
A Appendix

A.1 Experimental Settings

We provide the detailed model configurations and hyperparameter settings for DEEPCTRL in the following
three experiments: double pendulum dynamics, sales forecasting, and cardiovascular classification.

A.1.1 Model Configurations

Double Pendulum The input and output states are 4 dimensional (two angular displacements and two
angular velocities). The input state is fed into a shared layer whose configuration is [FC64,ReLU,FC16]
where FC(n) denotes a fully-connected layer with n units. Then, output from the shared layer is fed into two
encoders: Rule encoder [FC64,ReLU,FC64,ReLU,FC64] and Data encoder [FC64,ReLU,FC64,ReLU,FC64].
The combined representation from the two encoders is fed into a decision block [FC64,ReLU,FC4]. We use
Adam optimization algorithm for training with learning rate 0.001.

Sales Forecasting The input dimension is 13, consisting of an item price as well as derivative fea-
tures, and the output dimension is 1 (total weekly sales). Both encoders have same configuration
[FC64,ReLU,FC64,ReLU,FC16] followed by a decision block [FC64,ReLU,FC1]. We use Adam optimization
algorithm for training with learning rate 0.001.

Cardiovascular Classification The number of original input features is 11: AGE, HEIGHT, WEIGHT,
GENDER, SYSTOLIC BLOOD PRESSURE, DIASTOLIC BLOOD PRESSURE, CHOLESTEROL, GLUCOSE, SMOK-
ING, ALCOHOL INTAKE, PHYSICAL ACTIVITY. We expand categorical features to one-hot encoding (the input
dimension is increased to 19) and the output dimension is 1 (Presence or absence of cardiovascular disease).
Both encoders have same configuration [FC100,ReLU,FC16] followed by a decision block [FC1,Sigmoid]. We
use Adam optimization algorithm for training with learning rate 0.001.

A.1.2 Data Splits

Double Pendulum The total length of simulated dynamics is 30,000 and it is split into training (18,000),
validation (3,000), and testing (9,000).

Sales Forecasting Per the Kaggle task definition, first 273 weeks are used in a training set, the following 4
weeks are for a validation set, and the last 4 weeks are for a testing set. In each set, there are 22,543, 700, and
700 records from the preprocessed dataset.

Cardiovascular Classification The data partitioning is described in Section 4.3. For SOURCE partition,
we have 70% training samples, 10% validation samples, and 20% testing samples to train and evaluate a model.
Then, the trained model is applied to TARGET 1, TARGET 2, and TARGET 3, respectively.

Table 1: Dataset splits and USUAL vs. UNUSUAL partitioning.

DATA SOURCE TARGET 1 TARGET 2 TARGET 3

USUAL 6,007 20,000 6,000 4,000
UNUSUAL 14,018 6,009 6,009 6,009
RATIO 0.30 0.77 0.50 0.40

A.1.3 Training Settings

We commonly train DEEPCTRL for all tasks with a batch size of 32 on a single GPU (Nvidia T4 GPU) for 1000
epochs with early stopping where a validation error is not improved for 10 epochs. All results in the paper are
mean values from 10 different random seeds.

A.2 Perturbations

A.2.1 How to set δx?

In Section 3, we provide a method to integrate non-differentiable Lrule via input perturbations. In this paper,
we use the rules obtained via perturbation-based method for two tasks: sales forecasting (Section 4.2) and
cardiovascular classification (Section 4.3). We summarize how the perturbations are generated and used to define

13

0.0 0.2 0.4 0.6 0.8 1.0
0.575

0.625

0.675

0.725

0.775
TaskOnly
u = 0.001
u = 0.01
u = 0.1
u = 1.0
u = 10.0

(a) Cross Entropy

0.0 0.2 0.4 0.6 0.8 1.00.55

0.60

0.65

0.70

TaskOnly
u = 0.001
u = 0.01
u = 0.1
u = 1.0
u = 10.0

(b) Accuracy

Figure 8: (Left) Cross entropy and (Right) Accuracy vs. rule strength for various upper bounds of
perturbation scale.

the corresponding rule-based constraint for each task. Note that both tasks have a similar non-differentiable form
of rule-constraint that the input x and output y have a negative or positive correlation.

Perturbations in Sales Forecasting There are a number of weekly-sales-records per an item at a particular
store. For each record (week t), we have input features including the price of an item xt and the target sales yt.
The correlation coefficient between x and y is:

R =

∑T
t=1(xt − x)(yt − y)√∑T

t=1(xt − x)2
√∑T

t=1(yt − y)2
, (4)

where x and y are the sample mean of xt and yt, respectively.

The rule-based constraint we want to impose is price and sales should have a negative correlation coefficient,
i.e. R < 0. While the constraint is based on the exact definition of the correlation coefficient over T samples
(Eq. 4), we use a constraint based on individual sample instead:

∆y

∆x
=

yp − y

xp − x
< 0, (5)

where ∆x is a price-difference and ∆y is a sales-difference, respectively, and xp is a perturbed price where
xp = x + δx and yp is an output from the perturbed price. Note that Eq. 5 is identical to yp < y once δx > 0.
There are two reasons not to use Eq. 4 directly. First, it is costly to compute the coefficient at every iteration.
Second, it is possible to control δx in Eq. 5. We set δx = γ|x|, where γ ∼ U[0, u] such that γ is a perturbation
scale parameter and u is an upper bound of γ. Thus, the magnitude of δx is bounded by [0, u|x|).

