
Littlestone Classes are Privately Online Learnable

Noah Golowich
MIT CSAIl
nzg@mit.edu

Roi Livni
Tel Aviv University

rlivni@tauex.tau.ac.il

Abstract

We consider the problem of online classification under a privacy constraint. In
this setting a learner observes sequentially a stream of labelled examples (𝑥𝑡 , 𝑦𝑡 ),
for 1 ≤ 𝑡 ≤ 𝑇 , and returns at each iteration 𝑡 a hypothesis ℎ𝑡 which is used to
predict the label of each new example 𝑥𝑡 . The learner’s performance is measured
by her regret against a known hypothesis class H. We require that the algorithm
satisfies the following privacy constraint: the sequence ℎ1, . . . , ℎ𝑇 of hypotheses
output by the algorithm needs to be an (ε, δ)-differentially private function of
the whole input sequence (𝑥1, 𝑦1), . . . , (𝑥𝑇 , 𝑦𝑇 ). We provide the first non-trivial
regret bound for the realizable setting. Specifically, we show that if the class H
has constant Littlestone dimension then, given an oblivious sequence of labelled
examples, there is a private learner that makes in expectation at most 𝑂 (log𝑇)
mistakes – comparable to the optimal mistake bound in the non-private case, up to
a logarithmic factor. Moreover, for general values of the Littlestone dimension 𝑑,
the same mistake bound holds but with a doubly-exponential in 𝑑 factor. A recent
line of work has demonstrated a strong connection between classes that are online
learnable and those that are differentially-private learnable. Our results strengthen
this connection and show that an online learning algorithm can in fact be directly
privatized (in the realizable setting). We also discuss an adaptive setting and
provide a sublinear regret bound of 𝑂 (

√
𝑇).

1 Introduction

Privacy-preserving machine learning has attracted considerable attention in recent years, motivated
by the fact that individuals’ data is often collected to train statistical models, and such models can
leak sensitive data about those individuals [13, 32]. The notion of differential privacy has emerged
as a central tool which can be used to formally reason about the privacy-accuracy tradeoffs one
must make in the process of analyzing and learning from data. A considerable body of literature on
differentially private machine learning has resulted, ranging from empirical works which train deep
neural networks with a differentially private form of stochastic gradient descent [1], to a recent line
of theoretical works which aim to characterize the optimal sample complexity of privately learning
an arbitrary hypothesis class [3, 11, 20].
Nearly all of these prior works on differentially private learning, however, are limited to the statistical
learning setting (also known as the offline setting): this is the setting where the labeled data, (𝑥𝑡 , 𝑦𝑡 ),
are assumed to be drawn i.i.d. from some unknown population distribution. This setting, while
very well-understod and readily amenable to analysis, is unlikely to hold in practice. Indeed, the
data (𝑥𝑡 , 𝑦𝑡 ) fed as input into the learning algorithm may shift over time (e.g., as a consequence of
demographic changes in a population), or may be subject to more drastic changes which are adaptive
to the algorithm’s prior predictions (e.g., drivers’ reactions to the recommendations of route-planning
apps may affect traffic patterns, which influence the input data to those apps). For this reason, it is
desirable to develop provable algorithms which make fewer assumptions on the data.
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In this work, we do so by studying the setting of (private) online learning, in which the sequence of
data (𝑥𝑡 , 𝑦𝑡 ) is allowed to be arbitrary, and we also discuss a certain notion of privacy in a setting
where it is even allowed to adapt to the algorithm’s predictions in prior rounds. We additionally
restrict our attention to the problem of classification, namely where the labels 𝑦𝑡 ∈ {0, 1}; thus we
introduce the problem of differentially private online classification, and prove the following results
(see Section 3 for the exact setup):

• In the realizable setting with an oblivious adversary, we introduce a private learning algo-
rithm which, for hypothesis classes of Littlestone dimension 𝑑 (see Section 2.1) and time
horizon 𝑇 , achieves a mistake bound of 𝑂̃ (2𝑂 (2𝑑) · log𝑇), ignoring the dependence on
privacy parameters (Theorem 4.1).

• In the realizable setting with an adaptive adversary, we show that a slight modification of
the above algorithm achieves a mistake bound of 𝑂̃ (2𝑂 (2𝑑) ·

√
𝑇) (Theorem 4.2).

We remark that no algorithm (even without privacy, allowing randomization, and in the oblivious
adversary setting) can achieve a mistake bound of smaller than Ω(𝑑) for classes of Littlestone
dimension 𝑑 [30, 33]. Therefore, a class of infinite Littlestone dimension cannot have any finite
mistake bound, and the regret for any algorithm, for any time horizon 𝑇 , is Ω(𝑇). Thus, our results
listed above, which show a mistake-bound (which is also the regret in the realizable setting) of
𝑂̃𝑑 (

√
𝑇) for classes of Littlestone dimension 𝑑, establish that in the realizable setting, finiteness of

the Littlestone dimension is necessary and sufficient for online learnability ([31]) with differential
privacy.
Recently it was shown by Alon et al. [3] and Bun et al. [11] (later to be improved by Ghazi et al.
[20]) that finiteness of the Littlestone dimension is necessary and sufficient for private learnability in
the offline setting, namely with i.i.d. data (and both in the realizable and agnostic settings). Since, as
remarked above, the Littlestone dimension characterizes online learnability (even without privacy),
this means that a binary hypothesis class is privately (offline) learnable if and only if it is online
learnable. Our result thus strengthens this connection, showing that the equivalence also includes
private online learnability (in the realizable setting).

1.1 Related work

A series of papers [15, 25, 21, 17, 2] has studied the problem of diferentially private online convex
optimization, which includes specific cases such as private prediction from expert advice and,
when one assumes imperfect feedback, private non-stochastic multi-armed bandits [35, 36, 18,
24]. These results show that in many regimes privacy is free for such problems: for instance,
for the problem of prediction from the expert advice (with 𝑁 experts), Agarwal and Singh [2]
shows that an ε-differentially private algorithm (based on follow-the-regularized-leader) achieves
regret of 𝑂

(√
𝑇 + 𝑁 log2 𝑇

ε

)
, which matches the non-private regret bound of 𝑂 (

√︁
𝑇 log 𝑁) when

𝑇 ≥ Ω̃((𝑁/ε)2). Our results can be seen as extending such “privacy is (nearly) free” results to
the nonparametric setting where we instead optimize over an arbitrary class of finite Littlestone
dimension. Our techniques are different from those of the above papers.
In addition to [11, 20] which establish private learning algorithms for classes with finite Littlestone
dimension in the i.i.d. (offline) setting, there has been an extensive line of work on private learning
algorithms in the offline setting: [29, 7, 5, 19] study the complexity of private learning with pure
differential privacy, [26, 9, 10, 4] study the sample complexity of privately learning thresholds, and
[27, 28, 6] study the sample complexity of privately learning halfspaces.

2 Preliminaries

In this section we introduce some background concepts used in the paper.

2.1 Online Learning

We begin by revisiting the standard setting of online-learning: We consider a sequential game
between a learner and an adversary. Both learner and adversary know the sets X and H. The game
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proceeds for 𝑇 rounds (again 𝑇 is known) and at each round 𝑡 ≤ 𝑇 , the adversary chooses a pair
(𝑥𝑡 , 𝑦𝑡 ) and presents the learner with the example 𝑥𝑡 . The learner then must present the adversary
with a hypothesis (perhaps randomly) ℎ𝑡 : X → {0, 1}. ℎ𝑡 is not required to lie in H1. Finally
the adversary presents the learner with 𝑦𝑡 , which the learner uses to update its internal state. The
performance of the learner is measured by its regret which is its number of mistake vs. the optimal
decision in hindsight:

𝔼

[
𝑇∑︁
𝑡=1

1[ℎ𝑡 (𝑥𝑡 ) ≠ 𝑦𝑡 ] − min
ℎ★∈H

𝑇∑︁
𝑡=1

1[ℎ★(𝑥𝑡 ) ≠ 𝑦𝑡 ]
]
. (1)

The adversary is said to be realizable if it presents the learner with a sequence of examples (𝑥𝑡 , 𝑦𝑡 )
so that there is some ℎ★ ∈ H so that for each 𝑡 ∈ [𝑇], ℎ★(𝑥𝑡 ) = 𝑦𝑡 . In the realizable setting, the
regret simply counts the number of mistakes the learner makes. And we measure the performance
by its mistake bound, namely the maximum, over all possible realizable adversaries, of

𝔼

[
𝑇∑︁
𝑡=1

1[ℎ𝑡 (𝑥𝑡 ) ≠ 𝑦𝑡 ]
]
.

In the setting with an agnostic adversary, we do not require such ℎ★ to exist; and we measure the
learner by its (worst-case) regret, as in Eq. (1). In this paper we focus on the realizable setting; the
(private ) agnostic setting is left as an interesting direction for future work.
Additionally, we normally make a distinction between two types of adversaries: An oblivious
adversary chooses its sequence in advance and at each iteration (𝑥𝑡 , 𝑦𝑡 ) is revealed to the learner.
In the adversarial setting, the adversary may choose (𝑥𝑡 , 𝑦𝑡 ) as a function of the learner’s previous
choices: i.e. ℎ1, . . . , ℎ𝑡−1. This definition follows the standard setup of online learning (see [12] for
example). We note though, that in the non-private setting of online binary classification, one can
obtain results against an adversary that even gets to observe the learner’s prediction at time-step 𝑡.
However, we will simplify here by considering the more standard setting. It is interesting to find out
if we can compete against such a strong adversary in the private setup.

