
A The SLF-UCRL Algorithm

Algorithm 3 SLF-UCRL
Input: confidence parameter δ, scope size m, state space S = {Si}di=1, state-action space
S ×A = X = {Xi}ni=1.
Initialization
Initialize sets of consistent scopes: R̃0

1 ← · · · ← R̃0
` ← Z̃0

1 ← · · · ← Z̃0
d ← {Z ⊆ {1, . . . , n} |

|Z| = m}.
Initialize total visit counters N , in-episode visit counters ν and reward summation variables r:
for Z ⊆ {1, . . . , n} such that m ≤ |Z| ≤ 2m, v ∈ X[Z], j = 1, . . . , `, i = 1, . . . , d, w ∈ Si do
rj,Z(v)← N0

i,Z(v, w)← ν0
i,Z(v, w)← N0

Z(v)← ν0
Z(v)← 0.

end for
Initialize time steps counter: t← 1, and observe initial state s1.
for k = 1, 2, . . . do

Start New Episode
Set episode starting time: tk ← t.
Initialize sets of consistent scopes: Z̃ki ← Z̃

k−1
i ∀i and R̃kj ← R̃

k−1
j ∀j.

for Z ⊆ {1, . . . , n} such that m ≤ |Z| ≤ 2m and v ∈ X[Z] do
Update visit counters: νkZ(v)← 0, Nk

Z(v)← Nk−1
Z (v) + νk−1

Z (v).
for i = 1, . . . , d and w ∈ Si do

Update visit counters: νki,Z(v, w)← 0, Nk
i,Z(v, w)← Nk−1

i,Z (v, w) + νk−1
i,Z (v, w).

Compute empirical transition and reward functions:

P̄ ki,Z(w | v) =
Nk
i,Z(v, w)

max{Nk
Z(v), 1}

; r̄kj,Z(v) =
rj,Z(v)

max{Nk
Z(v), 1}

.

Set confidence bounds:

εki,Z(w | v) =

√
18P̄ ki,Z(w | v) log 6dWLtk

δ

max{Nk
Z(v), 1}

+
18 log 6dWLtk

δ

max{Nk
Z(v), 1}

εkZ(v) =

√
18 log 6dWLtk

δ

max{Nk
Z(v), 1}

Wk
i,Z(w | v) = min{εki,Z(w | v), P̄ ki,Z(w | v)}.

end for
end for
Eliminate inconsistent scopes (Algorithm 4).
Construct optimistic MDP M̃k and compute optimistic policy πk (Algorithm 5).
Execute Policy
while νkZ((st, πk(st))[Z]) < Nk

Z((st, πk(st))[Z]) ∀Z ⊆ {1, . . . , n} s.t. m ≤ |Z| ≤ 2m do
Play action at = πk(st), observe next state st+1 and earn reward rt = 1

`

∑`
j=1 r

t
j .

Update in-episode counters and reward summation variables:
for Z ⊆ {1, . . . , n} such that m ≤ |Z| ≤ 2m and i = 1, . . . , d and j = 1, . . . , ` do
νkZ((st, at)[Z])← νkZ((st, at)[Z]) + 1.
νki,Z((st, at)[Z], st+1[i])← νki,Z((st, at)[Z], st+1[i]) + 1.
rj,Z((st, at)[Z])← rj,Z((st, at)[Z]) + rtj .

end for
advance time: t← t+ 1.

end while
end for

13

Algorithm 4 Eliminate Inconsistent Scopes
Eliminate Inconsistent Transition Scopes
for i = 1, . . . , d and Z ∈ Z̃k−1

i do
for Z ′ ⊆ {1, . . . , n} such that |Z ′| = m and v ∈ X[Z ∪ Z ′] and w ∈ Si do

if |P̄ ki,Z∪Z′(w | v)− P̄ ki,Z(w | v[Z])| > 2 · εki,Z∪Z′(w | v) then
Z̃ki ← Z̃ki \ {Z}.

end if
end for

end for
Eliminate Inconsistent Reward Scopes
for j = 1, . . . , ` and Z ∈ R̃k−1

j do
for Z ′ ⊆ {1, . . . , n} such that |Z ′| = m and v ∈ X[Z ∪ Z ′] do

if
∣∣r̄kj,Z∪Z′(v)− r̄kj,Z(v[Z])

∣∣ > 2 · εkZ∪Z′(v) then
R̃kj ← R̃kj \ {Z}.

end if
end for

end for

Algorithm 5 SLF-UCRL Compute Optimistic Policy πk

Construct MDP: M̂k = (Ŝk, Âk, P̂ k, r̂k).
Define action space: Âk = A× S × Z̃k1 × · · · × Z̃kd × R̃k1 × · · · × R̃k` .
Define state space: Ŝk = S×{0, 1, . . . , log n+1}×S×Z̃k1×· · ·×Z̃kd×R̃k1×· · ·×R̃k`×Ωm(d+`),
where Ω = ωn × ωn/2 × · · · × ω2 × ω for ω = (

⋃d
i=1 Si) ∪ (

⋃n
i=d+1Ai).

Define transition function P̂ k
(
s̃′ | s̃, ã

)
=
∏3d+`+1+2nm(d+`)
τ=1 P̂ kτ

(
s̃′[τ] | s̃, ã

)
as follows:

• The counter factor (factor d+ 1) counts deterministically modulo log n+ 2.
• The action factors (factors d+ 2 to 3d+ `+ 2) take the corresponding actions played by

the agent when the counter is 0, and otherwise copy the value from the corresponding
factor of the previous state.

• For i = 1, . . . , d and e = 1, . . . ,m, consider Ωi,e ∈ ωn × ωn/2 × · · · × ω2 × ω which is
the (i − 1)m + e copy of Ω. When the counter is 0 it gets (s, a), i.e., Ωi,e = (s, a,⊥).
When the counter is 1, we take (s, a) from ωn and map them to ωn/2 while eliminating
half of the factors in consideration with the consistent scope Zi chosen by the policy
(stored in factor 2d + 1 + i of the state). This continues for log n steps until the last ω
contains (s, a)[Zi][e].

• For j = 1, . . . , ` and e = 1, . . . ,m, Ωj,e ∈ ωn×ωn/2×· · ·×ω2×ω is the (d+j−1)m+e
copy of Ω. It is handled similarly to the previous item, but considers the reward consistent
scope zj chosen by the policy (stored in factor 3d+ 1 + j of the state).