Perturbations in Cardiovascular Classification Similarly, we impose a positive correlation between
blood pressure x and a risk of the cardiovascular disease y:

∆y

∆x
=

yp − y

xp − x
> 0. (6)

Eq. 6 is analogous to yp > y as long as the perturbation δx > 0.

Upper Bound u: We set the upper bound u as 0.1 for both tasks via the analysis described in Section A.2.2.

A.2.2 Impact of Perturbation Scale

In previous section, we define δx as a random scalar that is upper-bounded by u|x|. We experiment on the
cardiovascular classification task with different upper bounds, u to see how the scale of perturbation affects the
model’s behavior.

Fig 8 shows how the cross entropy and accuracy are changed as the rule strength is changed. When the upper
bound u is increased, the perturbation scale γ can be also increased, and thus, it leads to generate larger
perturbations δx. As u increases, the performance of a classifier is degraded when rule strength is non zero
(α > 0). The curves imply that larger u leads more degraded performance when the rule strength is higher.
When δx increases, the perturbed output yp is more different to y as yp is a function of x + δx. According
to Eq. 5 and 6, the rule-based objective Lrule is a function of yp − y, and thus, the larger δx eventually
causes larger Lrule. In other words, as Lrule increases, DEEPCTRL is more driven by the rule-based objective
when α is non zero and thus, the task-based performance is degraded. As discussed, it is desired to have

14

(a) t-SNE mapping of zr and zd.
(b) t-SNE mapping of z = αzr + (1− αzd) over
different α.

Figure 9: (Left) t-SNE visualization of zr and zd from rule encoder φr and data encoder φd, respec-
tively, from the double pendulum task. zr and zd from 9,000 test samples do not have overlapped
representations and it implies that two representations are distinct. (Right) t-SNE visualization of
z = αzr + (1− α)zd over different α. It shows that task-/rule-specific representations are placed
in inner/outer space, respectively. Note that the proposed representations gradually interpolate two
extremes rather than being abruptly crossed.

Table 2: Training time (in seconds) for Sales forecasting (Retail) and Cardiovascular classification
(Healthcare).

DATA TASKONLY (TOTAL) DEEPCTRL (TOTAL) TASKONLY (PER EPOCH) DEEPCTRL (PER EPOCH)

RETAIL 362.7±62.3 328.2±91.0 2.31±0.04 2.32±0.01
HEALTHCARE 154.7±11.0 168.1±23.1 3.33±0.24 3.45±0.17

distinct model’s behavior when α = 0 and α = 1 and thus, too small perturbation less incorporate rule-based
representations. However, if too large perturbations are considered, the model is dominated by the rule mostly
and the performance can be worse when α is close to 0 (the brown curve is slightly higher than others when
α→ 0 in Fig. 8a).

A.3 Visualization of zr, zd and z

In this section, we analyze the learned representations to demonstrate the rule vs. data disentanglement capability
of DEEPCTRL. We first visualize what the rule encoder φr and data encoder φd learn to support that the two
encoders actually handle distinct representations rather than similar or overlapped representations. Then, we
show how z = αzr + (1 − α)zd is changed over different α to show meaningful combined representations
with varying rule strength. Fig. 9 demonstrates t-SNE mapping of zr,zd, and z, respectively. The learned
representations of zr and zd are observed to be separated, while their linear combinations are clustered together
with an orientation of the clusters highly dependent on the rule strength.

A.4 Computational Complexity

Compared to TASKONLY training, the proposed method (DEEPCTRL) does not cause any additional com-
putations that are proportional to the sample size. However, if perturbations are included, teaching rules via
perturbation-based method cause an additional computation. For each batch, it is required to compute both the
main forward pass (x to y) and the perturbation-based forward pass (xp to yp). Thus, the time complexity of
DEEPCTRL is 2Cforward + Cbackward and that of TASKONLY is Cforward + Cbackward where Cforward

is the time complexity of forward propagation and Cbackward of backward propagation. As Cbackward takes
the majority of training time, the extra computations from the perturbation-based method is not significant.
Furthermore, since the computational complexity is independent on the size of samples, DEEPCTRL is still
scalable. Table 2 shows the training time from TASKONLY and DEEPCTRL over 10 repeats. Note that the
running time per an epoch from DEEPCTRL is similar to that of TASKONLY and it proves that the computational
complexity of DEEPCTRL is not significantly increased.

15

(a) MAE (b) Verification ratio

Figure 10: Results on a double pendulum task (different ρ).
A.5 Adaptive loss combination:

To balance the contributions from Ltask and Lrule, we propose to use the scale parameter ρ = Lrule,0/Ltask,0.
One potential issue with this proposal is that at the beginning of training, the model is far from convergence,
and the initial estimates of loss values may not be representative. One straightforward idea to address could
be adapting ρ as the ratio after every epoch. In Fig. 10, we compare this approach to the proposed ρ =
Lrule,0/Ltask,0 and we indeed show that the results are quite similar, and indeed ρ = Lrule,0/Ltask,0 yields
better decoupling of α = 0 cases (as evident from 0 verification ratio).

We attribute this to the fact that the scale mismatching mostly happens at early phase of training, and Lrule and
Ltask become rapidly very small and the parameters are not significantly changed. This property is dependent
on the type of rule, type of task, and dataset so that it is necessary to choose a proper method beforehand. Having
a fixed coefficient is particularly beneficial for stable training because the model has a fixed target, rather than a
varying one.

16