Littlestone dimension We next turn to introduce the Littlestone dimension which is a combinatorial
measure that turns out to characterize learnability in the above setting.
Let H be a class of hypotheses ℎ : X → {0, 1}. To define the Littlestone dimension of H, we
first introduce mistake trees: a mistake tree of depth 𝑑 is a complete binary tree, each of whose
non-leaf nodes 𝑣 is labeled by a point 𝑥𝑣 ∈ X, and so that the two out-edges of 𝑣 are labeled by 0
and 1. We associate each root-to-leaf path in a mistake tree with a sequence (𝑥1, 𝑦1), . . . , (𝑥𝑑 , 𝑦𝑑),
where for each 𝑖 ∈ [𝑑], the 𝑖th node in the path is labeled 𝑥𝑖 and the path takes the out-edge from
that node labeled 𝑦𝑖 . A mistake tree is said to be shattered by H if for any root-to-leaf path whose
corresponding sequence is (𝑥1, 𝑦1), . . . , (𝑥𝑑 , 𝑦𝑑), there is some ℎ ∈ H so that ℎ(𝑥𝑖) = 𝑦𝑖 for all
𝑖 ∈ [𝑑]. The Littlestone dimension of H, denoted Ldim(H), is the depth of the largest mistake tree
that is shattered by H.

The Standard Optimal Algorithm (SOA) Suppose H is a binary hypothesis class with Littlestone
dimension 𝑑. Littlestone [30] showed that there is an algorithm, called the Standard Optimal
Algorithm (SOA), which, against an adaptive and realizable adversary, has a mistake bound of 𝑑;
moreover, this is the best possible mistake bound. We will access the SOA as a black box. The
underlying assumption we make is that given a realizable sequence (𝑥1, 𝑦1), . . . , (𝑥𝑇 , 𝑦𝑇 ), the 𝑆𝑂𝐴
makes at most Ldim(H) mistakes. We will also assume that whenever the algorithm 𝑆𝑂𝐴 makes a
mistake then it changes it state: namely, if the algorithm makes mistake on example 𝑡 then ℎ𝑡+1 ≠ ℎ𝑡 ,
this is in fact true for the SOA algorithm, but it can be seen that any algorithm with mistake bound
can be modified to make sure this holds (simply by reiterating the mistake until the algorithm does
change state). We refer the reader to [30, 33] for the specifics of it.

2.2 Differential Privacy

We next recall the standard notion of (ε, δ)–differential privacy:
1This setup is known as the improper learning problem. In the proper version of the problem, it is required

that ℎ𝑡 ∈ H and we leave a study of proper private online learning for future work. (see [22] for a discssion on
proper online learning in the non-private case
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Definition 2.1 (Differential privacy). Let 𝑛 be a positive integer, ε, δ ∈ (0, 1), and W be a set. A
randomized algorithm 𝐴 : (X× {0, 1})𝑛 → W is defined to be (ε, δ)-differentially private if for any
two datasets 𝑆, 𝑆′ ∈ (X × {0, 1})𝑛 differing in a single example, and any event E ⊂ E, it holds that

Pr[𝐴(𝑆) ∈ E] ≤ 𝑒ε · Pr[𝐴(𝑆′) ∈ E] + δ.

Adaptive Composition The online nature of the problem naturally requires us to deal with adaptive
mechanisms that query the data-base. We thus depict here the standard framework of adaptive
querying, and we refer the reader to Dwork and Roth [13] for a more detailed exposition.
In this framework we assume a sequential setting, where at step 𝑡 an adversary chooses two adjacent
datasets 𝑆1

𝑡 and 𝑆0
𝑡 , and a mechanism 𝑀𝑡 (𝑆) from a class F and receives 𝑧𝑏𝑡 = 𝑀𝑡 (𝑆𝑏𝑡 ) for some

𝑏 ∈ {0, 1} (where 𝑏 does not depend on 𝑡).
Definition 2.2. We say that the family F of algorithms over databases satisfies (ε, δ)-differential
privacy under 𝑇-fold adaptive composition if for every adversary 𝐴 and event E, we have

Pr((𝑧0
1, . . . , 𝑧

0
𝑇 ) ∈ E) ≤ 𝑒ε Pr((𝑧1

1, . . . , 𝑧
1
𝑇 ) ∈ E) + δ.

3 Problem Setup

We now formally introduce the main problem considered in this paper, namely that of private online
learning. Let X be a set, and let H be a set of hypotheses, namely of functions ℎ : X → {0, 1}. We
consider the setting depicted in Section 2.1 and in this framework we want to study the learnability
of private learners which are defined next. We make a distinction between the case of an oblivious
and an adaptive adversary:

Private online learning vs. an oblivious adversary As discussed, in this setting the adversary must
choose the entire sequence (𝑥1, 𝑦1), . . . , (𝑥𝑇 , 𝑦𝑇 ) before its interaction with the learner (though it
may use knowledge of the learner’s algorithm). In particular, the samples (𝑥𝑡 , 𝑦𝑡 ) do not depend on
any random bits used by the learner. Thus, in the private online learning problem we merely require
that the sequence of hypotheses (ℎ1, . . . , ℎ𝑇 ) output by the learner is (ε, δ)-differentially private as
a function of the entire input sequence (𝑥1, 𝑦1), . . . , (𝑥𝑇 , 𝑦𝑇 ).

Private online learning vs. an adaptive adversary: In the adaptive setting, the adversary may
choose each example (𝑥𝑡 , 𝑦𝑡 ) as a function of all of the learner’s hypotheses up to 𝑡. This makes
the notion of privacy a little bit more subtle, so we need to carefully define what we mean here by
(ε, δ)-privacy. We consider then the following scenario:
At each round 𝑡, the adversary outputs two outcomes (𝑥0

𝑡 , 𝑦
0
𝑡 ) and (𝑥1

𝑡 , 𝑦
1
𝑡 ). The learner then outputs

ℎ𝑏𝑡 and (𝑥𝑏𝑡 , 𝑦𝑏𝑡 ) is revealed to the learner where 𝑏 ∈ {0, 1} is independent of 𝑡. We require that the
sequences 𝑆0

𝑇
= {(𝑥0

𝑡 , 𝑦
0
𝑡 )} and 𝑆1

𝑇
= {(𝑥1

𝑡 , 𝑦
1
𝑡 )} differ in, at most, a single example. We will say that

an adaptive online classification algorithm is (ε, δ) differentially private, if for any event E and any
adversary, it holds that

Pr[(ℎ1
1, . . . , ℎ

1
𝑇 ) ∈ E] ≤ 𝑒ε · Pr[(ℎ0

1, . . . , ℎ
0
𝑇 ) ∈ E] + δ.

The notion is similar to privacy under 𝑇-fold adaptive composition. Normally, though, for a mecha-
nism to be (ε, δ)-differentially private under𝑇-fold adaptive compositions, Dwork et al. [16] requires
it to be private under an adversary that may choose at each iteration any two adjacent datasets, 𝑆0

𝑖
,

𝑆1
𝑖
. Note, however that, in the online setup, the utility is dependent only on a single point at each

iteration, hence such a requirement will be too strong (in fact, the learner will then be tested on two
arbitrary sequences).

4 Main Results

We next state the main results of this paper, we start with a logarithmic regret bound for realizable
oblivious learning.
Theorem 4.1 (Private Oblivious online-learning). For a choice of 𝑘1 = 𝑂̃ (2𝑑+1), and

𝑘2 = 𝑂̃

(
28·2𝑑

ε
ln𝑇/δ

)
,
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Running DP-SOA (Algorithm 1) for 𝑇 iterations on any realizable sequence (𝑥1, 𝑦1), . . . , (𝑥𝑇 , 𝑦𝑇 ),
the algorithm outputs a sequence of predictors ℎ1, . . . , ℎ𝑇 such that

• The algorithm is (ε, δ) differentially private.

• The expected number of mistakes the algorithm makes is

𝔼[
𝑇∑︁
𝑡=1

ℎ𝑡 (𝑥𝑡 ) ≠ 𝑦𝑡 ] = 𝑂̃

(
28·2𝑑

ε
ln𝑇/δ

)
.

Theorem 4.1 shows that, up to logarithmic factor, the number of mistakes in the private case is
comparable with the number of mistakes in the non-private case, when 𝑑 the Littlestone dimension
of the class is constant. We obtain, though, a strong deterioration in terms of the Littlestone
dimension – sublinear dependece vs. double exponential dependence. As discussed, Ghazi et al.
[20] improved the dependence in the batch case to polynomial, and it remains an open question if
similar improvement is applicable in the online case. We next turn to the adversarial case
Theorem 4.2 (Private Adaptive online-learning). There exists an adaptive online classification
algorithm that is (ε, δ)-differentially private with expected regret over a realizble seqeunce:

𝔼[
𝑇∑︁
𝑡=1

ℎ𝑡 (𝑥𝑡 ) ≠ 𝑦𝑡 ] = 𝑂̃

(
2𝑂 (2𝑑)√𝑇 log 1/(δ)

ε

)
.

Theorem 4.2 provides a sublinear regret bound, which is in fact optimal for the agnostic case.
However, in the non-private (realizable) case it is known that constant regret can be obtained2 . We
leave it as an open problem whether one can achieve logarithmic regret in the realizable adaptive
setting.