• For i = 1, . . . , d, the i-th factor is taken from factor i of the previous state when the
counter is not log n + 1, and otherwise performs the optimistic transition of factor i.
Denote the value in the last factor of Ωi,e by ve, the policy’s chosen scope by Zi (stored
in factor 2d+ 1 + i of the state) and the policy’s chosen next state direction by s′i (stored
in factor d+ 1 + i of the state). Then, the probability that factor i transitions to wi ∈ Si is

P̄ ki,Zi
(wi | v1, . . . , vm)−Wk

i,Zi
(wi | v1, . . . , vm)

+ I{wi = s′i} ·
∑
w∈Si

Wk
i,Zi

(w | v1, . . . , vm).

Define reward function r̂k that is always 0 except for the following case. When the counter is
log n+ 1, for j = 1, . . . , `, denote by vj,e the last ω in Ωj,e and by zj scope chosen by the policy
(stored in factor 3d + 1 + j of the state). Then, the j-th reward is: min

{
1, r̄kj,zj (v1, . . . , vm) +

εkzj (v1, . . . , vm)
}

.

Compute optimal policy π̂k of M̂k using oracle.
Extract optimistic policy: πk(s) = π̂k((s, 0,⊥))[1].

14

B Proof of Theorem 1

Remark (Unknown scope size). In this paper we assume that the learner knows a bound m on the
scope size in advance. However, in many applications such a bound is not available, and we are
required to perform feature selection. Structure learning with unknown scope size was previously
studied by Chakraborty and Stone [2011], Guo and Brunskill [2017], but as shown by the latter, it
encompasses an inherent difficulty when approached without any additional assumptions. It is an
interesting open problem whether additional assumptions are indeed necessary, but here we argue that
under the strong assumptions made by previous works, our algorithm keeps a similar regret bound.
Chakraborty and Stone [2011] assume that planning with an empirical model with insufficiently large
scope size results in ε smaller gain than the actual one. In this case, we can keep an estimate m̃ of the
scope size and plan twice in each episode, once with m̃ and once with 2m̃. If there is a gap of more
than ε between the gains, we double our estimate. Similarly to the doubling trick used in multi-arm
bandit, this adds a constant factor (independent of T) to the regret. Guo and Brunskill [2017] make a
similar assumption (but regarding empirical estimates of the transitions) that can be handled similarly.
Remark (Variable scopes sizes). For simplicity, we assume that there is a uniform bound m on the
scope sizes of all factors. However, our algorithm readily extends to variable scope sizes, i.e., a
bound mi on the scope size of factor i. Without any changes to the algorithm (just setting different
scope sizes for different factors), our algorithm keeps a regret bound of the same order in which the
dependence in m is replaced with a dependence in mi for each factor i.

B.1 Bellman Equations

Define the bias of state s ∈ S as follows,

h(M, s) = E
[∞∑
t=1

(
r(st, π?(st))− λ?(M)

)
| s1 = s

]
.

The bias vector h(M, ·) satisfies the following Bellman optimality equations (see Puterman [1994]),

h(M, s) + λ?(M) = r(s, π?(s)) +
∑
s′∈S

P (s′ | s, π?(s))h(M, s′) ∀s ∈ S.

We often use the notation h(s) for h(M, s).

B.2 Failure Events

We start by defining the failure events and prove that they occur with probability at most δ. When the
failure events do not occur, we say that we are outside the failure event.

• F r is the event that some empirical estimate of the reward function is far from its expectation.
That is, there exist a time t, a reward factor j, a scope Z and a value v ∈ X[Zrj ∪ Z] such
that

|r̄tj,Zr
j∪Z(v)− rj(v[Zrj])| > εtZr

j∪Z(v).

Notice that the additional scope Z has no influence because the j-th factor only depends on
the scope Zrj . Thus, by Hoeffding inequality and a union bound the probability of F r is at
most δ/5.

• FP is the event that some empirical estimate of the transition function is far from its
expectation. That is, there exist a time t, a factor i, a scope Z, a value v ∈ X[ZPi ∪ Z] and
a value w ∈ Si such that

|P̄ ti,ZP
i ∪Z

(w | v)− Pi(w | v[ZPi])| > εti,ZP
i ∪Z

(w | v).

Notice that the additional scope Z has no influence because the i-th factor only depends on
the scope ZPi . Thus, by Bernstein inequality and a union bound the probability of FP is at
most δ/5.

• F rAz is the event that
T∑
t=1

(
r(st, at)− rt

)
> 5

√
T log

10T

δ
.

By Azuma inequality the probability of F rAz is at most δ/5.

15

• FPAz is the event that
K∑
k=1

tk+1−1∑
t=tk

(∑
s′∈S

P (s′ | st, at)hk(s′)− hk(st+1)
)
> 5D

√
T log

10T

δ
,

where hk(s) = h(M̃k, s). By Azuma inequality the probability of FPAz is at most δ/5.

We define the failure event F = F r ∪ FP ∪ FPAz ∪ FPAz , and by a union bound it occurs with
probability at most δ. From now on, we analyze the regret outside the failure events and therefore our
regret holds with probability at least 1− δ.
Remark. Notice that outside the failure events the scopes ZP1 , . . . , Z

P
d and Zr1 , . . . , Z

r
` are always

consistent because:∣∣P̄ ti,ZP
i ∪Z

(w | v)− P̄ ti,ZP
i

(w | v[Z])
∣∣ ≤ ∣∣P̄ ti,ZP

i ∪Z
(w | v)− Pi(w | v[Z])

∣∣
+
∣∣Pi(w | v[Z])− P̄ ti,ZP

i
(w | v[Z])

∣∣
≤ εti,ZP

i ∪Z
(w | v) + εti,ZP

i
(w | v[Z]) ≤ 2 · εti,ZP

i ∪Z
(w | v).

B.3 Regret decomposition

Denote λ? = λ?(M) and λk = λ?(M̃k). Next, we decompose the total regret into the regret in each
episode. Then, we further decompose it as follows:

RegT (M) =

T∑
t=1

(λ? − rt)

=

T∑
t=1

(λ? − r(st, at)) +

T∑
t=1

(r(st, at)− rt)

≤
T∑
t=1

(λ? − r(st, at)) +O
(√

T log
T

δ

)
(3)

=

K∑
k=1

tk+1−1∑
t=tk

(λ? − r(st, at)) +O
(√

T log
T

δ

)

=

K∑
k=1

tk+1−1∑
t=tk

(λ? − λk) (4)

+

K∑
k=1

tk+1−1∑
t=tk

(λk − r(st, πk(st))) (5)

+O
(√

T log
T

δ

)
,

where Eq. (3) holds outside the failure event (by event F rAz). Term (4) is the difference between the
optimal gain in the actual MDP and the optimistic MDP, and is bounded by 0 using optimism in
Appendix B.4. Term (5) is the deviation of the actual sum of rewards from its expected value in the
optimistic MDP, and is bounded by concentration arguments in Appendix B.5.

