A Technical Results

In this section, it will be convenient to adopt the ESI notation [29]:
Definition 12 (Exponential Stochastic Inequality (ESI) notation). Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space. Further, let X, Y be any two random variables and \mathcal{G} be a sub- σ-algebra of \mathcal{F}. For $\eta>0$, we define

$$
X \unlhd_{\eta}^{\mathcal{G}} Y \Longleftrightarrow X-Y \unlhd_{\eta}^{\mathcal{G}} 0 \Longleftrightarrow \mathbf{E}\left[e^{\eta(X-Y)} \mid \mathcal{G}\right] \leq 1
$$

For $\mathcal{G}=\mathcal{F}$, we simply write \unlhd_{η} instead of $\unlhd_{\eta}^{\mathcal{G}}$. In what follows, given random variables Z_{1}, Z_{2}, \ldots and loss ℓ satisfying Assumption 1, we denote by

$$
X_{i}^{h}:=\ell\left(h, Z_{i}\right)-\ell\left(h_{*}, Z_{i}\right), \quad h \in \mathcal{H}, i \in \mathbb{N},
$$

the excess-loss random variable, where $h_{*} \in \arg \inf _{h \in \mathcal{H}} L(h)$ (with L as in Assumption 1). Let

$$
\begin{equation*}
\Phi_{i, \eta}:=\frac{1}{\eta} \ln \mathbf{E}_{i-1}\left[e^{-\eta X_{i}^{h}}\right]=\frac{1}{\eta} \ln \mathbf{E}\left[e^{-\eta X_{i}^{h}} \mid Z_{1}, \ldots, Z_{i-1}\right] \tag{13}
\end{equation*}
$$

be the (conditional) normalized cumulant generating function of X_{i}^{h}. We note that since the loss ℓ takes values in the interval $[0,1]$, we have

$$
X_{i}^{h} \in[-1,1], \quad \text { for all } h \in \mathcal{H}, \text { a.s. }
$$

We now present some existing results pertaining to the excess-loss random variable X_{i}^{h} and its normalized cumulant generating function, which will be useful in our proofs:
Lemma 13 ([29]). Let $h \in \mathcal{H}$ and $i \in \mathbb{N}$. Further, let X_{i}^{h}, and $\Phi_{i, \eta}$ be as above. Then, for all $\eta \geq 0$,

$$
\alpha_{\eta} \cdot\left(X_{i}^{h}\right)^{2}-X_{i}^{h}(Z) \unlhd_{\eta}^{\mathcal{G}_{i-1}} \Phi_{i, 2 \eta}+\alpha_{\eta} \cdot \Phi_{i, 2 \eta}^{2}, \quad \text { where } \alpha_{\eta}:=\frac{\eta}{1+\sqrt{1+4 \eta^{2}}}
$$

and \mathcal{G}_{i-1} is the σ-algebra generated by Z_{1}, \ldots, Z_{i-1}.
Lemma 14 ([29]). If the (β, B)-Bernstein condition (Definition 3) holds for $(\beta, B) \in[0,1] \times \mathbb{R}_{>0}$, then for $\Phi_{i, \eta}$ as in (13), it holds that

$$
\Phi_{i, \eta} \leq(B \eta)^{\frac{1}{1-\beta}}, \quad \text { for all } \eta \in(0,1], i \geq 1
$$

Lemma 15 ([10]). For $\Phi_{i, \eta}$ as in (13], it holds that

$$
\Phi_{i, \eta} \leq \frac{\eta}{2}, \quad \text { for all } \eta \in \mathbb{R}, i \geq 1
$$

Lemma 16 ([10]). For $i \geq 1$ and $h \in \mathcal{H}$, the excess-loss random variable X_{i}^{h} satisfies

$$
X_{i}^{h}-\mathbf{E}_{i-1}\left[X_{i}^{h}\right] \unlhd_{\eta}^{\mathcal{G}_{i-1}} \eta \cdot \mathbf{E}_{i-1}\left[\left(X_{i}^{h}\right)^{2}\right], \quad \text { for all } \eta \in[0,1],
$$

where \mathcal{G}_{i-1} is the σ-algebra generated by Z_{1}, \ldots, Z_{i-1} and $\mathbf{E}_{i-1}[\cdot]:=\mathbf{E}\left[\cdot \mid \mathcal{G}_{i-1}\right]$.
The following useful proposition is imported from [38] with minor modifications:
Proposition 17. [ESI Transitivity] Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space and \mathcal{G} be a sub- σ-algebra of \mathcal{F}. Further, let Z_{1}, \ldots, Z_{n} be random variables such that for $\left(\gamma_{i}\right)_{i \in[n]} \in(0,+\infty)^{n}, Z_{i} \unlhd \triangleleft_{\gamma_{i}}^{\mathcal{G}} 0$, for all $i \in[n]$. Then

$$
\sum_{i=1}^{n} Z_{i} \unlhd_{\nu_{n}}^{\mathcal{G}} 0, \quad \text { where } \nu_{n}:=\left(\sum_{i=1}^{n} \frac{1}{\gamma_{i}}\right)^{-1} .
$$