5 Algorithm

We next present our main algorithm for an oblivious, realizable online private learning algorithm.
The algorithm, DP-SOA, assumes access to a mistake bound algorithm for the classH (not necessarily
private) such as SOA as in [30], which we denote by 𝐴,3 as well as call a procedure HistSparse that
is depicted below (Algorithm 2). We can think of DP-SOA as an algorithm that runs several copies of
the same procedure, where each copy is working on its own subsequence of (𝑥1, 𝑦1), . . . , (𝑥𝑇 , 𝑦𝑇 ),
and the sub sequences form a random partition of the entire sequence.
Each process can be described by a tree whose vertices are labelled by samples that are iteratively
constructed. Each tree outputs a predictor according to the state of its vertices. Hence, overall the
algorithm can be depicted as a forest, where at each iteration an example is randomly assigned to
one of the trees, and that tree, in turn, makes an update.
At each time step, we maintain a set of vertices V𝑡 , which we will call pertinent vertices. Each
pertinent vertex 𝑣 holds a sample 𝑆𝑣 . At time 𝑡 = 1 only the leaves are in V1, and each leaf 𝑣 is
assigned the sample 𝑆𝑣 = ∅. Then, at every time-step where an example (𝑥𝑡 , 𝑦𝑡 ) is assigned to the
tree, it is randomly assigned to a pertinent vertex 𝑣 in V (in detail, it is first randomly assigned to
a leaf and then propagated to a pertinent ancestor), and the sample 𝑆𝑣 is updated to (𝑆𝑣 , (𝑥𝑡 , 𝑦𝑡 )).
After that, as we next describe, a process starts that updates the set of pertinent vertices; this process
follows the idea of the tournament examples presented in [11].
Whenever two siblings 𝑣, s(𝑣) are pertinent and assigned with sequences 𝑆𝑣 and 𝑆s(𝑣) , respectively,
they stay pertinent as long as 𝐴(𝑆𝑣 ) = 𝐴(𝑆s(𝑣) ), and samples are assigned to them at their turn via
the process depicted above. Whenever it becomes the case that 𝐴(𝑆𝑣 ) ≠ 𝐴(𝑆s(𝑣) ), let 𝑣̄ denote the
parent of 𝑣, s(𝑣); we consider an example 𝑥 𝑣̄ on which 𝐴(𝑆𝑣 ), 𝐴(𝑆s(𝑣) ) disagree, and guess its label
𝑦 𝑣̄ . Then, 𝑣, s(𝑣) are removed from the set of pertinent vertices, their parent 𝑣̄ becomes pertinent,
and we set 𝑆 𝑣̄ to equal (𝑆𝑣 , (𝑥𝑣 , 𝑦𝑣 )) if 𝐴(𝑆𝑣 ) [𝑥𝑣 ] ≠ 𝑦𝑣 , and (𝑆s(𝑣) , (𝑥𝑣 , 𝑦𝑣 )) otherwise. Once this

2and as discussed, the adversary may even depend on ℎ𝑡 at round 𝑡
3In particular, 𝐴 is required to be an algorithm that achieves a mistake bound of at most 𝑑 on hypothesis

classes of Littlestone dimension 𝑑. We will use the following (easily verified) fact about such an algorithm:
after making a mistake, the algorithm must change the hypothesis it outputs for the following round.
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Algorithm 1 DP-SOA
Input (ε, δ), 𝑘1, 𝑘2.
Set η = 2−4𝑘1

4𝑘1
, and 𝑐 = 4𝑘1/η

Let 𝐺 = (𝑉, 𝐸) be a forest of 𝑘2 full binary trees, each with 𝑘1 leaves.
Let π : 𝑇 → Leaves(𝑉) be a random mapping that maps 𝑡 ∈ [𝑇] to a random leaf.
Set 𝑆𝑣 = ∅ for each leaf 𝑣 and 𝑆𝑢 =⊥ for each non-leaf vertex 𝑢 (where we define 𝐴(⊥) =⊥).
Initialize V1 to be the set of all leaves in the forest.
set 𝑣 (𝑖)1 be an arbitrary leaf from the tree 𝐺𝑖 , for each 𝑖 ∈ [𝑘2]
for t=1 to T do

Run 𝐻𝑖𝑠𝑡𝑆𝑝𝑎𝑟𝑠𝑒ε,δ,η,𝑐 (ℎ𝑡−1, 𝐿𝑡 ) on the List 𝐿𝑡 = {𝐴(𝑆
𝑣
(𝑖)
𝑡

)}𝑘2
𝑖=1 and receive ℎ𝑡

Predict ℎ𝑡 (𝑥𝑡 ) = 𝑦̂𝑡 , and observe 𝑦𝑡 .
Choose 𝑣1 ∈ V𝑡 to be an antecedent of leaf π(𝑡) %there exists a unique antecedent in V𝑡

Set 𝑣2 = s(𝑣1) (if 𝑣1 is the root, continue to the next iteration).
Set (𝑆𝑣1 , (𝑥𝑡 , 𝑦𝑡 )) → 𝑆𝑣1 .
while 𝐴(𝑆𝑣1 ) ≠ 𝐴(𝑆𝑣2 ) AND 𝑣1, 𝑣2 ∈ V𝑡 do

Set 𝑣̄ to be the parent of 𝑣1, 𝑣2
Choose an arbitrary 𝑥 𝑣̄ such that 𝐴(𝑆𝑣1 ) [𝑥 𝑣̄ ] ≠ 𝐴(𝑆𝑣2 ) [𝑥 𝑣̄ ] and 𝑦 𝑣̄ randomly
Set (𝑆𝑣𝑖 , (𝑥 𝑣̄ , 𝑦 𝑣̄ )) → 𝑆 𝑣̄ where 𝑖 is such that 𝐴(𝑆𝑣𝑖 ) [𝑥𝑣 ] ≠ 𝑦𝑣 .
Remove 𝑣1,𝑣2 from V𝑡 and add 𝑣̄ to V𝑡 .
Let 𝑣1 be 𝑣̄𝑡
if 𝑣1 is not the root then

Set 𝑣2 to be the sibling of 𝑣1
else

Set 𝑣1 = 𝑣2 (and hence exit the loop.)
end if

end while
if The While loop was executed at least once then

Let 𝑖 be the tree for which π(𝑡) belongs to.
Choose randomly a vertex 𝑣 in tree 𝑖 such that 𝑣, s(𝑣) ∈ V𝑡 and 𝐴(𝑆𝑣 ) = 𝐴(𝑆s(𝑣) ) (break ties
by choosing randomly).
(If no such 𝑣 exists, let 𝑣 be the root and set 𝑆𝑣 to be some sample for which 𝐴(𝑆𝑣 ) =⊥, add
the root to V𝑡 and remove all other vertices that belong to tree 𝑖).

Set 𝑣 (𝑖
′)

𝑡+1 =

{
𝑣 𝑖 = 𝑖′

𝑣
(𝑖′)
𝑡 𝑖 ≠ 𝑖′

.

else
Set 𝑣 (𝑖

′)
𝑡+1 = 𝑣

(𝑖′)
𝑡 for all 𝑖′ ≤ 𝑘2.

end if
Set V𝑡+1 = V𝑡 .

end for

procedure finishes, the tree outputs (randomly) some hypothesis ℎ = 𝐴(𝑆𝑣 ) where 𝑣 is a pertinent
vertex. The hypothesis will change only when the state of the tree changes (note that at initialization,
the tree outputs 𝐴(∅)).

5.1 Technical Overview

We next give a high level overview of our proof techniques. We focus until the end of this section on
the oblivious realizable case. The main procedure of the algorithm, DP-SOA, is Algorithm 1.
Our proof strategy is similar to the approach of Bun et al. [11] for learning privately in the stochastic
setting, which we next briefly describe. In the stochastic setup, the idea was to rely on global stability.
In a nutshell, a randomized algorithm is called globally stable if it outputs a certain function with
constant probability (over the random bits of the algorithm as well as the random i.i.d sample).
Once we can construct such an algorithm (with sufficiently small error) we run several copies of the
algorithm on separate samples, and then we can use any mechanism, such as the one in Theorem
5.1 below, that publishes (privately) an estimated histogram of the frequency of appearance of each
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Algorithm 2 HistSparse: Receives a sequence of 1-sensitive lists 𝐿1 (𝐷), . . . , 𝐿𝑇 (𝐷).
Initialize: parameters ε, η, δ, 𝑐.
Let σ = 2𝑐/(𝑘ε), θ = 1 − 3η/32
Let θ0 = θ + LAP(σ).
Let counter = 1
For list 𝐿1 set ℎ1 = ℎ𝑖𝑠𝑡ε/(2𝑐,δ/𝑐,η) (𝐿1).
for 𝑡 = 1, . . . , 𝑇 : do

Define query: 𝑄𝑡 = 1 − freq𝐿𝑡
(ℎ𝑡−1).

Let ν𝑖 = LAP(2σ)
if 𝑄𝑡 + ν𝑖 ≥ θcounter then

Set ℎ𝑡 = ℎ𝑖𝑠𝑡ε/(2𝑐) ,δ/𝑐,η (𝐿𝑡 )
counter = counter + 1
θcounter = θ + LAP(σ).

else
Set ℎ𝑡 = ℎ𝑡−1

end if
if counter ≥ 𝑐 then

ABORT
end if

end for

function. In detail, given a list 𝐿 = {𝑥1, . . . , 𝑥𝑘 } we denote by freq𝐿 the mapping

freq𝐿 ( 𝑓 ) =
1
𝑘

∑︁
𝑥∈𝐿

1[𝑥 = 𝑓 ] .

Theorem 5.1 ([8] essentially Proposition 2.20). For every ε, δ and η, there exists a (ε, δ)-DP
mechanism ℎ𝑖𝑠𝑡ε,δ,η that given a list 𝐿 = {𝑥1, . . . , 𝑥𝑘 }, outputs a mapping freq𝐿 : X → [0, 1] such
that if

𝑘 ≥ Θ(2) (η,β, ε, δ) := 4/η + log 1/(η2βδ)
ηε

= 𝑂

(
log 1/ηβδ

ηε

)
, (2)

then with probability (1 − β):

• If freq𝐿 (𝑥) > 0 then freq𝐿 (𝑥) >
η

4 .

• For every 𝑥 such that freq𝐿 (𝑥) > η, we have that freq𝐿 (𝑥) > 0.