The theorem then follows from the combination of these two bounds, and because the true MDP M
is in the confidence sets of all episodes with probability at least 1− δ, by Appendix B.2.

B.4 Optimism

Lemma 4. For any policy π : S → A and any vector h ∈ R|S|, let π̃ : S → A× S × Z̃k1 × · · · ×
Z̃kd × R̃k1 × · · · × R̃k` be the policy satisfying π̃(s) = (π(s), s?, ZP1 , . . . , Z

P
d , Z

r
1 , . . . , Z

r
`) where

s? = arg maxs∈S h(s). Then, outside the failure event,∑
s′∈S

(
P̃ k(s′ | s, π̃(s))− P (s′ | s, π(s))

)
h(s′) ≥ 0 ∀s ∈ S.

16

Proof. Fix s ∈ S and denote x = (s, π(s)). For every i = 1, . . . , d and w ∈ Si, define P−i (w |
x[ZPi]) = P̄ k

i,ZP
i

(w | x[ZPi]) − Wk
i,ZP

i
(w | x[ZPi]), and notice that P−(s′ | x) ≤ P (s′ | x)

outside the failure event by event FP . Next, define α(s′ | x)
def
= P̄ k(s′ | x) − P (s′ | x) and

α−(s′ | x)
def
= P̄ k(s′ | x)− P−(s′ | x), and notice that α(s′ | x) ≤ α−(s′ | x).

Denote H = maxs∈S h(s). By construction of the optimistic transition function,∑
s′∈S

P̃ k(s′ | x)h(s′) =
∑
s′∈S

P−(s′ | x)h(s′) +H
(
1−

∑
s′∈S

P−(s′ | x)
)

=
∑
s′∈S

P−(s′ | x)h(s′) +H
∑
s′∈S

α−(s′ | x)

=
∑
s′∈S

(P̄ k(s′ | x)− α−(s′ | x))h(s′) +Hα−(s′ | x)

=
∑
s′∈S

P̄ k(s′ | x)h(s′) + (H − h(s′))α−(s′ | x)

≥
∑
s′∈S

P̄ k(s′ | x)h(s′) + (H − h(s′))α(s′ | x)

=
∑
s′∈S

(
P̄ k(s′ | x)− α(s′ | x)

)
h(s′) +Hα(s′ | x)

=
∑
s′∈S

P (s′ | x)h(s′) +H
∑
s′∈S

α(s′ | x) =
∑
s′∈S

P (s′ | x)h(s′).

Corollary 5. Let π̃? : S → A× S × Z̃k1 × · · · × Z̃kd × R̃k1 × · · · × R̃k` be the policy that satisfies
π̃?(s) = (π?(s), s?, ZP1 , . . . , Z

P
d , Z

r
1 , . . . , Z

r
`), where s? = maxs∈S h(M, s). Then, outside the

failure event, λ(M̃k, π̃?, s1) ≥ λ? for any starting state s1.

Proof. Let ρ(·) ∈ R|S| be the vector of stationary distribution for playing policy π̃? in M̃k. By
definition of the average reward we have,

λ(M̃k, π̃?, s1)− λ? =
∑
s∈S

ρ(s)r̃k(s, π̃?(s))− λ?

=
∑
s∈S

ρ(s)
(
r̃k(s, π̃?(s))− λ?

)
≥
∑
s∈S

ρ(s)
(
r(s, π?(s))− λ?

)
=
∑
s∈S

ρ(s)

(
h(M, s)−

∑
s′∈S

P (s′ | s, π?(s))h(M, s′)

)
=
∑
s∈S

ρ(s)

(∑
s′∈S

P̃ k(s′ | s, π̃?(s))−
∑
s′∈S

P (s′ | s, π?(s))
)
h(M, s′) ≥ 0,

where the first inequality is by definition of the reward function in M̃k and event F r, and the
following equality is by the Bellman equations. The last equality follows because ρ is the stationary
distribution of π̃? is M̃k and therefore ρ(s′) =

∑
s∈S ρ(s)P̃ k(s′ | s, π̃?(s)). The final inequality is

by Lemma 4.

B.5 Bounding the Deviation

Denote by νk(s, a) the number of visits to state-action pair (s, a) in episode k, and let νk(s) =
νk(s, πk(s)) and

∆k =
∑
s∈S

∑
a∈A

νk(s, a)(λk − r(s, a)) =
∑
s∈S

νk(s)(λk − r(s, πk(s))).

17

Thus: (5) =
∑K
k=1

∑tk+1−1
t=tk

(λk − r(st, πk(st))) =
∑K
k=1 ∆k.

We now focus on a single episode k. By the Bellman equations in the optimistic model M̃k we have,

∆k =
∑
s∈S

νk(s)(λk − r(s, πk(s)))

=
∑
s∈S

νk(s)(λk − r̃k(s, π̃k(s))) +
∑
s∈S

νk(s)(r̃k(s, π̃k(s))− r(s, πk(s)))

=
∑
s∈S

νk(s)
(∑
s′∈S

P̃ k(s′ | s, π̃k(s))hk(s′)− hk(s)
)

+
∑
s∈S

νk(s)(r̃k(s, π̃k(s))− r(s, πk(s)))

=
∑
s∈S

νk(s)
∑
s′∈S

hk(s′)
(
P̃ k(s′ | s, π̃k(s))− P (s′ | s, πk(s))

)
+
∑
s∈S

νk(s)
(∑
s′∈S

P (s′ | s, πk(s))hk(s′)− hk(s)
)

+
∑
s∈S

νk(s)(r̃k(s, π̃k(s))− r(s, πk(s)))

≤ D
∑
s∈S

νk(s)‖P̃ k(· | s, π̃k(s))− P (· | s, πk(s))‖1 (6)

+

tk+1−1∑
t=tk

(∑
s′∈S

P (s′ | st, at)hk(s′)− hk(st)
)

(7)

+
∑
s∈S

νk(s)(r̃k(s, π̃k(s))− r(s, πk(s))), (8)

where hk(s) = h(M̃k, s), and the last inequality follows from standard arguments [Jaksch et al.,
2010] since hk(s) ≤ D similarly to Lemma 3 in Xu and Tewari [2020]. We now bound each term
separately.

Term (7). We can add and subtract hk(st+1) to term (7), and then when we sum it across all
episodes, we obtain a telescopic sum that is bounded by KD for all episode switches, plus a
martingale difference sequence bounded by event FPAz . That is,

K∑
k=1

tk+1−1∑
t=tk

(∑
s′∈S

P (s′ | st, at)hk(s′)− hk(st)
)
≤ O

(
D

√
T log

T

δ
+KD

)
.