To prove our time-uniform concentration inequality in Section 3, we will require the following generalization of Markov's inequality (we state the version found in [27]):
Lemma 18 (Ville's inequality). If $\left(M_{n}\right)_{n \geq 0}$ is a non-negative supermartingale, then for any $a>0$,

$$
\mathbf{P}\left[\exists n \geq 1: M_{n} \geq a\right] \leq \frac{M_{0}}{a}
$$

The upcoming lemmas will help us bound the sequence of gaps $\left(\xi_{k}\right)$ in 9 under the Bernstein condition.
Lemma 19. Let $P_{0} \in \Delta(\mathcal{H}), \beta \in[0,1]$ and $B>0$, and suppose that the (β, B)-Bernstein condition holds. Then, under Assumption 1$]$ for any $\eta \in[0,1 / 2]$ and $\delta \in(0,1)$, with probability at least $1-\delta$,

$$
\begin{align*}
\frac{\eta}{n} \sum_{i=1}^{n} \mathbf{E}_{Q(h)}\left[\left(\ell\left(h, Z_{i}\right)-\ell\left(h_{\star}, Z_{i}\right)\right)^{2}\right] \leq & 8\left(L(Q)-L\left(h_{\star}\right)\right)+4 C_{\beta} \cdot \eta^{\frac{1}{1-\beta}} \\
& +\frac{8\left(\mathrm{KL}\left(Q \| P_{0}\right)+\ln \delta^{-1}\right)}{n \eta} \tag{14}
\end{align*}
$$

for all $n \geq 1$, where $h_{\star} \in \arg \inf _{h \in \mathcal{H}} L(h)$ and $C_{\beta}:=\left((1-\beta)^{1-\beta} \beta^{\beta}\right)^{\frac{\beta}{1-\beta}}+3 / 2(2 B)^{\frac{1}{1-\beta}}$.
Proof of Lemma 19, Let $\delta \in(0,1)$ and define $X_{i}^{h}:=\ell\left(h, Z_{i}\right)-\ell\left(h_{*}, Z_{i}\right)$. We recall that \mathcal{G}_{i} is the σ-algebra generated by Z_{1}, \ldots, Z_{i}, and $\mathbf{E}_{i-1}[\cdot]:=\mathbf{E}\left[\cdot \mid \mathcal{G}_{i-1}\right]$. Note that under Assumption 1 , $\mathbf{E}_{i-1}\left[X_{i}^{h}\right]=L(h)-L\left(h_{*}\right)$, for all $i \geq 1$ and $h \in \mathcal{H}$. For any $\eta \in[0,1 / 2]$ and $h \in \mathcal{H}$ our strategy is to show that, under the (β, B)-Bernstein condition,

$$
\begin{equation*}
M_{n}^{h}:=\exp \left(\eta^{2} \sum_{i=1}^{n}\left(X_{i}^{h}\right)^{2} / 8-n \eta \cdot\left(L(h)-L\left(h_{\star}\right)\right)+n C_{\beta} \cdot \eta^{\frac{2-\beta}{1-\beta}} / 2\right) \tag{15}
\end{equation*}
$$

is a non-negative supermartingale, for all $h \in \mathcal{H}$. After that, invoking Ville's inequality (Lemma 18) and applying a change of measure argument (Lemma 21), we get the desired result.
Under the (β, B)-Bernstein condition, Lemmas 13 15mply, for all $\eta \in[0,1 / 2]$ and $i \geq 1$,

$$
\begin{equation*}
\eta \cdot\left(X_{i}^{h}\right)^{2} / 4 \unlhd_{\eta}^{\mathcal{G}_{i-1}} X_{i}^{h}+3 / 2(2 B \eta)^{\frac{1}{1-\beta}}, \tag{16}
\end{equation*}
$$

where we used the fact that $\alpha_{\eta}=\frac{\eta}{1+\sqrt{1+4 \eta^{2}}} \geq \eta / 4$, for all $0 \leq \eta \leq 1 / 2\left(\alpha_{\eta}\right.$ is involved in Lemma 13). Now, due to the Bernstein inequality (Lemma 16), we have for all $\eta \in[0,1 / 2]$ and $i \geq 1$,

$$
\begin{align*}
X_{i}^{h} & \unlhd_{\eta}^{\mathcal{G}_{i-1}} L(h)-L\left(h_{\star}\right)+\eta \cdot \mathbf{E}_{i-1}\left[\left(X_{i}^{h}\right)^{2}\right], \\
& \unlhd_{\eta}^{\mathcal{G}_{i-1}} L(h)-L\left(h_{\star}\right)+\eta \cdot\left(L(h)-L\left(h_{\star}\right)\right)^{\beta}, \quad(\text { by the Bern. cond. \& Assumption(1) } \\
& \unlhd_{\eta}^{\mathcal{G}_{i-1}} 2\left(L(h)-L\left(h_{\star}\right)\right)+c_{\beta}^{\frac{\beta}{1-\beta}} \cdot \eta^{\frac{1}{1-\beta}}, \quad \text { where } c_{\beta}:=(1-\beta)^{1-\beta} \beta^{\beta} . \tag{17}
\end{align*}
$$