Our algorithm follows a similar strategy but certain care needs to taken due to the sequential (and
distribution-free) nature of the data, as well as the fact that using hist procedure 𝑇 times may be
prohibitive (if we wish to obtain logarithmic regret). We next review these challenges:

Global Stability Our first task is to construct an online version of a globally stable algorithm,
which roughly means that different copies of the same algorithm run on disjoint subsequences of
(𝑥1, 𝑦1), . . . , (𝑥𝑇 , 𝑦𝑇 ), and output a fixed hypothesis which may depend on the whole sequence but
not on the disjoint subsequences. DP-SOA does so by assigning each subsequence to a tree which
is running the procedure described in Section 5. We now explain how this procedure induces the
desired stability.
As in Section 5, recall that a vertex 𝑣 is pertinent if it is in the set V𝑡 . We will refer to the distance of
a vertex to any of its leaves as that vertex’s depth. Note that for each pertinent vertex 𝑣 at depth 𝑘 , the
algorithm makes 𝑘 mistakes on the sequence 𝑆𝑣 – indeed, whenever a vertex 𝑣̄ is made pertinent, we
always append to 𝑆 𝑣̄ an example which forces a mistake for the sequence of a child of 𝑣̄. Also, notice
that with probability 2−2𝑘1 , where 𝑘1 is the number of leaves in the tree, all sequences assigned to
each pertinent vertex are consistent with the realized hypothesis ℎ★ (recall that we are considering
here the oblivious realizable case, hence ℎ★ is well-defined). Indeed, this is true as as long as we
guessed the label 𝑦 𝑣̄ to equal ℎ★(𝑥 𝑣̄ ) at each round; the number of guesses is bounded by the number
of vertices, which is 2𝑘1 − 1 < 2𝑘1. Ultimately, this allows two cases: in the first case a vertex
of depth 𝑑 is pertinent: in this case the vertex must identify ℎ★ (indeed, if there are two different
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hypotheses that are consistent on a sample with 𝑑 mistakes, then we can force a (𝑑 + 1)th mistake).
So, if there are “many" trees with a 𝑑-depth pertinent vertex, then fraction of 2−2𝑘1 of them, are
outputting ℎ★, hence we found a frequent hypothesis. The second case is that in “many" of the trees,
for some 𝑘 < 𝑑, there are many pairs 𝑣, s(𝑣) of pertinent vertices at depth 𝑘 so that 𝐴(𝑆𝑣 ) = 𝐴(𝑆s(𝑣) );
we will refer to such a pair 𝑣, s(𝑣) as a collision.
In the batch case the latter case immediately implies that some hypothesis is outputted frequently
(i.e., we get global stability) through a standard concentration inequality that relates the number of
collisions between i.i.d random variables, and the frequency of the most probable hypothesis. In
the online case it is a little bit more subtle as the examples are not i.i.d, hence the sequences for
the pertinent vertices are not i.i.d copies of some random variable. However, suppose that there are
many collisions at depth 𝑘 , and that we now reassign the data by randomly permuting the 𝑘-depth
subtree (i.e. we reassign a random parent to each vertex at depth 𝑘 , in order to form a new complete
binary tree, and we don’t change relations at other depths). Since the assignment of the data (𝑥𝑡 , 𝑦𝑡 )
to the leaves is invariant under permutation, we can think of this process as randomly picking a new
assignment, conditioning on the 𝑘-th level structure of the trees. Alternatively, we can also think
of this process as randomly picking without replacement the different hypotheses outputed by the
𝑘-depth vertices, and counting collisions of siblings.
We now want to relate the number of collisions to their expected mean and obtain a bound on the
most frequent hypothesis. We can do this using a variant of Mcdiarmid’s inequality for permutations
– or sampling without replacement. The observation for this inequality was found in [23] which
attributes it to Talagrand [34]. For completeness we provide the proof in the full version.
Lemma 5.2 (Mcdiarmid’s without replacement). Suppose 𝑍̄ = (𝑍1, . . . , 𝑍𝑛) are random variables
sampled uniformly from some universe Z = {𝑧 (1) , . . . , 𝑧 (𝑁 ) } without replacement (in particular
𝑛 ≤ 𝑁). Let 𝐹 : 𝑍𝑛 → [0, 1] be a mapping such that for 𝑧 = (𝑧1, . . . , 𝑧𝑛) and 𝑧′ = (𝑧′1, . . . , 𝑧

′
𝑛) that

are of Hamming distance at most 1, |𝐹 (𝑧) − 𝐹 (𝑧′) | ≤ 𝑐. Then:

ℙ
(
𝔼(𝐹 (𝑍̄)) − 𝐹 (𝑍̄) ≥ ε

)
≤ 𝑒

− 2ε2
9𝑛𝑐2 .

We use Lemma 5.2 as follows: our function 𝐹 counts the number of collisions between depth
𝑘 vertices after a random permutation (where we think here of permutation as sampling without
replacement), this function is 1-sensitive to changing a single element, as required. We thus obtain
an estimate of the number of collisions for a random permutation, which we can relate to the
appearance of the most frequent hypothesis.
The above calculation can be used to obtain a guarantee that there exists an hypothesis that appears
at frequency 2−𝑂 (𝑘1) (this frequency is roughly the probability that the tree remains consistent with
ℎ★). Since the number of leaves is exponential in the depth, and the depth needs to be at least 𝑑
(the upper bound on the level at which the algorithm stabilizes for sure), we overall obtain doubly
exponential dependence of the frequency on the Littlestone dimension.

Mistake Bound We next turn to bound the number of mistakes. The crucial observation is that
every time the algorithm makes a mistake, if example 𝑥𝑡 is assigned to tree 𝑖 then with some positive
probability (specifically, the frequency of ℎ𝑡 , lower bounded by 2−𝑂 (2𝑑) ) tree 𝑖 outputs ℎ𝑡 . Moreover,
with probability 1/𝑘1 > 0, 𝑥𝑡 is assigned to the pertinent vertex that made the mistake. Once the
example is assigned to this vertex, we have 𝐴((𝑆𝑣 , (𝑥𝑡 , 𝑦𝑡 ))) ≠ 𝐴(𝑆s(𝑣) ). In particular, the two
siblings are taken out of the list of pertinent vertices, and their parent becomes pertinent. In other
words, every time the algorithm makes a mistake with some constant probability (roughly 2−𝑂̃ (2𝑑) ),
the set of pertinent vertices diminishes by one. Since we start with finite number of leaves as pertinent
vertices, the expected number of mistakes is bounded by the number of leaves in the forest.
It remains to show that the number of leaves in the forest is logarithmic in the sequence size (but
doubly exponential in the Littlestone dimension). The number of leaves is roughly 𝑘1 (which is
roughly 𝑂 (2𝑑)) times the number of trees in the forest; this number of trees depends on the sample
complexity of the private process in which we output the frequent hypothesis. We now explain why
roughly 𝑂 (2𝑂 (2𝑑) ln𝑇) trees is sufficient.

Online publishing of a globally stable hypothesis The next challenge we meet is to output the
frequent hypothesis. The most straightforward method to do that is to repeat the idea in the batch
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setting and use procedure hist. We can guarantee a 𝑂 (
√
𝑇) factor of deterioration in the privacy

parameter ε (see Lemma 5.4) due to the repeated use of the hist procedure 𝑇 times.
Our main observation though, is that in most rounds, the frequent hypothesis does not change,
allowing us to exploit the sparse vector technique [14], (see also [13]). The sparse vector technique
is a method to answer, adaptively, a stream of queries where: whenever the answer to the query does
not exceed a certain threshold the algorithm returns a negative result but without any cost in privacy.
We pay, though, in each round where the query exceed the threshold.
We will exploit this idea in the following setting: we receive a stream of 1-sensitive lists
𝐿1 (𝑆), . . . , 𝐿𝑇 (𝑆): Namely, each list 𝐿𝑡 is derived from the data 𝑆 = {(𝑥1, 𝑦1), . . . , (𝑥𝑇 , 𝑦𝑇 )},
and 𝐿𝑡 changes by at most one element, given a change in a single (𝑥𝑡 , 𝑦𝑡 ). We assume that at each
iteration 𝑡 we want to output an element ℎ𝑡 ∈ 𝐿𝑡 with high frequency. Our key assumption is that
the lists are related and a very frequent element ℎ𝑡 is also frequent at step 𝑡 + 1. Thus in most rounds
we just verify that freq𝐿𝑡

(ℎ𝑡−1) is large, and only in rounds where it is too small do we use the stable
histogram mechanism, paying for privacy.
Indeed, in our setting, the appearance of the frequent hypothesis may diminish by at most one each
round. Once its frequency has diminished by a certain factor, then we have already made a certain
fraction of the maximum possible number of mistakes. Thus, in general we only need to verify that
the frequency of ℎ𝑡−1 in 𝐿𝑡 is sufficiently large each round, which can be done via the sparse vector
technique without loss of privacy. We next state the result more formally, the proof is provided in
the full version
Lemma 5.3. Consider, the procedure HistSparseη,𝑐,ε depicted in Algorithm 2. Given a sample 𝑆,
suppose Algorithm 2 receives a stream of lists, where each list is a function of 𝑆 to an array of
elements and each list is 1-sensitive. Then Algorithm 2 is (ε, δ) differentially private and: Set

Θ(3) (𝑐,α,β, ε,α) :=
8𝑐(ln𝑇 + ln 2𝑐/β)

αε
, (3)

and suppose:

𝑘 ≥ Θ(4) (𝑐, η, 𝑇,β, ε, δ) := max{Θ(3) (𝑐,α,β, ε,α),Θ(2) (η,β, ε, δ)} = 𝑂̃

(
𝑐 ln𝑇/βδ

ηε

)
. (4)

The procedure then outputs a sequence {ℎ𝑡 }𝑇𝑡=1, where ℎ𝑡 ∈ 𝐿𝑡 such that if for each list 𝐿𝑡 there
exists ℎ such that freq𝐿𝑡

(ℎ) ≥ η then with probability at least (1 − 2β), for all 𝑡 ≤ 𝑇 , either the
algorithm aborted before step 𝑡 or

• freq𝐿𝑡
(ℎ𝑡 ) ≥ η/16.

• If ℎ𝑡−1 ≠ ℎ𝑡 :
freq𝐿𝑡

(ℎ𝑡−1) ≤ η/8 and freq𝐿𝑡
(ℎ𝑡 ) ≥ η/4.