Term (6). Let . represent ≤ up to numerical constants, and denote x = (s, πk(s)), x̃ = (s, π̃k(s))
and π̃k(s) = (πk(s), skn(s), Zk1 (s), . . . , Zkd (s), zk1 (s), . . . , zk` (s)). We can bound the distance be-
tween P and P̃ k by the sum of distances between Pi and P̃ ki [Osband and Van Roy, 2014], i.e.,

‖P̃ k(· | x̃)− P (· | x)‖1 ≤
d∑
i=1

∥∥P̃ ki (· | x[Zki (s)]
)
− Pi

(
· | x[ZPi]

)∥∥
1

≤
d∑
i=1

∥∥P̃ ki (· | x[Zki (s)]
)
− P̄ ki,Zk

i (s)

(
· | x[Zki (s)]

)∥∥
1

(9)

+

d∑
i=1

∥∥P̄ ki,Zk
i (s)

(
· | x[Zki (s)]

)
− P̄ ki,ZP

i

(
· | x[ZPi]

)∥∥
1

(10)

+

d∑
i=1

∥∥P̄ ki,ZP
i

(
· | x[ZPi]

)
− Pi

(
· | x[ZPi]

)∥∥
1

(11)

≤
d∑
i=1

∑
w∈Si

εki,Zk
i (s)(w | x[Zki (s)]) + 4 · εki,ZP

i ∪Zk
i (s)(w | x[ZPi ∪ Zki (s)]) + εki,ZP

i
(w | x[ZPi])

.
d∑
i=1

√√√√ |Si| log
(
dLWT
δ

)
max{Nk

ZP
i ∪Zk

i (s)
(x[ZPi ∪ Zki (s)]), 1}

+
|Si| log

(
dLWT
δ

)
max{Nk

ZP
i ∪Zk

i (s)
(x[ZPi ∪ Zki (s)]), 1}

,

18

where term (9) is bounded by the construction of the optimistic MDP, and term (11) is bounded by
event FP . Term (10) is bounded because the policy π̃k chooses only consistent scopes. Since Zki (s)
and ZPi are both consistent (outside the failure event), we have that P̄ k

i,Zk
i (s)

and P̄ k
i,ZP

i
are both close

to P̄ k
i,ZP

i ∪Zk
i (s)

. Thus, we can bound term (6) as follows

K∑
k=1

(6) ≤ D
K∑
k=1

∑
s∈S

νk(s)‖P̃ k(· | s, π̃k(s))− P (· | s, πk(s))‖1

. D

K∑
k=1

∑
s∈S

d∑
i=1

νk(s)

√√√√ |Si| log
(
dLWT
δ

)
max{Nk

ZP
i ∪Zk

i (s)
(x[ZPi ∪ Zki (s)]), 1}

+D

K∑
k=1

∑
s∈S

d∑
i=1

νk(s)|Si| log
(
dLWT
δ

)
max{Nk

ZP
i ∪Zk

i (s)
(x[ZPi ∪ Zki (s)]), 1}

. D

K∑
k=1

d∑
i=1

∑
Z:|Z|=m

∑
v∈X[ZP

i ∪Z]

νkZP
i ∪Z

(v)

√√√√ |Si| log
(
dLWT
δ

)
max{Nk

ZP
i ∪Z

(v), 1}

+D

K∑
k=1

d∑
i=1

∑
Z:|Z|=m

∑
v∈X[ZP

i ∪Z]

νk
ZP

i ∪Z
(v)|Si| log

(
dLWT
δ

)
max{Nk

ZP
i ∪Z

(v), 1}

. D

d∑
i=1

∑
Z:|Z|=m

∑
v∈X[ZP

i ∪Z]

√
NK+1
ZP

i ∪Z
(v)|Si| log

(dLWT

δ

)
+ |Si| log

(dLWT

δ

)
log T

. D

d∑
i=1

∑
Z:|Z|=m

√√√√|X[ZPi ∪ Z]|
∑

v∈X[ZP
i ∪Z]

NK+1
ZP

i ∪Z
(v)|Si| log

(dLWT

δ

)

+D

d∑
i=1

∑
Z:|Z|=m

∑
v∈X[ZP

i ∪Z]

|Si| log
(dLWT

δ

)
log T

. D

d∑
i=1

∑
Z:|Z|=m

√
|X[ZPi ∪ Z]||Si|T log

(dLWT

δ

)
+D

d∑
i=1

∑
Z:|Z|=m

|X[ZPi ∪ Z]||Si| log
(dLWT

δ

)
log T,

where the third inequality follows from our construction of the episodes as doubling number of visits
to some scope-sized state-action pair (specifically, from Lemma 19 in Jaksch et al. [2010] and Lemma
B.18 in Rosenberg et al. [2020]), the forth inequality follows from Jensen’s inequality, and the last
one because

∑
v∈X[ZP

i ∪Z]N
K+1
ZP

i ∪Z
(v) ≤ T .

19

Term (8). We can bound the distance between r and r̃k by the sum of distances between rj and r̃kj ,

r̃k(s, π̃k(s))− r(s, πk(s)) =
1

`

∑̀
j=1

r̃kj (x̃[zkj (s)])− rj(x[Zrj])

=
1

`

∑̀
j=1

r̃kj (x̃[zkj (s)])− r̄j(x[zkj (s)])︸ ︷︷ ︸
(a)

+
1

`

∑̀
j=1

r̄kj (x[zkj (s)])− r̄j(x[Zrj])︸ ︷︷ ︸
(b)

+
1

`

∑̀
j=1

r̄kj (x[Zrj])− rj(x[Zrj])︸ ︷︷ ︸
(c)

≤ 1

`

∑̀
j=1

εkzkj (s)(x[zkj (s)]) + 4 · εkZr
j∪zkj (s)(x[Zrj ∪ zkj (s)]) + εkZr

j
(x[Zrj])

.
1

`

∑̀
j=1

√√√√ log
(
dLWT
δ

)
max{Nk

Zr
j∪zkj (s)

(x[Zrj ∪ zkj (s)]), 1}
,

where (a) is bounded by the construction of the optimistic MDP, and (c) is bounded by event F r. (b)
is bounded because the policy π̃k chooses only consistent reward scopes. Since zkj (s) and Zrj are both
consistent (outside the failure event), we have that r̄k

j,zkj (s)
and r̄kj,Zr

j
are both close to r̄k

j,Zr
j∪zkj (s)