The last inequality follows by the fact that $z^{\beta}=c_{\beta} \cdot \inf _{\nu>0}\left\{z / \nu+\nu^{\frac{\beta}{1-\beta}}\right\}$, for $z \geq 0$ (in our case, we set $\nu=c_{\beta} \eta$ to get to (17). By chaining (16) with (17) using Proposition 17, we get:

$$
\begin{align*}
\eta \cdot\left(X_{i}^{h}\right)^{2} / 4 & \unlhd_{\eta / 2}^{\mathcal{G}_{i-1}} 2\left(L(h)-L\left(h_{\star}\right)\right)+c_{\beta}^{\frac{\beta}{1-\beta}} \cdot \eta^{\frac{1}{1-\beta}}+3 / 2(2 B \eta)^{\frac{1}{1-\beta}} \\
& \unlhd_{\eta / 2}^{\mathcal{G}_{i-1}} 2\left(L(h)-L\left(h_{\star}\right)\right)+C_{\beta} \cdot \eta^{\frac{1}{1-\beta}} \tag{18}
\end{align*}
$$

This implies that M_{n}^{h} in (15) is a non-negative supermartingale. This in turn implies that for any distribution $P_{0}, \mathbf{E}_{P_{0}(h)}\left[M_{n}^{h}\right]$ is also a supermartingale. Thus, by Ville's inequality (Lemma 18), we have, for any $\delta \in(0,1)$,

$$
\begin{equation*}
\delta \geq \mathbf{P}\left[\exists n \geq 1, \mathbf{E}_{P_{0}(h)}\left[M_{n}^{h}\right] \geq \delta^{-1}\right] \tag{19}
\end{equation*}
$$

On the other hand, by the KL-change of measure lemma (Lemma 21, we have for all $Q \in \triangle(\mathcal{H})$

$$
\mathbf{E}_{Q(h)}\left[\ln M_{n}^{h}\right] \leq \mathrm{KL}\left(Q \| P_{0}\right)+\mathbf{E}_{P_{0}(h)}\left[M_{n}^{h}\right]
$$

Combining this with (19), we get the desired result.
Lemma 20. For $A, B>0$, we have

$$
\begin{equation*}
\inf _{\eta \in(0,1 / 2)}\left\{A \eta^{\frac{1}{1-\beta}}+B / \eta\right\} \leq \frac{A(3-2 \beta)}{1-\beta}\left(\frac{(1-\beta) B}{A}\right)^{\frac{1}{2-\beta}}+2 B . \tag{20}
\end{equation*}
$$

Proof. The unconstrained minimizer of the LHS of (20) is given by $\eta_{\star}:=\left(\frac{(1-\beta) B}{A}\right)^{\frac{1-\beta}{2-\beta}}$. If $\eta_{\star} \leq 1 / 2$, then

$$
\begin{equation*}
\inf _{\eta \in(0,1 / 2]}\left\{A \eta^{\frac{1}{1-\beta}}+B / \eta\right\} \leq A \eta_{\star}^{\frac{1}{1-\beta}}+B / \eta_{\star}=\frac{A(2-\beta)}{1-\beta}\left(\frac{(1-\beta) B}{A}\right)^{\frac{1}{2-\beta}} \tag{21}
\end{equation*}
$$

Now if $\eta_{\star}>1 / 2$, we have $(1 / 2)^{\frac{1}{1-\beta}}<\left(\frac{(1-\beta) B}{A}\right)^{\frac{1}{2-\beta}}$, and so, we have

$$
\begin{align*}
\inf _{\eta \in(0,1 / 2]}\left\{A \eta^{\frac{1}{1-\beta}}+B / \eta\right\} & \leq A(1 / 2)^{\frac{1}{1-\beta}}+2 B \\
& \leq A\left(\frac{(1-\beta) B}{A}\right)^{\frac{1}{2-\beta}}+2 B \tag{22}
\end{align*}
$$

By combining (21) and 22 we get the desired result.