Adaptive adversaries The proof for the oblivious case relies on the existence of an ℎ★ that is
consistent with the data (and independent of the random bits of the algorithm). In the adaptive case,
while the sequence has to be consistent, ℎ★ need not be determined, and the consistent hypothesis
may depend on the algorithm’s choices.
However, to obtain a regret bound, we rely on the standard reduction that shows that a randomized
learner against oblivious adversary, can attain a similar regret against an adaptive adversary ([12],
Lemma 4.1). One issue, though, is that DP-SOA uses random bits that are shared through time.
Hence for the reduction to work we need to reinitialize the algorithm at every time-step. In this case,
though, the assumptions we make for using the sparse vector technique no longer hold. Thus we can
run DP-SOA, using hist (as we no longer obtain any guarantee from HistSparse), and we require
that each output hypothesis will be 𝑂 (ε/

√
𝑇,𝑂 (δ/𝑇))-DP. The privacy of the whole mechanism now

follows from 𝑇-fold composition:
Lemma 5.4. (see for example Dwork and Roth [13]) Suppose (ε′, δ′) satisfy:

δ′ = δ/2𝑇, and ε′ =
ε

2
√︁

2𝑇 ln(1/δ)
. (5)

Then, the class of (ε′, δ′)-differentially private mechanisms satisfies (ε, δ)-differentialy privacy under
𝑇-fold adaptive composition.

Unfortunately though, the above strategy leads to a
√
𝑇 factor in the regret.
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A Proofs

A.1 Proof of Theorem 4.1

Privacy: We begin by proving the privacy guarantees:
Lemma A.1. Suppose we run Algorithm 1 with parameters (ε, δ). Then the output sequence
ℎ1, . . . , ℎ𝑡 is (ε, δ)-DP.
Proof. Note that at every time step 𝑡, changing a single element 𝑥𝑡 changes at most one element on
the list 𝐿𝑡 = {𝐴(𝑆

𝑣
(𝑖)
𝑡

)}𝑘2
𝑖=1 – specifically, the tree 𝑖 for which π(𝑡) assigns the element 𝑥𝑡 . Next, note

that if we fix the random bits of the algorithm, except for those that are used in the sub-procedure
HistSparse (i.e. π and the random guessing 𝑦𝑣 ), then each list is completely determined at step 𝑡
by the dataset 𝑆. Indeed, each 𝑆

𝑣
(𝑖)
𝑡

is independent of ℎ1, . . . , ℎ𝑇 and the updates of the algorithm
are independent of those. As such, we can think of the lists as functions of the dataset 𝑆.
The prerequisite assumptions for Algorithm 2 hold then (see Lemma 5.3), and by Lemma 5.3, we
have that the list ℎ1, . . . , ℎ𝑇 is then (ε, δ)-DP. �

Utility: The core lemma behind our proof is a statement that there exists (at each iteration) a function
that is frequently outputted by a fraction of the trees; the proof is deferred to Appendix A.3.
Lemma A.2. Suppose (𝑥1, 𝑦1), . . . , (𝑥𝑇 , 𝑦𝑇 ) is consistent with some hypothesis ℎ★ ∈ H. If

𝑘1 ≥ max{2𝑑+1, 20}, and 𝑘2 ≥ 28𝑘1+6𝑘2
1 log

5𝑇 log 𝑘1
β

:= Θ(6) (𝑘1, 𝑇,β), (6)

then with probability at least 1 − β, for all iterations 𝑡 ≤ 𝑇 there exists a predictor 𝑓 ≠⊥ such that:

freq𝐿𝑡
( 𝑓 ) ≥ 2−4𝑘1

4𝑘1
.
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We continue with the proof of Theorem 4.1, assuming Lemma A.2. The proof is an immediate
corollary of the following utility lemma.
Lemma A.3. Suppose Algorithm 1 is run on a sequence (𝑥1, 𝑦1), . . . , (𝑥𝑇 , 𝑦𝑇 ), and assume that
there exists ℎ★ ∈ H such that ℎ★(𝑥𝑖) = 𝑦𝑖 for all 𝑖 ∈ [𝑇]. Then, for β = 1/𝑇 , η and 𝑐 as initialized
in Algorithm 1, if:

𝑘1 ≥ max{2𝑑+1, 20}, and 𝑘2 ≥ max{Θ(4) (𝑐, η, 𝑇,β, ε, δ),Θ(6) (𝑘1, 𝑇,β)} = 𝑂̃

(
28·2𝑑

ε
ln𝑇/δ

)
.

the expected number of mistakes the algorithm makes after 𝑇 rounds is:

𝔼

[
𝑇∑︁
𝑡=1

1[ℎ𝑡 (𝑥𝑡 ) ≠ 𝑦𝑡 ]
]
≤

4𝑘3
1 · 22𝑘1 𝑘2

η
+ 1 = 𝑂̃

(
28·2𝑑

ε
ln𝑇/δ

)
.

Proof of Lemma A.3 First, setting β = 1/𝑇 we have by assumption that 𝑘2 ≥ Θ(6) (𝑘1, 𝑇,β). As
such, we can turn to Lemma A.2 and setting η = 2−4𝑘1

4𝑘1
we have that, with probability 1 − 1/𝑇 , for

each list 𝐿𝑡 there is an element 𝑓 such that freq𝐿𝑡
( 𝑓 ) ≥ η. We can now apply Lemma 5.3, to obtain

that, overall with probability 1 − 3/𝑇 : either the algorithm halted, or for each 𝑡:

1. freq𝐿𝑡
(ℎ𝑡 ) ≥ η/16.

2. If ℎ𝑡−1 ≠ ℎ𝑡 , then

freq𝐿𝑡
(ℎ𝑡−1) ≤ η/8 and freq𝐿𝑡

(ℎ𝑡 ) ≥ η/4.

Let us denote this event by 𝐸0, and we will assume for now on the 𝐸0 happened.
Next, we want to show (under 𝐸0) that for 𝑐 = 4𝑘1/η, we have that

|{𝑡 : freq𝐿𝑡
(ℎ𝑡−1) ≤ η/8}| ≤ 𝑐.

To see the above, let 𝑡 be a time-step for which freq𝐿𝑡
(ℎ𝑡−1) ≤ η/8, but the algorithm did not abort

before time-step 𝑡. Set 𝑡 ′ < 𝑡 be the last iteration where we called hist procedure (i.e. the last
time we updated counter in HistSparse). Observe that ℎ𝑡−1 = ℎ𝑡′ , and note that by Item 2 we have
that freq𝐿𝑡′

(ℎ𝑡′) > η/4. In particular, the Hamming distance between the lists 𝐿𝑡 and 𝐿𝑡′ is at least
η · 𝑘2/4.

Note that for each 𝑖 ∈ [𝑘2], 𝑣 (𝑖)𝑡 is changed between rounds 𝑡 and 𝑡 + 1 only if we run the While loop
in Algorithm 1 at round 𝑡. Note also that at each iteration of the While loop, the size of the set V𝑡

is decreased by 1 (as we remove two siblings and add their parent). So |V𝑡′ | − |V𝑡 | ≥ η · 𝑘2/4. Let
𝑐𝑡 be the number of time steps 𝑡 ′ ≤ 𝑡 so that freq𝐿𝑡′

(ℎ𝑡′−1) ≤ η/8. At initialization we have that
|V1 | = 𝑘2 · 𝑘1; thus, for all 𝑡 ≥ 1,

𝑘2 · 𝑘1 − η/4 · 𝑘2 · 𝑐𝑡 ≥ 0 ⇒ 𝑐𝑡 ≤ 4𝑘1/η.

By the choice of 𝑐 = 4𝑘1/η in Algorithm 1, the algorithm doesn’t halt and we have that, under 𝐸0,

∀𝑡 = 1, . . . , 𝑇 : freq𝐿𝑡
(ℎ𝑡 ) >

η

16
. (7)

We next continue to bound the expected number of mistakes conditioned on 𝐸0.
Suppose that π(𝑡) belongs to the 𝑖-th tree. Note that π(𝑡) is independent of ℎ𝑡 as well as V𝑡 . We have,
then, that with probability 1/𝑘1, π(𝑡) is a descendent of 𝑣 (𝑖)𝑡 . One can observe, that for every leaf
there exists a unique predecessor that belongs to V𝑡 . Overall then, we obtain that with probability
1/𝑘1, 𝑣 (𝑖)𝑡 = 𝑣1. (Recall that 𝑣1 is defined in Algorithm 1 to be the unique antecedent of π(𝑡) that is
in V𝑡 .)
Also, because freq𝐿𝑡

(ℎ𝑡 ) > η/16, with probability η/16 we have 𝐴(𝑆
𝑣
(𝑖)
𝑡

) = ℎ𝑡 . Taken together we
have that whenever the algorithm makes a mistake then 𝐴(𝑆𝑣1 ) makes a mistake with probability at
least η/(16𝑘1). Therefore
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𝔼 (1[ℎ𝑡 (𝑥𝑡 ) ≠ 𝑦𝑡 ] | 𝐸0) ≤
16𝑘1
η

𝔼
(
1[𝐴(𝑆𝑣1 ) [𝑥𝑡 ] ≠ 𝑦𝑡 | 𝐸0

]
).

Again, notice that if 𝐴(𝑆𝑣1 ) makes a mistake, we have that |V𝑡 | is reduced by at least 1. (Indeed, in
this case we have that both 𝑣1, 𝑣2 ∈ V by choice of 𝑣 (𝑖)𝑡 ; because we make a mistake, after adding
(𝑥𝑡 , 𝑦𝑡 ) to the sequence 𝑆𝑣1 , the algorithm disagrees on these two sequences, hence we run at least
one iteration of the While loop that reduces the size of V𝑡 by at least 1.)
As before, since at the beginning |V1 | = 𝑘2 · 𝑘1:

𝔼

[
𝑇∑︁
𝑡=1

1[ℎ𝑡 (𝑥𝑡 ) ≠ 𝑦𝑡 ] | 𝐸0

]
≤ 16𝑘1

η

𝑇∑︁
𝑡=1

𝔼
(
1
[
𝐴(𝑆𝑣1 ) [𝑥𝑡 ] ≠ 𝑦𝑡 | 𝐸0

] )
=

16𝑘1
η

𝔼

(
𝑇∑︁
𝑡=1

1
[
𝐴(𝑆𝑣1 ) [𝑥𝑡 ] ≠ 𝑦𝑡

]
| 𝐸0

)
≤ 16𝑘1 |V1 |

η

=
16𝑘2

1𝑘2

η
.