.
Thus, we can bound term (8) as follows

K∑
k=1

(8) =
1

`

K∑
k=1

∑
s∈S

∑̀
j=1

νk(s)(r̃k(s, π̃k(s))− r(s, πk(s)))

.
1

`

K∑
k=1

∑
s∈S

∑̀
j=1

νk(s)

√√√√ log
(
dLWT
δ

)
max{Nk

Zr
j∪zkj (s)

(x[Zrj ∪ zkj (s)]), 1}

.
1

`

K∑
k=1

∑̀
j=1

∑
Z:|Z|=m

∑
v∈X[Zr

j∪Z]

νkZr
j∪Z(v)

√√√√ log
(
dLWT
δ

)
max{Nk

Zr
j∪Z

(v), 1}

.
1

`

∑̀
j=1

∑
Z:|Z|=m

∑
v∈X[Zr

j∪Z]

√
NK+1
Zr

j∪Z
(v) log

(dLWT

δ

)

.
1

`

∑̀
j=1

∑
Z:|Z|=m

√√√√|X[Zrj ∪ Z]|
∑

v∈X[Zr
j∪Z]

NK+1
Zr

j∪Z
(v) log

(dLWT

δ

)

.
1

`

∑̀
j=1

∑
Z:|Z|=m

√
|X[Zrj ∪ Z]|T log

(dLWT

δ

)
,

where the third inequality follows from our construction of the episodes as doubling number of visits
to some scope-sized state-action pair (specifically, from Lemma 19 in Jaksch et al. [2010] and Lemma
B.18 in Rosenberg et al. [2020]), the forth inequality follows from Jensen’s inequality, and the last
one because

∑
v∈X[Zr

j∪Z]N
K+1
Zr

j∪Z
(v) ≤ T .

20

B.6 Putting Everything Together

Taking the bounds on all the terms, and noting that the failure event occurs with probability at most δ,
gives the following regret bound.

RegT (M) .

√
T log

T

δ
+D

√
T log

T

δ
+KD +

1

`

∑̀
j=1

∑
Z:|Z|=m

√
|X[Zrj ∪ Z]|T log

(dLWT

δ

)
+D

d∑
i=1

∑
Z:|Z|=m

√
|X[ZPi ∪ Z]||Si|T log

(dLWT

δ

)
+D

d∑
i=1

∑
Z:|Z|=m

∑
v∈X[ZP

i ∪Z]

|Si| log
(dLWT

δ

)
log T

.
d∑
i=1

∑
Z:|Z|=m

D

√
|X[ZPi ∪ Z]||Si|T log

(dLWT

δ

)
+

1

`

∑̀
j=1

∑
Z:|Z|=m

√
|X[Zrj ∪ Z]|T log

(dLWT

δ

)
+

d∑
i=1

∑
Z:|Z|=m

D|X[ZPi ∪ Z]||Si| log2
(dLWT

δ

)
+

∑
Z:|Z|=m

∑
Z′:|Z′|=m

D|X[Z ∪ Z ′]| log T

.

(
n

m

)
dD

√
L2WT log

(dLWT

δ

)
+

(
n

m

)
dDL2W log2

(dLWT

δ

)
+

(
n

m

)2

DL2 log T,

where the second inequality follows because there are at most log T episodes for each pair of scopes
Z 6= Z ′ of size m and v ∈ X[Z ∪ Z ′].

21

C The NFA-DORL Algorithm

Algorithm 6 NFA-DORL
Input: confidence parameter δ, scopes {ZPi }di=1, reward scopes {Zrj }`j=1, state space S =

{Si}di=1, action space A.
Initialization
Initialize total visit counters N , in-episode visit counters ν and reward summation variables r:
for a ∈ A and j = 1, . . . , ` and vj ∈ S[Zrj] and i = 1, . . . , d and vi ∈ S[ZPi] and w ∈ Si do
rj,Zr

j
(vj , a) ← 0, N0

Zr
j
(vj , a) ← 0, ν0

Zr
j
(vj , a) ← 0, N0

i,ZP
i

(vi, a, w) ← 0, ν0
i,ZP

i
(vi, a, w) ←

0, N0
ZP

i
(vi, a)← 0, ν0

ZP
i

(vi, a)← 0.
end for
Initialize time steps counter: t← 1, and observe initial state s1.
for k = 1, 2, . . . do

Start New Episode
Set episode starting time: tk ← t.
for a ∈ A and j = 1, . . . , ` and vj ∈ S[Zrj] and i = 1, . . . , d and vi ∈ S[ZPi] and w ∈ Si do

Update visit counters: νk
ZP

i
(vi, a)← 0, νkZr

j
(vj , a)← 0, νk

i,ZP
i

(vi, a, w)← 0, Nk
ZP

i
(vi, a)←

Nk−1
ZP

i

(vi, a) + νk−1
ZP

i

(vi, a), Nk
Zr

j
(vj , a) ← Nk−1

Zr
j

(vj , a) + νk−1
Zr

j
(vj , a), Nk

i,ZP
i

(vi, a, w) ←
Nk−1
i,ZP

i

(vi, a, w) + νk−1
i,ZP

i

(vi, a, w).
Compute empirical transitions and rewards:

P̄ ki,ZP
i

(w | vi, a) =
Nk
i,ZP

i
(vi, a, w)

max{Nk
ZP

i

(vi, a), 1}
; r̄kj,Zr

j
(vj , a) =

rj,Zr
j
(vj , a)

max{Nk
Zr

j
(vj , a), 1}

.

Set confidence bounds (τk = log 6dWLtk
δ):

εki,ZP
i

(w | vi, a) =

√√√√18P̄ k
i,ZP

i

(w | vi, a)τk

max{Nk
ZP

i

(vi, a), 1}
+

18τk

max{Nk
ZP

i

(vi, a), 1}

εkZr
j
(vj , a) =

√
18τk

max{Nk
Zr

j
(vj , a), 1}

Wk
i,ZP

i
(w | vi, a) = min{εki,ZP

i
(w | vi, a), P̄ ki,ZP

i
(w | vi, a)}.

end for
Construct optimistic MDP M̃k and compute optimistic policy πk (Algorithm 7).
Execute Policy
while νkZ(st[Z], πk(st)) < Nk

Z(st[Z], πk(st)) for every Z ∈ {ZP1 , . . . , ZPd , Zr1 , . . . , Zr` } do
Play action at = πk(st), observe next state st+1 and earn reward rt = 1

`

∑`
j=1 r

t
j .