We need one more classical change of measure result (see e.g. [1]):
Lemma 21 (KL-change of measure). For all distributions P and Q such that $Q \ll P$, it holds that

$$
\mathbf{E}_{Q}[X] \leq \inf _{\eta>0}\left\{\eta \mathrm{KL}(Q \| P)+\eta^{-1} \ln \mathbf{E}_{P}\left[e^{\eta \cdot X}\right]\right\}
$$

B Proofs of the New Concentration Inequalities

To prove our first concentration inequality for MDS in Proposition55, we start by constructing a non-negative supermartingale with the help of the recent FREEGRAD algorithm [39]. As mentioned in the introduction, our proof technique is similar to the one introduced in [28] with the difference that we use the specific shape of FREEGRAD's potential function to build our supermartingale. Using the latter leads to a desirable empirical variance term in our final concentration bound.
To express the FreeGrad supermartingale, we define

$$
\begin{equation*}
\Phi_{\gamma}(S, Q):=\frac{\gamma}{\sqrt{\gamma^{2}+Q}} \cdot \exp \left(\frac{|S|^{2}}{2 \gamma^{2}+2 Q+2|S|}\right), \quad S, Q \geq 0, \gamma>0 \tag{23}
\end{equation*}
$$

Proposition 22. Let $\gamma>0$ and $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{N}}$ be a filtration. For any random variables $X_{1}, X_{2}, \cdots \in[-1,1]$ s.t. X_{i} is \mathcal{F}_{i}-measurable and $\mathbf{E}\left[X_{i} \mid \mathcal{F}_{i-1}\right]=0$, for all $i \in[n]$, the process $\left(\Phi_{\gamma}\left(S_{n}, Q_{n}\right)\right)$, where $S_{n}:=\sum_{i=1}^{n} X_{i}$ and $Q_{n}:=\sum_{i=1}^{n} X_{i}^{2}$ is a non-negative supermartingale w.r.t. $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{N}}$; that is,

$$
\Phi_{\gamma}\left(S_{n}, Q_{n}\right) \geq 0, \quad \text { and } \quad \mathbf{E}\left[\Phi_{\gamma}\left(S_{n+1}, Q_{n+1}\right) \mid \mathcal{F}_{n}\right] \leq \Phi_{\gamma}\left(S_{n}, Q_{n}\right), \quad \text { for all } n \geq 1
$$

As mentioned above, the proof of the proposition is based on the guarantee of the parameter-free online learning algorithm FreeGrad. The algorithm operates in rounds, where at each round t, Freegrad outputs $\widehat{\boldsymbol{w}}_{t}$ (that is a deterministic function of the past) in some convex set \mathcal{W}, say \mathbb{R}^{d}, then observes a vector $\boldsymbol{g}_{t} \in \mathbb{R}^{d}$, typically the sub-gradient of a loss function at round t. The algorithm guarantees a regret bound of the form $\sum_{t=1}^{T} \boldsymbol{g}_{t}^{\top}\left(\widehat{\boldsymbol{w}}_{t}-\boldsymbol{w}\right) \leq \widetilde{O}\left(\|\boldsymbol{w}\| \sqrt{Q}_{T}\right)$, for all $\boldsymbol{w} \in \mathcal{W}$, where $Q_{T}:=\sum_{t=1}^{T}\left\|\boldsymbol{g}_{t}\right\|^{2}$. What is more, FreeGrad's outputs ($\widehat{\boldsymbol{w}}_{t}$) ensure the following (see [39, Theorem 5]):

$$
\begin{equation*}
\widehat{\boldsymbol{w}}_{t}^{\top} \boldsymbol{g}_{t}+\Phi_{\gamma}\left(S_{t}, Q_{t}\right) \leq \Phi_{\gamma}\left(S_{t-1}, Q_{t-1}\right) \tag{24}
\end{equation*}
$$

where $S_{t}:=\left\|\sum_{i=1}^{t} \boldsymbol{g}_{i}\right\|$ and $Q_{t}:=\sum_{i=1}^{t}\left\|\boldsymbol{g}_{i}\right\|^{2}$. In the proof of Proposition 22, we will reason about the outputs of FREEGRAD in one dimension (i.e. $d=1$) in response to the inputs $\left(\boldsymbol{g}_{t}\right) \equiv\left(X_{t}\right)$.

One way to prove Proposition 22 is to show that FreeGrad is a betting algorithm that bets fractions smaller than one of its current wealth at each round. In this case, Proposition 22 would follow from existing results due to, for example, [28]. However, for the sake of simplicity, we decided to present a proof that does not explicitly refer to bets.