Hence, we obtain in expectation

𝔼

[
𝑇∑︁
𝑡=1

1[ℎ𝑡 (𝑥𝑡 ) ≠ 𝑦𝑡 ]
]
≤

𝑘2
1𝑘2

η
+ β𝑇 ≤

𝑘2
1𝑘2

η
+ 3.

A.2 Proof of Theorem 4.2

We consider the following procedure:

• Given ε, δ, 𝑇 , set ε′, δ′ as in Eq. (5).
• At each time-step 𝑡, run DP-SOA with privacy parameters (ε′, δ′), 𝑘1, 𝑘2 on the input

sequence 𝑆𝑡 = ((𝑥1, 𝑦1), . . . , (𝑥𝑡−1, 𝑦𝑡−1)).
• Receive a sequence ℎ

(𝑡)
1 , . . . , ℎ

(𝑡)
𝑡 from DP-SOA and output ℎ𝑡 = ℎ

(𝑡)
𝑡 .

Now, we assume 𝑘1 and 𝑘2 are chosen so that for an oblivious sequence the conditions of Theorem 4.1
are met, and hence

• Each output ℎ
(𝑡)
1 , . . . , ℎ

(𝑡)
𝑡 is (ε′, δ′)-DP w.r.t to the input sequence 𝑆𝑡 =

((𝑥1, 𝑦1), . . . , (𝑥𝑡−1, 𝑦𝑡−1)).
• For any oblivious sequence of length 𝑇 , we have that the mistake bound is bounded by
𝑂

(
28·2𝑑/ε′ ln𝑇/δ′

)
.

Now, for privacy we can use Lemma 5.4. Consider the setting of privacy against an adaptive
adversary as introduced in Section 3. Observe that, by our definition of the adaptive adversary,
each time we apply DP-SOA, we apply it on either the sample 𝑆0

𝑡 = (𝑥0
1, 𝑦

0
1), . . . , (𝑥

0
𝑡 , 𝑦

0
𝑡 ), or 𝑆1

𝑡 =

(𝑥1
1, 𝑦

1
1), . . . , (𝑥

1
𝑡 , 𝑦

1
𝑡 ), which can differ by at most one sample. Therefore, since the mechanism

that outputs ℎ
(𝑡)
𝑡 at step 𝑡 is (ε′, δ′)-DP, we obtain via Lemma 5.4 that the above adaptive online

classification algorithm is (ε, δ)-DP.
As for utility, the result follows immediately for the standard reduction from an oblivious online
learner to an adaptive one (Lemma 4.1 in [12]). Indeed, note that at step 𝑡 we predict ℎ𝑡 ac-
cording to a distribution 𝑝𝑡 which is completely defined by the previous sequence of examples
(𝑥1, 𝑦1), . . . , (𝑥𝑡−1, 𝑦𝑡−1) (it is the distribution from which the oblivious algorithm DP-SOA chooses
its prediction). Thus the precondition of [12, Lemma 4.1] is verified, and we obtain the regret bound:

𝑇∑︁
𝑡=1

𝔼[1[ℎ𝑡 (𝑥) ≠ 𝑦]] ≤ 𝑂

(
28·2𝑑/ε′ ln𝑇/δ′

)
.
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A.3 Proof of Lemma A.2

Let ℎ★ be a fixed hypothesis that is consistent with the dataset (𝑥1, 𝑦1), . . . , (𝑥𝑇 , 𝑦𝑇 ). We will call
a tree 𝑇 in the forest 𝐺 consistent if for every vertex 𝑣, 𝑆𝑣 is consistent with hypothesis ℎ★ and we
let G𝑐 be the sub-graph that consists only of consistent trees. With these notations in mind, we now
proceed to the proof. We will divide the proof into two claims; the first one, Claim A.4, gives a lower
bound on the number of consistent trees.
Claim A.4. For a fixed time-step 𝑡 ≤ 𝑇 , with probability at least, 1 − 𝑒−

1
2 𝑘2 ·2−4·𝑘1 , we have that

2−2𝑘1−1 · 𝑘2 of the trees in 𝐺 are consistent.
Proof. Note that for a tree to be consistent we only need that for every 𝑦 𝑣̄ that we guess while running
the algorithm, we have that 𝑦 𝑣̄ = ℎ★(𝑥 𝑣̄ ). If this happens, then all sequences 𝑆 𝑣̄ remain consistent in
the tree. For each 𝑣̄, this happens with probability 1/2, independent on the sequence and the other
labels 𝑦 𝑣̄ . Hence each tree is consistent with probability at least 2−2·𝑘1 (the number of vertices) and
this is independent of the other trees. Thus, applying the Chernoff bound, we obtain that if 𝑀𝑡 is the
number of conistent trees at time 𝑡, then:

ℙ

(
𝑀𝑡 ≤ (2−2𝑘1 − 2−(2𝑘1+1) ) · 𝑘2

)
≤ 𝑒−2𝑘2 ·2−2(2·𝑘1+1)

(8)

�

The next step is to prove that (with high probability) there exists a function 𝑓 that appears frequently
in the list {𝐴(𝑆𝑣 )} of vertices that belong to consistent trees, which we do next.
First let us denote by Ξ = (π, {𝑦𝑣 }𝑣∈𝑉 ) the random seed, or internal bits, of DP-SOA, not including
the random bits of the mechanisms HistSparse. Note that, at each time-step, the sets 𝑆𝑣 , and V𝑡

are completely determined by Ξ (and the oblivious sequence). In particular, the state of the forest is
completely independent of the output hypotheses picked by HistSparse.
Let G𝑐 (Ξ; 𝑡) denote the subgraph of consistent trees given Ξ at time 𝑡 and let 𝐹𝑘 (Ξ; 𝑡) be the multiset
that consists of all labeled subtrees (at time step 𝑡) of consistent trees whose root is a depth-𝑘 vertex.
We will often, with slight abuse of notation, associate a tree in 𝐹𝑘 (Ξ; 𝑡) to its 𝑆𝑣 -labeled root 𝑣, which
is a depth-𝑘 vertex of some consistent tree; thus we will write, at times, “for each 𝑣 in 𝐹𝑘 (Ξ; 𝑡)”.
(Also note that it may be the case that for some depth-𝑘 vertices 𝑣, 𝑆𝑣 = ∅; the subtrees rooted at
such 𝑣 are still included in 𝐹𝑘 (Ξ; 𝑡)). Also, let us say that the (multi)set 𝐹𝑘 is 𝑓 -heavy if, for at least
2−𝑘1 |𝐹𝑘 | of the vertices 𝑣 in 𝐹𝑘 we have that 𝑓 = 𝐴(𝑆𝑣 ) ≠⊥.
Then we have the following claim:
Claim A.5. For a fixed time-step 𝑡 ≤ 𝑇 , let F denote the event that for some 𝑘 ≤ log 𝑘1 + 1 and 𝑓 ,
𝐹𝑘 is 𝑓 -heavy. then,

ℙ (F) ≥ 1 − 2 log 𝑘1 · 𝑒−
2−4𝑘1−1

9 𝑘2 . (9)
Proof. The crucial observation is that, because the distribution of π is invariant under permutation of
the leaves, then given 𝐹𝑘 and G𝑐 , the distribution π of the assignments of data points can be viewed
as randomly sampling (without replacement) elements from 𝐹𝑘 and assigning to each subtree its
appropriate depth-𝑘 vertex as a root.
Specifically, let us say that a vertex 𝑣 is active if it belongs to a consistent tree. Now, let 𝑉𝑘 (Ξ; 𝑡)
be the set of labeled depth-𝑘 active vertices which are right-children of their parents. For each
𝑣 ∈ 𝑉𝑘 (Ξ; 𝑡), denote by 𝑋𝑣 the random variable defined as follows: 𝑋𝑣 = 1 if 𝐴(𝑆𝑣 ) = 𝐴(𝑆s(𝑣) ) and
𝑣, 𝑣s(𝑣) ∈ V𝑡 at the end of the While loop at step 𝑡 of Algorithm 1, and 𝑋𝑣 = 0 otherwise (recall that
𝑡 is fixed). And further, denote

𝐸 (Ξ; 𝑘) = 𝔼

[
1

|𝑉𝑘 |
∑︁
𝑣∈𝑉𝑘

𝑋𝑣 | 𝐹𝑘 (Ξ; 𝑡),G𝑐 (Ξ; 𝑡)
]
.

We claim the following bound holds for the time-step 𝑡:

Pr
Ξ

(
max
𝑘

{
𝐸 (Ξ; 𝑘) − 1

|𝑉𝑘 |
∑︁
𝑣∈𝑉𝑘

𝑋𝑣

}
> 2−𝑘1

)
≤ log 𝑘1𝑒

− 2−2𝑘1 |𝑉𝑘 |
18 . (10)
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To establish Eq. (10), note that for a fixed 𝑘 ≤ log 𝑘1 and a set 𝐹𝑘 , by symmetry of the distribution
of π, the joint distribution of all 𝑋𝑣 does not change if we resample the labels 𝑆𝑣 for all vertices 𝑣
in 𝐹𝑘 , from this set of all labels, without replacement. Note that changing a single element 𝑆𝑣 will
change at most one random variable 𝑋𝑣 , and as such we get that 1

|𝑉𝑘 |
∑

𝑋𝑣 is 1
|𝑉𝑘 | -sensitive. Since

we randomly draw 2|𝑉𝑘 | elements, we can thus use Lemma 5.2 to obtain that for a fixed 𝑘 , 𝐹𝑘 and
G𝑐:

Pr
Ξ

(
𝐸 (Ξ; 𝑘) − 1

|𝑉𝑘 |
∑︁
𝑣∈𝑉𝑘

𝑋𝑣 > 2−𝑘1 | 𝐹𝑘 (Ξ; 𝑡) = 𝐹𝑘 ,G𝑐 (Ξ; 𝑡) = G𝑐

)
=Pr
Ξ

(
𝔼

[
1

|𝑉𝑘 |
∑︁
𝑣∈𝑉𝑘

𝑋𝑣 | 𝐹𝑘 ,G𝑐

]
− 1

|𝑉𝑘 |
∑︁
𝑣∈𝑉𝑘

𝑋𝑣 > 2−𝑘1 | 𝐹𝑘 ,G𝑐

)
≤𝑒−

2−2𝑘1 |𝑉𝑘 |
18 .