Update in-episode counters and reward summation variables:
for i = 1, . . . , d and j = 1, . . . , ` do
νk
ZP

i
(st[ZPi], at)← νk

ZP
i

(st[ZPi], at) + 1, νkZr
j
(st[ZPi], at)← νkZr

j
(st[Zrj], at) + 1.

νk
i,ZP

i
(st[ZPi], at, st+1[i])← νk

i,ZP
i

(st[ZPi], at, st+1[i]) + 1.
rj,Z(st[Zrj], at)← rj,Zr

j
(st[Zrj], at) + rtj .

end for
advance time: t← t+ 1.

end while
end for

22

Algorithm 7 NFA-DORL Compute Optimistic Policy πk

Construct MDP: M̃k = (S̃, Ã, P̃ k, r̃k).
Define action space: Ã = A ∪ (

⋃d
i=1 Si).

Define state space: S̃ = S × {0, 1, . . . , d+ 1} ×A× S × {0, 1}.
Define reward function for j = 1, . . . , `:

r̃kj
(
(s, h, a′, s′, b), a

)
=

{
min

{
1, r̄kj,Zr

j
(s[Zrj], a) + εkZr

j
(s[Zrj], a)

}
, b = 1, h = 0, a ∈ A

0, otherwise

Define transition function P̃ k
(
s̃′ | s̃, ã

)
=
∏2d+3
τ=1 P̃ kτ

(
s̃′[τ] | s̃, ã

)
as follows:

• The counter factor (factor d+ 1) counts deterministically modulo d+ 2.
• The action factor (factor d+ 2) takes the action played by the agent when the counter is

0, and otherwise copies the value from the (d+ 2)-th factor of the previous state.
• The last factor checks that all actions are legal. It starts at 1 and changes to 0 if the taken

action a satisfies (1) a 6∈ A when the counter is 0 ; (2) a 6∈ Si when the counter is i (for
i = 1, . . . , d).

• For i = 1, . . . , d, the i-th factor is taken from factor i+ 1 + d of the previous state when
the counter is d+ 1, and otherwise copies the value from the i-th factor of the previous
state.

• For i = 1, . . . , d, the (i+ 2 + d)-th factor is taken from factor i+ 2 + d of the previous
state when the counter is not i, and otherwise performs the optimistic transition of factor
i (if the action is not in Si transition arbitrarily), i.e.,

P̃ ki+2+d

(
wi | (s, i, a, s′, b), w

)
= P̄ ki,ZP

i
(wi | s[ZPi], a)−Wk

i,ZP
i

(wi | s[ZPi], a)

+ I{wi = w} ·
∑
w′∈Si

Wk
i,ZP

i
(w′ | s[ZPi], a).

Compute optimal policy π̃k of M̃k using oracle.
Extract optimistic policy: πk(s) = π̃k((s, 0,⊥)).

23

D Proof of Theorem 2

The proof relies on the MDP M ′ = (S̃, A, P ′, r′) (described in Section 5) that models M but
stretches each time step to d + 2 steps. Given a trajectory (st, at)t=1,...,T in M , we map it to a
trajectory (st,h, at,h)t=1,...,T,h=0,1,...,d+1 in M ′ as follows:

• st,0 = (st, 0,⊥) and at,0 = at.

• st,1 = (st, 1, at,⊥) and at,1 is arbitrary.

• st,i+1 = (st, i+ 1, at, st+1[1], . . . , st+1[i],⊥) for i = 1, . . . , d and at,i+1 is arbitrary.

Moreover, we slightly abuse notation as follows. For a policy π in M , we use the same notation π
also for the policy in M ′ that plays according to π. That is, π(st,0) = π((st, 0,⊥)) = π(st) and
π(st,h) is arbitrary for h > 0 as the policy has no effect in these steps.

The failure events for the algorithm are similar to Appendix B.2. Recall that λ?(M ′) = λ?(M)
d+2 and

therefore we can write:

RegT (M) =

T∑
t=1

(
λ?(M)− rt

)
=

T∑
t=1

(
λ?(M)− r(st, at)

)
+

T∑
t=1

(
r(st, at)− rt

)
≤

T∑
t=1

(
λ?(M)− r(st, at)

)
+O

(√
T log

T

δ

)
=

T∑
t=1

(λ?(M)

d+ 2
− r(st, at)

)
+

T∑
t=1

d+1∑
h=1

(λ?(M)

d+ 2
− 0
)

+O
(√

T log
T

δ

)
=

T∑
t=1

d+1∑
h=0

(
λ?(M ′)− r′(st,h, at,h)

)
+O

(√
T log

T

δ

)

=

K∑
k=1

tk+1−1∑
t=tk

d+1∑
h=0

(
λ?(M ′)− r′(st,h, πk(st,h))

)
+O

(√
T log

T

δ

)

≤
K∑
k=1

tk+1−1∑
t=tk

d+1∑
h=0

(
λ?(M̃k)− r′(st,h, πk(st,h))

)
+O

(√
T log

T

δ

)

=

K∑
k=1

tk+1−1∑
t=tk

d+1∑
h=0

(
λ?(M̃k)− r̃k(st,h, πk(st,h))

)
(12)

+

K∑
k=1

tk+1−1∑
t=tk

d+1∑
h=0

(
r̃k(st,h, πk(st,h))− r′(st,h, πk(st,h))

)
(13)

+O
(√

T log
T

δ

)
,

where the last inequality is by optimism which is proven similarly to Appendix B.4.

24

Term (13). Notice that the reward is zero when the counter is not 0 and therefore

(13) =

K∑
k=1

tk+1−1∑
t=tk

(
r̃k(st,0, πk(st,0))− r′(st,0, πk(st,0))

)
≤ 1

`

K∑
k=1

∑
s∈S

∑̀
j=1

νk(s)
(
r̄kj,Zr

j
(s[Zrj], πk(s))− rj(s[Zrj], πk(s)) + εkZr

j
(s[Zrj], πk(s))

)
≤ 1

`

K∑
k=1

∑
s∈S

∑̀
j=1

νk(s) · 2εkZr
j
(s[Zrj], πk(s))

.
1

`

K∑
k=1

∑̀
j=1

∑
v∈S[Zr

j]

∑
a∈A

νkZr
j
(v, a)

√√√√ log dWLT
δ

max{Nk
Zr

j
(v, a), 1}

.
1

`

∑̀
j=1

√
|S[Zrj]||A|T log

dWLT

δ
.