Proof of Proposition 22, By [39, Theorem 5 and proof of Theorem 20], FreeGrad's outputs (\widehat{w}_{i}) in response to $\left(X_{i}\right)$ and parameter $\gamma>0$ (playing the role of $1 / \epsilon$ in their Theorem 20) guarante ε^{8},

$$
\widehat{w}_{n+1} \cdot X_{n+1}+\Phi_{\gamma}\left(S_{n+1}, Q_{n+1}\right) \leq \Phi_{\gamma}\left(S_{n}, Q_{n}\right), \quad \text { for all } n \in \mathbb{N}
$$

Re-arranging this inequality and taking the expectation $\mathbf{E}\left[\cdot \mid \mathcal{F}_{n}\right]$ yields

$$
\mathbf{E}\left[\Phi_{\gamma}\left(S_{n+1}, Q_{n+1}\right)-\Phi_{\gamma}\left(S_{n}, Q_{n}\right) \mid \mathcal{F}_{n}\right] \leq-\mathbf{E}\left[\widehat{w}_{n+1} \cdot X_{n+1} \mid \mathcal{F}_{n}\right]=-\widehat{w}_{n+1} \cdot \mathbf{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=0
$$

where the penultimate equality follows by the fact that \widehat{w}_{n+1} is a deterministic function of the history up to round n, and so it is \mathcal{F}_{n}-measurable. Finally, the last equality follows by the assumption that $\mathbf{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=0$.

Next, using standard tools from PAC-Bayesian analyses, we extend the result of Proposition 22 by allowing the random variables $\left(X_{t}\right)$ to depend on $h \in \mathcal{H}$. We will also "mix" over the free parameter γ to obtain the optimal (doubly-logarithmic) dependence in n in our final concentration bounds.
Proposition 23. Let $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{N}}$ be a filtration and $\left\{X_{t}^{h}\right\}$ be a family of random variables in $[-1,1]$ s.t. X_{t}^{h} is \mathcal{F}_{t}-measurable and $\mathbf{E}\left[X_{t}^{h} \mid \mathcal{F}_{t-1}\right]=0$, for all $t \geq 1$ and $h \in \mathcal{H}$. Further, let π and P_{0} be prior distributions on $\mathbb{R}_{>0}$ and \mathcal{H}, respectively. Then, for any $\delta \in(0,1)$, we have

$$
\mathbf{P}\left[\forall n \geq 1, \forall P \in \Delta(\mathcal{H}), \mathbf{E}_{P(h)}\left[\ln \mathbf{E}_{\pi(\gamma)}\left[\Phi_{\gamma}\left(S_{n}^{h}, Q_{n}^{h}\right)\right]\right] \leq \mathrm{KL}\left(P \| P_{0}\right)+\ln (1 / \delta)\right] \geq 1-\delta,
$$

where $S_{n}^{h}:=\sum_{i=1}^{n} X_{i}^{h}$ and $Q_{n}^{h}:=\sum_{i=1}^{n}\left(X_{i}^{h}\right)^{2}$.
Proof of Proposition 23, By the KL-change of measure lemma (Lemma 21), we have

$$
\begin{equation*}
\mathbf{E}_{P(h)}\left[\ln \mathbf{E}_{\pi(\gamma)}\left[\Phi_{\gamma}\left(S_{n}^{h}, Q_{n}^{h}\right)\right]\right] \leq \mathrm{KL}\left(P \| P_{0}\right)+\ln \mathbf{E}_{P_{0}(h)} \mathbf{E}_{\pi(\gamma)}\left[\Phi_{\gamma}\left(S_{n}^{h}, Q_{n}^{h}\right)\right] \tag{25}
\end{equation*}
$$

for all $n \geq 1$ and $P \in \triangle(\mathcal{H})$. On the other hand, by Proposition 22, we know that the process $\left(\Phi_{\gamma}\left(S_{n}^{h}, Q_{n}^{h}\right)\right)$ is a supermartingale for any $\gamma>0$. This in turn implies that $\left(\mathbf{E}_{P_{0}(h)} \mathbf{E}_{\pi(\gamma)}\left[\Phi_{\gamma}\left(S_{n}^{h}, Q_{n}^{h}\right)\right]\right)_{n}$ is also a non-negative supermartingale, since a mixture of supermartingales is also a supermartingale. Now, by Ville's inequality (Lemma 18), we have, for all $\delta \in(0,1)$,

$$
\mathbf{P}\left[\forall n \geq 1, \mathbf{E}_{P_{0}(h)} \mathbf{E}_{\pi(\gamma)}\left[\Phi_{\gamma}\left(S_{n}^{h}, Q_{n}^{h}\right)\right] \leq 1 / \delta\right] \geq 1-\delta .
$$

By combining this inequality with (25), we obtain the desired result.
We now use Proposition 23 to prove Proposition 5 (some of the steps in the next proof are similar to ones found in [28]):