Eq. (10) now follows by taking expectation over 𝐹𝑘 ,G𝑐 as well as a union bound over the log 𝑘1
possible values of 𝑘 ≤ log 𝑘1.
We next observe that for any consistent tree there exists a vertex 𝑣, such that 𝑣, s(𝑣) ∈ V𝑡 and
𝐴(𝑆𝑣 ) = 𝐴(𝑆s(𝑣) ). Indeed, if this is not the case, then one can prove by induction that the tree’s root
𝑣𝑟 is in V. However, the sequence 𝑆𝑣𝑟 makes log 𝑘1 ≥ 𝑑 + 1 mistakes, which is a contradiction to the
consistency of the tree. Then, what we showed so far is that in any consistent tree there exists 𝑣 such
that 𝑋𝑣 = 1. Thus, applying pigeon-hole principle, we obtain that for any π there exists a 𝑘 ≤ log 𝑘1
such that

1
|𝑉𝑘 |

∑︁
𝑣∈𝑉𝑘

𝑋𝑣 ≥ 1
𝑘1 log 𝑘1

≥ 2−𝑘1+1.

Together with Eq. (10) we get that, given G𝑐 , with probability at least 1 − log 𝑘1 · 𝑒−
2−2𝑘1+1 |𝑉𝑘 |

18 , for
some 𝑘 we have that

𝐸 (Ξ; 𝑘) > 2−𝑘1 .

Finally, (where for ease of notation we neglect the dependence of 𝐹𝑘 ,G𝑐 in Ξ) we have

𝐸 (Ξ; 𝑘) = 1
|𝑉𝑘 |

∑︁
𝑣∈𝑉𝑘

ℙ
(
𝐴(𝑆𝑣 ) = 𝐴(𝑆s(𝑣) ) ≠⊥ |𝐹𝑘 ,G𝑐

)
=

1
|𝑉𝑘 |

∑︁
𝑣∈𝑉𝑘

∑︁
𝑓 ≠⊥

ℙ(𝐴(𝑆𝑣 ) = 𝑓 |𝐹𝑘 ,G𝑐) ℙ
(
𝐴(𝑆s(𝑣) ) = 𝑓 |𝐴(𝑆𝑣 ) = 𝑓 , 𝐹𝑘 ,G𝑐

)
≤ 1

|𝑉𝑘 |
∑︁
𝑣∈𝑉𝑘

∑︁
𝑓 ≠⊥

ℙ(𝐴(𝑆𝑣 ) = 𝑓 |𝐹𝑘 ,G𝑐) ℙ
(
𝐴(𝑆s(𝑣) ) = 𝑓 |𝐹𝑘 ,G𝑐

)
=

1
|𝑉𝑘 |

∑︁
𝑣∈𝑉𝑘

∑︁
𝑓 ≠⊥

(ℙ(𝐴(𝑆𝑣 ) = 𝑓 |𝐹𝑘 ,G𝑐))2

≤ 1
|𝑉𝑘 |

∑︁
𝑣∈𝑉𝑘

max
𝑓 ≠⊥

ℙ(𝐴(𝑆𝑣 ) = 𝑓 |𝐹𝑘 ,G𝑐)

= max
𝑓 ≠⊥

ℙ(𝐴(𝑆𝑣0 ) = 𝑓 |𝐹𝑘 ,G𝑐),

where the first inequality follows from the fact that 𝑆𝑣 are sampled without replacement, hence the
distribution for 𝐴(𝑆s(𝑣) ) = 𝑓 given that we already sampled such an element reduces. The last
equality follows from the fact that the distribution of 𝑆𝑣 , conditioned on 𝐹𝑘 ,G𝑐 , is identical for all
𝑣 ∈ 𝑉𝑘 ; in the last line we set 𝑣0 to be an arbitrary vertex in 𝑉𝑘 .
Finally, using Claim A.4, and noting that |𝑉𝑘 | is at least the number of consistent trees, we have that
with probability

1 − log 𝑘1 · 𝑒−
2−2𝑘1+1 |𝑉𝑘 |

18 − 𝑒−𝑘2 ·2−4·𝑘1−1 ≥ 1 − 2 log 𝑘1 · 𝑒−
2−4𝑘1−1𝑘2

9 ,
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for some 𝑘 , we have
max
𝑓 ≠⊥

ℙ(𝐴(𝑆𝑣0 ) = 𝑓 |𝐹𝑘 ,G𝑐) ≥ 2−𝑘1 ,

where again 𝑣0 is an arbitrary vertex in 𝑉𝑘 . Since 𝑆𝑣0 is sampled uniformly at random from the set
of 𝑆𝑣 for 𝑣 ∈ 𝐹𝑘 (Ξ; 𝑡), the left-hand side of the above inequality is simply the fraction of 𝑆𝑣 , for
𝑣 ∈ 𝐹𝑘 (Ξ; 𝑡) for which 𝐴(𝑆𝑣 ) = 𝑓 . In particular, we obtain that 𝐹𝑘 (Ξ; 𝑡) is heavy. �

The final claim we will need bounds the number of times we have 𝐴(𝑆𝑣 ) = 𝐴(𝑆s(𝑣) ) = 𝑓 given the
𝐹𝑘 is heavy:
Claim A.6. For a fixed time-step 𝑡 ≤ 𝑇 , recall that F is the event that 𝐹𝑘 is 𝑓 -heavy for some 𝑓
and 𝑘 . Let 𝐸 be the event that for at least 2−2𝑘1−1𝑘2 of the trees, there exists a vertex 𝑣 such that
𝐴(𝑆𝑣 ) = 𝐴(𝑆s(𝑣) ) = 𝑓 , then if 𝑘1 ≥ 20:

ℙ(𝐸 |F) ≥ 1 − 2𝑒−
2−8𝑘1−6

9 𝑘2 . (11)
Proof. Fix the set of consistent trees G𝑐 , and assume that the number of consistent trees is at least
2−𝑘1−1 · 𝑘2. We can assume that 𝑘2 ≥ 22𝑘1+2 (otherwise, since 𝑘1 ≥ 20 the bound is trivial), hence
|𝐹𝑘 | ≥ 2𝑘1+1, for any 𝑘 (as |𝐹𝑘 | is bounded below by the number of consistent trees).
Let us condition π on the consistent trees G𝑐 and 𝐹𝑘 , which we will assume to be 𝑓 -heavy. Again,
we use the fact that conditioned on 𝐹𝑘 ,G𝑐 , the joint distribution of all 𝑆𝑣 (𝑣 ∈ 𝐹𝑘 ) is unchanged
if we randomly resample each 𝑆𝑣 -labeled vertex 𝑣 from 𝐹𝑘 , without replacement. In particular we
have that, for any 𝑘-depth vertex 𝑣:

ℙ(𝐴(𝑆s(𝑣) ) = 𝑓 |𝐴(𝑆𝑣 ) = 𝑓 , 𝐹𝑘 ,G𝑐) ≥ 2−𝑘1 − 1
|𝐹𝑘 |

≥ 2−𝑘1 − 2−𝑘1−1 |𝐹𝑘 | ≥ 2𝑘1+1

= 2−𝑘1−1.

For 𝑖 ∈ [𝑘2], we now set 𝑋𝑖 to be the random variable defined by: 𝑋𝑖 = 1 if there exists 𝑣 in the 𝑖-th
tree such that 𝐴(𝑆s(𝑣) ) = 𝐴(𝑆𝑣 ) = 𝑓 , and 𝑋𝑖 = 0 otherwise. For each consistent tree 𝑖, and for any
depth-𝑘 vertex 𝑣 of tree 𝑖, using the fact that 𝐹𝑘 is 𝑓 -heavy, we have:

𝔼[𝑋𝑖 |𝐹𝑘 ,G𝑐] ≥ ℙ(𝐴(𝑆𝑣 ) = 𝐴(𝑆s(𝑣) ) = 𝑓 |𝐹𝑘 ,G𝑐)
= ℙ(𝐴(𝑆𝑣 ) = 𝑓 | 𝐹𝑘 ,G𝑐) · ℙ(𝐴(𝑆s (𝑣) = 𝑓 | 𝐴(𝑆s(𝑣) ) = 𝑓 , 𝐹𝑘 ,G𝑐)
≥ 2−𝑘1 ℙ(𝐴(𝑆s𝑣) = 𝑓 |𝐴(𝑆𝑣 ) = 𝑓 , 𝐹𝑘 ,G𝑐)
≥ 2−𝑘1 · 2−𝑘1−1

≥ 2−2𝑘1−1.