Term (12). By the Bellman equations in the optimistic model M̃k, we can write term (12) as
follows

(12) =

K∑
k=1

tk+1−1∑
t=tk

d+1∑
h=0

(∑
s′∈S̃

P̃ k(s′ | st,h, πk(st,h))hk(s′)− hk(st,h)
)

=

K∑
k=1

tk+1−1∑
t=tk

d+1∑
h=0

∑
s′∈S̃

(
P̃ k(s′ | st,h, πk(st,h))− P ′(s′ | st,h, πk(st,h))

)
hk(s′)

+

tk+1−1∑
t=tk

d+1∑
h=0

(∑
s′∈S̃

P ′(s′ | st,h, πk(st,h))hk(s′)− hk(st,h)
)

. D

K∑
k=1

∑
s∈S

d∑
i=1

∑
w∈Si

νk(s)εki,ZP
i

(s[ZPi], πk(s), w)

+

tk+1−1∑
t=tk

d+1∑
h=0

(∑
s′∈S̃

P ′(s′ | st,h, πk(st,h))hk(s′)− hk(st,h)
)

. D

K∑
k=1

d∑
i=1

∑
v∈S[ZP

i]

∑
a∈A

νkZP
i

(v, a)
(√√√√ |Si| log dWLT

δ

max{Nk
ZP

i

(v, a), 1}
+

|Si| log dWLT
δ

max{Nk
ZP

i

(v, a), 1}

)

+KD +D

√
dT log

dT

δ

.
d∑
i=1

D

√
|Si||S[ZPi]||A|T log

dWLT

δ
+

d∑
i=1

D|Si||S[ZPi]||A| log2 dWLT

δ
.

The first inequality follows by the definition of P ′ and P̃ k and their factored structure. The second
inequality is similar to Appendix B.5, while noting that the bias function in M̃k is bounded by D.
The reason is that diameter of M̃k is D(d+ 2), and that the bias function is always bounded by the
diameter times the optimal gain (see Bartlett and Tewari [2009]).

25

E Factored MDPs with Non-Factored Actions and Unkown Structure

We now adjust our SLF-UCRL algorithm to cope with non-factored actions. The idea is similar to
Section 5 – instead of choosing a factored action that contains the actual action and the optimistic
choices for all the consistent scopes, this time step will be stretched across 2 + d(m + 1) steps in
which the policy makes its choice sequentially. In the first step the policy picks the action, in steps
i(m+ 1)−m to i(m+ 1)− 1 it picks a consistent scope for factor i, step i(m+ 1) performs the
optimistic transition of the i-th factor, and the last step completes the transition.

Thus, the action space of the optimistic MDP M̃k is Ã = A ∪ (
⋃d
i=1 Si) ∪ {1, . . . , d} of size

max{|A|,W, d} compared to |A|W dnd in our original construction. Moreover, the state space is
S̃ = S × {0, 1, . . . , d(m+ 1) + 1} ×A× {1, . . . , d}m × S × {0, 1}, which is similar to Section 5
up to the new factors {1, . . . , d}m that keep the chosen scope.

As in Section 5, a state s is mapped to (s, 0,⊥) and taking action a ∈ A transitions to (s, 1, a,⊥)
while other actions are not legal. When the counter is between i(m + 1) −m and i(m + 1) − 1
the legal actions are {1, . . . , d} and the chosen indices are just stored in the state (denote them by
Z). Then, the legal actions in state (s, i(m+ 1), a, Z, w1, . . . , wi−1,⊥) are Si, and picking action
w ∈ Si transitions to (s, i(m+ 1) + 1, a, Z, w1, . . . , wi−1, wi,⊥) with probability

P̄ ki,Z(wi | s[Z], a)−Wk
i,Z(wi | s[Z], a) + I{wi = w} ·

∑
w′∈Si

Wk
i,Z(w′ | s[Z], a).

At this point the validating bit also checks that Z is consistent for factor i, and turns to 0 if not.
Finally, we transition from (s, d(m + 1) + 1, a, Z ′, w1, . . . , wd, b) deterministically to (s′, 0,⊥),
where s′ = (w1, . . . , wd) ∈ S.

Just like Section 4.2, the transition function of M̃k is no longer factored because some scopes
include the entire state-action space. However, as we previously showed, we can overcome this and
perform the optimistic transition according to a selected scope while maintaining small scope size by
constructing the FMDP M̂k with a “temporary” work space Ωm, where Ω = ωn×ωn/2×· · ·×ω2×ω.
Notice that it is much smaller now because we are not performing the transition for all d factors
simultaneously. Thus, the oracle needs to solve an FMDP with scope size m+ 4, number of factors
2d+m+ 3 + 2nm, size of each factor bounded by max{W, |A|, d(m+ 1) + 2, n} and small number
of actions.

Finally, a similar construction to Section 5 can be used in order to bound the regret. It involves the
MDP M ′ with state space S̃, that stretches each time step of M for 2 + d(m+ 1) steps but models
the exact same process as M .
Theorem 6. Running NFA-SLF-UCRL on a factored MDP with non-factored actions and unknown
structure ensures, with probability at least 1− δ,

RegT (M) = Õ

(d∑
i=1

∑
Z:|Z|=m

D
√
|Si||S[ZPi ∪ Z]||A|T +

1

`

∑̀
j=1

∑
Z:|Z|=m

√
|S[Zrj ∪ Z]||A|T

)
.

26

F Lower Bound

We associate an independent multi-arm bandit (MAB) problem to every tuple (i, w1, . . . , wm) ∈
{1, . . . , d} × {1, . . . ,W}m. Without loss of generality we assume that the rewards of all the MABs
are either 0 or 1.

Now we construct the following factored MDP M = (S,A, P,R), where the state space is S =
{0, 1, . . . , log d+ 1}×{0, 1}log d×{0, 1, . . . ,W}d×{0, 1}d×{0, 1}d/2×· · ·×{0, 1}4×{0, 1}2,
and the action space is non-factored of size |A|. Note that the state space has 3d+ log d factors with
maximal size max{W + 1, log d+ 2}.
The idea is to split the T time steps into blocks of 2 + log d steps. In each block the agent faces a
randomly chosen MAB problem (out of the dWm independent MABs). We make sure that it cannot
infer anything about the different MABs, and thus must solve them sequentially. Since the t steps
lower bound for each MAB is Ω(

√
|A|t), and the expected number of times that the agent faces each

MAB is T
dWm(2+log d) , the total regret is

Ω
(d∑
i=1

∑
v∈{1,...,W}m

√
|A| T

dWm(2 + log d)

)
= Ω

(√ d

log d
Wm|A|T

)
.

We do not make the full formal argument about the relation between the lower bound and the expected
number of times we encounter each MAB, but it can be found in the lower bound proof of Rosenberg
et al. [2020] for example.