Proof of Proposition 5, Let $\rho>1$ and $Q_{n}^{h}:=\sum_{i=1}^{n}\left(X_{i}^{h}\right)^{2}$. We will apply Proposition 23 with a specific choice of prior π. In particular, we let π be a prior on $\left\{\rho^{k / 2}: k \geq 1\right\}$, such that for $k \geq 1$,

$$
\pi\left(\rho^{k / 2}\right):=\pi_{k}:=\frac{1}{c k \ln ^{2}(k+1)}
$$

where c is as in (4). For $n \geq 1$ and $h \in \mathcal{H}$, let $k_{n} \geq 1$ be such that

$$
\begin{equation*}
\rho^{k_{n}-1} \leq 1 \vee Q_{n}^{h} \leq \rho^{k_{n}} . \tag{26}
\end{equation*}
$$

Note that k_{n} is guaranteed to exist and (26) implies that $k_{n} \leq \ln _{\rho}\left(1 \vee Q_{n}^{h}\right)+1 \leq \ln _{\rho}(n)+1$. Let $\gamma_{n}:=\rho^{k_{n} / 2}$. With our choice of π, we have, for all $h \in \mathcal{H}$,

$$
\begin{align*}
\ln \mathbf{E}_{\pi(\gamma)}\left[\Phi_{\gamma}\left(S_{n}^{h}, Q_{n}^{h}\right)\right] & \geq \ln \Phi_{\gamma_{n}}\left(S_{n}^{h}, Q_{n}^{h}\right)+\ln \pi\left(\gamma_{n}\right) \\
& \geq \frac{\left|S_{n}^{h}\right|^{2}}{2 \gamma_{n}+2 Q_{n}^{h}+2\left|S_{n}^{h}\right|}+\ln \left(\frac{\gamma_{n}}{\sqrt{\gamma_{n}^{2}+Q_{n}^{h}}}\right)+\ln \pi\left(\gamma_{n}\right), \\
& \geq \frac{\left|S_{n}^{h}\right|^{2}}{2(\rho+1)\left(1 \vee Q_{n}^{h}\right)+2\left|S_{n}^{h}\right|}-\ln \sqrt{\rho+1}+\ln \pi\left(\gamma_{n}\right), \tag{27}\\
& \geq \frac{\left|S_{n}^{h}\right|^{2}}{2(\rho+1) V_{n}^{h}+2\left|S_{n}^{h}\right|}-\ln \left(c \sqrt{\rho+1}\left(\ln _{\rho}(n)+1\right) \ln ^{2}\left(\ln _{\rho}(n)+2\right)\right), \tag{28}\\
& =4 \sup _{\eta \geq 0}\left\{\eta\left|S_{n}^{h}\right|-2 \eta^{2}(\rho+1) V_{n}^{h}-2 \eta^{2}\left|S_{n}^{h}\right|\right\}-\ln \phi_{\rho}(n), \tag{29}
\end{align*}
$$

[^0]where in (27) we used (26) and in (28) we used the fact that $k_{n} \leq 1+\ln _{\rho}(n)$. Now, by an application of Jensen's inequality, we get from (29) that
\[

$$
\begin{aligned}
\mathbf{E}_{P(h)}\left[\ln \mathbf{E}_{\pi(\gamma)}\left[\Phi_{\gamma}\left(S_{n}^{h}, Q_{n}^{h}\right)\right]\right] \geq & 4 \sup _{\eta \geq 0}\left\{\eta \mathbf{E}_{P(h)}\left|S_{n}^{h}\right|-2 \eta^{2}(\rho+1) \mathbf{E}_{P(h)}\left[V_{n}^{h}\right]-2 \eta^{2} \mathbf{E}_{P(h)}\left|S_{n}^{h}\right|\right\} \\
& -\ln \phi_{\rho}(n), \\
= & \frac{\left(\mathbf{E}_{P(h)}\left|S_{n}^{h}\right|\right)^{2}}{2(\rho+1) \mathbf{E}_{P(h)}\left[V_{n}^{h}\right]+2 \mathbf{E}_{P(h)}\left|S_{n}^{h}\right|}-\ln \phi_{\rho}(n) .
\end{aligned}
$$
\]

Thus, we have $\mathbf{E}_{P(h)}\left[\ln \mathbf{E}_{\pi(\gamma)}\left[\Phi_{\gamma}\left(S_{n}^{h}, Q_{n}^{h}\right)\right]\right] \leq \mathrm{KL}\left(P \| P_{0}\right)+\ln (1 / \delta)$ only if

$$
\frac{\left(\mathbf{E}_{P(h)}\left[\left|S_{n}^{h}\right|\right]\right)^{2}}{2(\rho+1) \mathbf{E}_{P(h)}\left[V_{n}^{h}\right]+2 \mathbf{E}_{P(h)}\left[\left|S_{n}^{h}\right|\right]} \leq \mathrm{C}_{n}(P):=\mathrm{KL}\left(P \| P_{0}\right)+\ln \frac{\phi_{\rho}(n)}{\delta}
$$