So if 2−2𝑘1−1 · 𝑘2 of the trees are in G𝑐 , i.e. are consistent, we have that

𝔼

[
1
𝑘2

𝑘2∑︁
𝑖=1

𝑋𝑖 | 𝐹𝑘 ,G𝑐

]
≥ 2−2𝑘1−1 · 2−2𝑘1−1 = 2−4𝑘1−2. (12)

We again exploit the fact that changing the label 𝑆𝑣 of a single vertex 𝑣 in a tree changes at most one
random variable 𝑋𝑖 , and use Lemma 5.2 to obtain a high probability rate. In particular, for any set
of consistent trees G𝑐 that includes 2−2𝑘1−1 · 𝑘2 of the trees, and for any heavy 𝐹𝑘 :

ℙ

(
1
𝑘2

𝑘2∑︁
𝑖=1

𝑋𝑖 ≤ 2−4𝑘1−3 | 𝐹𝑘 ,G𝑐

)
≤ 𝑒

2−8𝑘1−6
9 𝑘2 . (13)

Finally, we take expectation over heavy 𝐹𝑘 . Note that 𝐹𝑘 determines if 𝐹𝑗 is heavy for all 𝑗 ≤ 𝑘 ,
meaning that we may take the expectation of Eq. (13) over only those 𝐹𝑘 for which the determined 𝐹𝑗

is not heavy for all 𝑗 < 𝑘 . And by Claim A.4, G𝑐 consists of 2−2𝑘1−1 · 𝑘2 of the trees with probability
at least 1 − 𝑒−𝑘2 ·2−4𝑘1−2 . Hence

ℙ(𝐸 |F) ≥ 1 − 𝑒−
2−8𝑘1−6

9 𝑘2 − 𝑒−2−4𝑘1−2𝑘2 ≥ 1 − 2𝑒−
2−8𝑘1−6

9 𝑘2 .

�
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Concluding the proof of Lemma A.2 We are now ready to conclude the proof of Lemma A.2.
First note that if a vertex satisfies 𝐴(𝑆𝑣 ) = 𝐴(𝑆s(𝑣) ) ≠⊥ then we must have 𝑣 ∈ V𝑡 . Indeed, since for
both 𝑆𝑣 , 𝑆s(𝑣) ≠⊥, they must at some point have been in V (because every time we initialize 𝑆𝑣 we
also add 𝑣 to V). And whenever we take 𝑣 out of V then we must also take s(𝑣), but we take them
out only if 𝐴(𝑆𝑣 ) ≠ 𝐴(𝑆s(𝑣) )).
As such, for any fixed 𝑓 , for any tree that contains a vertex 𝑣 such that 𝐴(𝑆𝑣 ) = 𝐴(𝑆s(𝑣) ) = 𝑓 , with
probability at least 1/𝑘1 we have that 𝐴(𝑣 (𝑖)𝑡 ) = 𝑓 (as 𝑣 (𝑖)𝑡 is chosen randomly, at each time-step the
tree is updated). Now utlizing Claims A.5 and A.6 we obtain that with probability at least

1 − 2𝑒−
2−8𝑘1−6

9 𝑘2 − 2 log 𝑘1𝑒
− 2−4𝑘1−1

9 𝑘2 ≥ 1 − 4 log 𝑘1𝑒
− 2−8𝑘1−6

9 𝑘2 ,

at least 2−2𝑘1−1𝑘2 of the trees contain a vertex 𝑣 such that 𝐴(𝑆𝑣 ) = 𝐴(𝑆s(𝑣) ) = 𝑓 for some 𝑓 ≠⊥
(independent of the tree).

By the Chernoff bound, we obtain that for at least 2−4𝑘1−2𝑘2
𝑘1

of these trees 𝑖, we choose 𝑣
(𝑖)
𝑡 satisfying

𝐴(𝑣 (𝑖)𝑡 ) = 𝑓 , with probability at least 1 − 𝑒
− 2−8𝑘1−4

𝑘2
1

·𝑘2
.

To conclude, for any fixed 𝑡, with probability at least

1 − 𝑒
− 2−8𝑘1−4

𝑘2
1

𝑘2
− 4 log 𝑘1𝑒

− 2−8𝑘1−6
9 𝑘2 ≥ 1 − 5 log 𝑘1𝑒

2−8𝑘1−6

𝑘2
1

𝑘2
,

for 2−4𝑘1−2

𝑘1
fraction of the trees 𝑖 we have 𝐴(𝑆

𝑣
(𝑖)
𝑡

) = 𝑓 for some fixed 𝑓 . The result now follows from
a union bound over 𝑡 ≤ 𝑇 .

A.4 Proof of Lemma 5.3

Privacy For privacy, the proof is verbatim the proof that sparse is private provided in [13] (but
instead of publishing the answer to a linear query everytime a threshold is passed, we output a
frequent hypothesis). First, we consider the following variant of the procedure Above-threshold
introduced in [13]:

Theorem A.7 ([13], Thm 3.26). There exists a (ε, 0)-DP procedure, Above-thresholdθ,𝑐,ε (de-
picted in Algorithm 3, that receives an adaptive sequence of queries𝑄1, . . . , 𝑄𝑇 that are 1/𝑘 sensitive
and outputs a list {𝑎𝑡 }𝑇𝑡=1 such that if:

𝑘 ≥ Θ(3) (𝑐,α,β, ε,α) :=
8𝑐(ln𝑇 + ln 2𝑐/β)

αε
, (14)

then for any sequence 𝑄1, . . . , 𝑄𝑇 such that |{𝑡 : 𝑄𝑡 (𝐷) ≥ θ − α} ≤ 𝑐, with probability 1 − β:

• For all 𝑎𝑖 = >: 𝑄𝑖 (𝐷) ≥ θ − α.

• For all 𝑎𝑖 =⊥: 𝑄𝑖 (𝐷) ≤ θ + α.
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Algorithm 3 Above-threshold
Initialize: parameters ε, θ, 𝑐.
Let σ = 2𝑐/(𝑘ε)
Let θ0 = θ + LAP(σ).
Let counter = 0
for each list 𝐿𝑡 do

Receive a 1/𝑘 sensitive query 𝑄𝑡 (𝐷)
Let ν𝑖 = LAP(2σ)
if 𝑄𝑡 (𝐷) + ν𝑖 ≥ θ then

output >.
Set counter = counter + 1.
Let θcounter = θ + LAP(σ)

else
output ⊥

end if
if counter ≥ 𝑐 then

ABORT
end if

end for

We observe that Algorithm 2 is the adaptive composition of Above-threshold, together with the
hist mechanism with parameters (ε′/(2𝑐), δ′/(2𝑐)). Moreover since each list changes by at most one
element if we change a single point in the database, we have that the queries𝑄𝑡 (𝐷) = 1−freq𝐿𝑡

(ℎ𝑡−1)
are 1/𝑘 sensitive. Hence by standard composition we obtain that the algorithm is (ε, δ)-DP.

Utility As for accuracy, first note that at each round 𝑡 we choose as a query

𝑄𝑡 (𝐿𝑡 ) = 1 − freq𝐿𝑡
(ℎ𝑡−1).

By our choice of parameters (and standard union bound), we have that with probability (1 − 2β) the
following happens at each round: Whenever the algorithm chooses ℎ𝑡 = ℎ𝑡−1 we have that:

1 − freq𝐿𝑡
(ℎ𝑡 ) = 1 − freq𝐿𝑡

(ℎ𝑡−1) = 𝑄𝑡 (𝐷) ≤ θ + η/32 = 1 − η/16 ⇒ freq𝐿𝑡
(ℎ𝑡 ) ≥ η/16,

and at each round that the algorithm calls ℎ𝑖𝑠𝑡 we have by the guarantee of ℎ𝑖𝑠𝑡 that:

freq𝐿𝑡
(ℎ𝑡 ) ≥ η/4,

and moreover

1 − freq𝐿𝑡
(ℎ𝑡−1) = 𝑄𝑡 (𝐿𝑡 ) ≥ θ − η/32 = 1 − η/8 ⇒ freq𝐿𝑡

(ℎ𝑡−1) ≤ η/8.

A.5 Proof of Lemma 5.2

The main observation is that if we let (𝑖, 𝑗) be the permutation that switches between 𝑖 and 𝑗 , a
uniform randomly chosen permutation can be written as

π = (𝑁, 𝑎𝑁 ) ◦ ((𝑁 − 1), 𝑎𝑁−1) ◦ . . . ◦ (3, 𝑎3) ◦ (2, 𝑎2),
where each 𝑎𝑖 is an independent random variable distributed uniformly on the set {1, . . . , 𝑖}. An
equivalent way to generate 𝑛 random variables 𝑍̄ = (𝑍1, . . . , 𝑍𝑛) sampled without replacement
from Z = {𝑧 (1) , . . . , 𝑧 (𝑁 ) } is as follows: first choose a permutation π uniformly at random, then
set (𝑖1, . . . , 𝑖𝑛) = (π(𝑁), . . . ,π(𝑁 − 𝑛 + 1)), and finally set (𝑍1, . . . , 𝑍𝑛) = (𝑧 (𝑖1) , . . . , 𝑧 (𝑖𝑛) ). In
particular, the random variable 𝑍̄ = (𝑍1, . . . , 𝑍𝑛) is completely determined by the independent
random variables 𝑎𝑁 , . . . , 𝑎𝑁−𝑛+1. Let us write this mapping from 𝑎𝑁 , . . . , 𝑎𝑁−𝑛+1 to 𝑍1, . . . , 𝑍𝑛

as (𝑍1, . . . , 𝑍𝑛) = 𝐺 (𝑎𝑁 , . . . , 𝑎𝑁−𝑛+1). Also note that changing a single variable 𝑎𝑖 changes at most
the position of 3 elements of 𝐺 (𝑎𝑁 , . . . , 𝑎𝑁−𝑛+1). Hence, via the triangle inequality, we obtain that,
for any tuples 𝑎̄ = (𝑎𝑁 , . . . , 𝑎𝑁−𝑛+1) and 𝑎̄′ = (𝑎′

𝑁
, . . . , 𝑎′

𝑁−𝑛+1) that are of Hamming distance at
most 1,

|𝐹 (𝐺 (𝑎̄)) − 𝐹 (𝐺 (𝑎̄′)) | ≤ 3𝑐.
Thus, considering 𝐹◦𝐺 as a function of 𝑎𝑁 , . . . , 𝑎𝑁−𝑛+1, we obtain the desired result via the standard
Mcdiarmid’s inequality.
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