We now continue to define the FMDP that makes the agent face the MABs sequentially. There is only
one reward factor. Its scope is the last two bits and the first factor (the counter). It gives a reward of 1
only when the counter is log d+ 1 and the last two bits contain a 1. Otherwise the reward is 0.

The transition function is defined as follows:

• The first factor is called the counter factor. It counts deterministically modulo log d+ 2.

• The next log d bits are called the location bits, and they determine the location of the MAB
within the state. Each bit j of these log d location bits is simply changing uniformly at
random, i.e., becomes 0 or 1 with probability 1/2.

• The next d factors are called the value factors, and they give the MAB instance that is
encountered by the agent at this time block. The transitions for the i-th value factor are
defined as follows. When the counter is 0 denote by x ∈ {1, . . . , d} the integer that the
log d location bits represent. If x ≤ i < x+m this factor is chosen uniformly at random
from {1, . . . ,W} and otherwise it is 0. When the counter is larger than 0 this factor is just
0. Note that the scope size for these factors is log d+ 1.

• The next d bits are called the reward bits, and they represent the rewards given by the MABs.
The transitions of the j-th reward bit is defined as follows. When the counter is 1 denote
by (w1, . . . , wm) the values of factors j to j +m− 1 of the d value factors. If one of them
is 0 than the j-th reward bit is zero, and otherwise its value is determined by the reward of
MAB (j, w1, . . . , wm). When the counter is not 1 this factor is just 0. Note that the scope
size for this factor is m+ 1. Moreover, this is the only MAB instance that the agent gets
any information about, which forces it to solve all the MABs sequentially.

• The final bits {0, 1}d/2 × · · · × {0, 1}4 × {0, 1}2 take the d reward bits and extract whether
they contain a 1 or are all 0. Notice that this encodes exactly the reward given by the current
MAB. Similarly to the SLF-UCRL algorithm, this can be achieved with scope size 3 (each
bit needs to consider two bits from the previous layer and the counter) and within log d− 1
steps. This is done when the counter is 2, . . . , log d and then the last two bits contain a 1 if
the answer is yes, and are both 0 if the answer is no.

Remark (Dependence in the diameter). Our main goal in the lower bound was to show that polyno-
mial dependence in the number of factors and exponential dependence in the scope size are necessary.
This was not clear from previous lower bounds as they used scopes of size 1, and did not have a
dependence on d (because there was an average over factors). Therefore, we did not get a dependence
on the diameter D. While getting the dependence in D might be tricky in the average-reward setting,

27

it is straightforward to get a
√
H dependence in the finite-horizon setting (with horizon H). In the

finite-horizon setting our construction is similar such that in each episode one MAB is faced and
the agent earns the same reward for H − (log d + 2) steps (after the reward is chosen in the first
log d + 2 steps, the agent has no control and just keeps receiving the same reward). This gives a
lower bound of Ω

(√
d

log dHW
m|A|T

)
that matches the upper bound of Chen et al. [2021] (up to

logarithmic factors), thus proving that this is indeed the minimax optimal regret.

28

G Experiments

The code is available here:

https://github.com/avivros007/Factored-MDP-with-Unknown-Structure.

We perform numerical experiments to support our theoretical claims regarding the SLF-UCRL
algorithm. The experiments are performed on the SysAdmin domain [Guestrin et al., 2003]. This
domain consists of N servers that are organized in a graph with a certain topology. Each server
is represented by a binary variable that indicates whether or not it is working. At each time step,
each server has a chance of failing, which depends on its own status and the status of the servers
connected to it. There are N + 1 actions: N actions for rebooting a server (after which it works with
high probability) and an idle action. In previous work [Guestrin et al., 2003, Xu and Tewari, 2020,
Talebi et al., 2021], researchers have performed experiments with two different topologies: A circular
topology in which each server is connected to the next server in the circle, and a star topology in
which the servers are organized in a tree with three branches.

In each topology, the status of each server depends on at most one other server (and its own status and
the action) so the scope size is m = 3. The number of state factors is d = N , the size of each state
factor is W = 2, the action space is of size |A| = N + 1. Thus the state-action space is of total size
|S ×A| = 2N (N + 1) which is exponential in the number of servers N , while the representation of
this FMDP is only polynomial in N .

In our experiments, we set δ = 0.01 and report for each domain the average results over 10
independent experiments (and the standard error in the shaded area). Our code is based on the code
of Talebi et al. [2021] which was made publicly available via https://github.com/aig-upf/
dbn-ucrl. To that code we added a new class called SLFUCRL that implements our algorithm, i.e.,
maintains sets of consistent scopes (we focus on transitions and assume that the reward scopes are
known) and integrates them within the optimistic policy computation. For the planning oracle, we
simply solve the full optimistic MDP using extended value iteration (up to some error). We note that
for finite-horizon we could solve the optimistic MDP exactly.

Figure 2 shows that in a variety of scenarios the SLF-UCRL algorithm acts as predicted by our theo-
retical guarantees. In (a),(b),(c) we used the circular topology with N = 4, 5, 6 servers, respectively,
and in (d) we used the star topology with N = 4 servers. We can see that SLF-UCRL eliminates
the wrong scopes, and that its regret is comparable to that of the Factored-UCRL algorithm [Osband
and Van Roy, 2014] that has full knowledge of the factored structure in advance. Moreover, the
regret of SLF-UCRL is significantly better than that of the UCRL algorithm [Jaksch et al., 2010]
that simply ignores the existence of a factored structure, demonstrating the importance of learning
the structure (as the SLF-UCRL algorithm does). “SLF-UCRLi” refers to i factors whose scope
needs to be learned, demonstrating that additional domain knowledge can be easily integrated into the
SLF-UCRL algorithm and help it both in terms of regret and in terms of computational complexity
(which does not appear in the graphs).

Note that for experiment (a) we used a slightly stricter threshold (by a factor of 10) to eliminate
inconsistent scopes, but then we saw that we can eliminate them faster without eliminating the true
scopes. This is why it takes 20000 steps (and not 15000) to eliminate all scopes in experiment (a).

29

https://github.com/avivros007/Factored-MDP-with-Unknown-Structure
https://github.com/aig-upf/dbn-ucrl
https://github.com/aig-upf/dbn-ucrl

Figure 2: SLF-UCRL performance on SysAdmin domain.

30

	The SLF-UCRL Algorithm
	Proof of
	Bellman Equations
	Failure Events
	Regret decomposition
	Optimism
	Bounding the Deviation
	Putting Everything Together

	The NFA-DORL Algorithm
	Proof of
	Factored MDPs with Non-Factored Actions and Unkown Structure
	Lower Bound
	Experiments