Combining this fact with Proposition 23 implies the desired result.
Proof of Theorem 6. We will apply Proposition5 with $X_{t}^{h}:=\ell\left(h, Z_{t}\right)-\mathbf{E}_{t-1}\left[\ell\left(h, Z_{t}\right)\right]=\ell\left(h, Z_{t}\right)-$ $L(h)$, where the last equality follows by Assumption 1 As before, we let $S_{n}^{h}:=\sum_{i=1}^{n} X_{i}^{h}$ and $V_{n}^{h}:=1+\sum_{i=1}^{n}\left(X_{i}^{h}\right)^{2}$. By the classical bias-variance decomposition, we have

$$
\begin{equation*}
\mathbf{E}_{P(h)}\left[V_{n}^{h}\right]=n \widehat{V}_{n}(P)+\mathbf{E}\left[S_{i}^{h}\right]^{2} / n \tag{30}
\end{equation*}
$$

where $\widehat{V}_{n}(P)$ is as in the theorem's statement. Thus,

$$
\begin{equation*}
\frac{\left(\mathbf{E}_{P(h)}\left|S_{n}^{h}\right|\right)^{2}}{2(\rho+1) \mathbf{E}_{P(h)}\left[V_{n}^{h}\right]+2 \mathbf{E}_{P(h)}\left|S_{n}^{h}\right|} \leq \mathrm{C}_{n}(P):=\mathrm{KL}\left(P \| P_{0}\right)+\ln \frac{\phi_{\rho}(n)}{\delta}, \tag{31}
\end{equation*}
$$

holds only if,

$$
\begin{equation*}
\frac{\mathbf{E}_{P(h)}\left[S_{n}^{h}\right]^{2}}{2(\rho+1) n \widehat{V}_{n}(P)+2(\rho+1) \mathbf{E}_{P(h)}\left[S_{n}^{h}\right]^{2} / n+2\left|\mathbf{E}_{P(h)}\left[S_{n}^{h}\right]\right|} \leq \mathrm{C}_{n}(P) \tag{32}
\end{equation*}
$$

where we used the bias-variance decomposition in (30) together with the facts that $\left|\mathbf{E}_{P(h)}\left[S_{n}^{h}\right]\right| \leq$ $\mathbf{E}_{P(h)}\left[\left|S_{n}^{h}\right|\right]$ (Jensen's inequality) and that the function $x \mapsto x^{2} /(x+v)$ is increasing on $\mathbb{R}_{\geq 0}$ for all $v>0$. On the other hand, (32) is true for $P \in \mathcal{P}_{n}$, only if,

$$
\begin{equation*}
\left|\mathbf{E}_{P(h)}\left[S_{i}^{h}\right]\right| \leq \frac{2 \mathrm{C}_{n}(P) / n+\sqrt{2(\rho+1) \widehat{V}_{n}(P) \cdot \mathrm{C}_{n}(P) / n}}{1-2(\rho+1) \mathrm{C}_{n}(P) / n} \tag{33}
\end{equation*}
$$

Thus, (31) holds only if (33) is true, and so we obtain the desired result by Proposition 5

C Proofs of Monotonicity and Excess Risk Rates

To simplify notation in this section, we define

$$
\widehat{L}_{n}(h):=\frac{1}{n} \sum_{i=1}^{n} \ell\left(h, Z_{i}\right), \quad \widehat{L}(Q):=\mathbf{E}_{Q(h)}\left[\widehat{L}_{n}(h)\right], \quad \text { for all } Q \in \triangle(\mathcal{H})
$$

We start by presenting a sequence of intermediate results needed in the proofs of Theorems 8 and 9

C. 1 Intermediate Results

We now present a bound on the risk difference $L(Q)-L\left(Q^{\prime}\right)$, for any $Q, Q^{\prime} \in \Delta(\mathcal{H})$, using our new time-uniform empirical Bernstein inequality in Theorem6 For $\delta \in(0,1), \rho>1$ and $k \geq 1$, we recall the definitions

$$
\begin{equation*}
\epsilon_{k}:=\frac{2\left(\mathrm{KL}\left(\mathrm{~B}\left(Z_{1: k}\right) \times P_{k-1} \| P_{0} \times P_{0}\right)+\ln \frac{\phi_{\rho}(k)}{\delta}\right)}{k \cdot(\rho+1)^{-1}} ; n_{\delta}:=\sup \left\{n: 8(\rho+1) \ln \frac{\phi_{\rho}(n)}{\delta}>n\right\}, \tag{34}
\end{equation*}
$$

where $\left(P_{k}\right)$ are the outputs of Algorithm 1 and ϕ_{ρ} is as in Proposition5.

