm 1 q-SVGP

1: initialization at θt, ξt
2: for k = 0 . . .K − 1 do
3: ξ(0) ← ξt Initialization of the natural gradient descent iterations

4: for i = 1 . . . n do
5: q(k)(fi) =

∫
pθt

(fi |u)q
(k)
u (u) du Marginal predictions

6: end for

7: L(k) =
∑

i Eq(k)(fi) [log p(yi | fi)]−DKL

[
q
(k)
u (u)

∥∥∥ pθt
(u)

]
ELBO

8: η(k) ← ξ(k) Gaussian transformation

9: g(k) ← ∇µξ(µ
(k))∇ξL

(k)|ξ=ξt
Natural gradient

10: η(k+1) ← η(k) + ρg(k) Natural gradient step

11: ξ(k+1) ← η(k+1) Gaussian transformation

12: end for
13: ξt+1 ← ξ(K) End of E-step

14: θ(0) ← θt Initialization of the gradient descent iterations

15: for s = 0 . . . S − 1 do

16: L̃(s)(θ) = −DKL

[
q
(s)
u (u)

∥∥∥ pθ(u)
]

KL of ELBO

17: θ(s+1) ← θ(s) + γ∇θL̃
(s)|θ=θ(s) Gradient descent step for θ

18: end for
19: θt+1 ← θ(S) End of M-step

E Pseudocode for the t-SVGP Algorithm

We here summarize the t-SVGP algorithm using the dual parameterization. The pseudocode shows
an E-step comprised of K iterations of natural gradient descent, followed by an M-step comprised of
S gradient descent iterations with learning rate γ.
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Algorithm 2 t-SVGP

1: initialization at θt, λt

2: for k = 0 . . .K − 1 do
3: λ(0) ← λt Initialization of the natural gradient descent iterations

4: for i = 1 . . . n do
5: q

(k)
u (fi) =

∫
pθt

(fi |u)q
(k)
u (u;λ(k)) du Marginal predictions

6: α
(k)
i = E

q
(k)
u

(fi)
[∇f log p(yi | fi)]

7: β
(k)
i = E

q
(k)
u

(fi)

[
−∇2

ff log p(yi | fi)
]

8: g
(k)
i = (β

(k)
i m

(k)
i + α

(k)
i , β

(k)
i ) Natural gradient

9: end for
10: λ̄

(k+1)
1 ← (1− r)λ̄

(k)
1 + r

∑
i∈M

kuig
(k)
1,i Natural gradient step

11: Λ̄
(k+1)
2 ← (1− r)Λ̄

(k)
2 + r

∑
i∈M

kuik
⊤
uig

(k)
2,i Natural gradient step

12: end for
13: λt+1 ← λ(K) End of E-step

14: θ(0) ← θt Initialization of the gradient descent iterations

15: for s = 0 . . . S − 1 do
16: L̃(s)(θ) = logZ(s)(θ) + c(s)(θ) ELBO

17: θ(s+1) ← θ(s) + γ∇θL̃
(s)(θ) Gradient step for θ

18: end for
19: θt+1 ← θ(S) End of M-step

F Data Sets and Experimental Details

F.1 UCI Data Sets

For the regression experiments, we ran the E-step with a learning rate of 1. The update amounts
to a closed form GP regression step given we have a conjugate model. We then ran the M-step 15
iterations with a learning rate of 0.2. In the classification examples we do not have closed form
updates and so ran the E-step 8 times with a learning rate of 0.7. The M-step was ran the same way
as in regression experiments. All other specifications where the same in all experiments. We choose
m = 50 and given the data sizes were small, we set the mini batch to equal the data size mb = n,
so non stochastic gradients. The inducing points were initialized by K-means and optimized in the
M-step along with hyper parameters. We ran all experiments a total of 20 full EM iterations. We ran
5-fold cross validation and in Fig. 3 plotted the mean result of the the folds. The kernel used was a
Matérn-5/2 with lengthscale and amplitude both initialised at 1 similarly if a Gaussian likelihood was
used it was likewise initialised to 1. We now detail each data set: Airfoil: The airfoil self-noise data
set is regression task to predict scaled sound pressure. The data set has d = 5 and n = 1503 entries.
Boston housing: The task is to predict the median value of owner-occupied homes. The data set has
d = 12 and n = 506 entries. Concrete: The concrete compression data set is another regression
experiment, where the goal is predict concrete compressive strength with d = 5 and n = 1030.
Sonar: The data set is a classification example so we use a binomial likelihood. The goal is to predict
from some sonar information if an object is a rock or a mine, the number of features is d = 60 and
number of data points n = 208. Ionosphere: Another classification example where, ‘Good’ radar
shows evidence of some type of structure in the ionosphere and "Bad" no evidence. The ionosphere
data set has n = 351 and d = 34. Diabetes: The goal of the diabetes experiment is based on patient
medical information can we predict the diabetic outcome. The data consists of d = 8 and n = 768
entries.

F.2 MNIST Experiments

MNIST [1], available under CC BY-SA 3.0, is a handwritten digit classification task for digits 0–9.
We used a softmax likelihood with 10 latent GPs, one for each digit. The data set is n = 70, 000
and d = 256. We again used a Matérn-5/2 covariance function and set the number of inducing
points m = 100 and used a minibatch size of nb = 200. The kernel lengthscale ℓ and amplitude σ2
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Figure 5: Wall-clock speed for q-SVGP and t-SVGP as a function of the number of inducing points
m on the MNIST experiment.

were both initialised to 1 and the inducing points were randomly initialised. We alternated between
different learning rates and number of E and M-steps as detailed in Table 1.

F.3 Illustrative Examples

For Fig. 1 (right) and Fig. 2 the experimental set up was similar. We considered a simplified one-
dimensional GP classification task simulated by thresholding a noisy sinc function and simulating
n = 100 observations. We considered m = 10 equally spaced inducing points for this task and fixed
the lengthscale hyperparameter to ℓ = 1/2.

F.4 Additional Experiments

We include Fig. 5 to show the effect of changing the number of inducing points on the wall-clock
speed. The experiment is the same as in App. F.2 but we now run only for 100 iterations of a single E
and M step. The chart shows that there is a constant factor caused by our computationally cheaper
E-step, the effect is substantial in most practical settings where m is set below 250.

G Author Contributions

The idea of dual parameterization presented in the first part of Sec. 3 and the new lower bound
discussed in Sec. 3.1 is due to MEK. The idea of using the dual parameterization to speed up SVGP
was conceived by PEC and VA, who derived the bound, with inspiration from separate prior work by
PEC, VA, and AS. PEC had the main responsibility of implementing the methods and conducting the
experiments, and VA of formalizing the methods. All authors contributed to finalizing the manuscript.
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