Lemma 24. Let $\rho>0, P_{0} \in \Delta(\mathcal{H})$, and \mathcal{Q}_{n} be as in (8). Further, let $\delta \in(0,1)$ and n_{δ} as in (34). Then, under Assumption 1 we have, with probability at least $1-\delta$, for all $n \geq n_{\delta}$ and $Q, Q^{\prime} \in \mathcal{Q}_{n}$,

$$
\begin{gather*}
L(Q)-L\left(Q^{\prime}\right) \leq \widehat{L}_{n}(Q)-\widehat{L}_{n}\left(Q^{\prime}\right)+\frac{\sqrt{\frac{\widehat{V}_{n}\left(Q, Q^{\prime}\right) \cdot \varepsilon_{n}\left(Q, Q^{\prime}\right)}{n}}+\frac{2 \varepsilon_{n}\left(Q, Q^{\prime}\right)}{\rho+1}}{1-\varepsilon_{n}\left(Q, Q^{\prime}\right)}, \\
 \tag{35}\\
\text { where } \varepsilon_{k}\left(Q, Q^{\prime}\right):=\frac{2(\rho+1)\left(\mathrm{KL}\left(Q \times Q^{\prime} \| P_{0} \times P_{0}\right)+\ln \frac{\phi_{\rho}(k)}{\delta}\right)}{k} \text { and } \\
\widehat{V}_{k}\left(Q, Q^{\prime}\right):= \\
\frac{1}{k} \sum_{t=1}^{k} \mathbf{E}_{Q_{k}\left(h, h^{\prime}\right)}\left[\left(\ell\left(h, Z_{t}\right)-\ell\left(h^{\prime}, Z_{t}\right)\right)^{2}\right]-\left(\frac{1}{k} \sum_{t=1}^{k} \mathbf{E}_{Q_{k}\left(h, h^{\prime}\right)}\left[\ell\left(h, Z_{t}\right)-\ell\left(h^{\prime}, Z_{t}\right)\right]\right)^{2} .
\end{gather*}
$$

Proof of Lemma 24, The proof follows by our new time-uniform concentration inequality in Theorem 6 with the function $f: \mathcal{H}^{2} \times \mathcal{Z} \rightarrow[0,1]$ defined by

$$
f\left(\left(h, h^{\prime}\right), z\right)=\left(\ell(h, z)-\ell\left(h^{\prime}, z\right)+1\right) / 2
$$

Theorem 6 implies that, for any $\delta \in(0,1)$, with probability at least $1-\delta$,

$$
\begin{equation*}
\mathbf{E}_{Q(h), Q^{\prime}\left(h^{\prime}\right)}\left[L(h)-L\left(h^{\prime}\right)+1\right] / 2 \leq \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}_{Q(h), Q^{\prime}\left(h^{\prime}\right)}\left[f\left(\left(h, h^{\prime}\right), Z_{i}\right)\right]+\frac{\sqrt{\widehat{V}_{n} \varepsilon_{n}}+\frac{\varepsilon_{n}}{\rho+1}}{1-\varepsilon_{n}} \tag{36}
\end{equation*}
$$

for all $n \geq n_{\delta}$ and $Q, Q^{\prime} \in \mathcal{Q}_{n}$, where $\varepsilon_{n}=\varepsilon_{n}\left(Q, Q^{\prime}\right)$ and \widehat{V}_{n} is given by:

$$
\begin{aligned}
\widehat{V}_{n} & =\frac{1}{n} \sum_{t=1}^{n} \mathbf{E}_{Q(h), Q^{\prime}\left(h^{\prime}\right)}\left[\left(f\left(\left(h, h^{\prime}\right), Z_{t}\right)-\frac{1}{n} \sum_{i=1}^{n} \mathbf{E}_{Q(\tilde{h}), Q^{\prime}\left(\tilde{h}^{\prime}\right)}\left[f\left(\left(\tilde{h}, \tilde{h}^{\prime}\right), Z_{i}\right)\right]\right)^{2}\right], \\
& =\frac{1}{4 n} \sum_{t=1}^{n} \mathbf{E}_{Q(h), Q^{\prime}\left(h^{\prime}\right)}\left[\left(\ell\left(h, Z_{t}\right)-\ell\left(h^{\prime}, Z_{t}\right)-\frac{1}{n} \sum_{i=1}^{n} \mathbf{E}_{Q(\tilde{h}), Q^{\prime}\left(\tilde{h}^{\prime}\right)}\left[\ell\left(\tilde{h}, Z_{i}\right)-\ell\left(\tilde{h}^{\prime}, Z_{i}\right)\right]\right)^{2}\right], \\
& =\frac{1}{4 n} \sum_{t=1}^{n} \mathbf{E}_{Q(h), Q^{\prime}\left(h^{\prime}\right)}\left[\left(\ell\left(h, Z_{t}\right)-\ell\left(h^{\prime}, Z_{t}\right)\right)^{2}\right]-\left(\frac{1}{2 n} \sum_{t=1}^{n} \mathbf{E}_{Q(h), Q^{\prime}\left(h^{\prime}\right)}\left[\ell\left(h, Z_{t}\right)-\ell\left(h^{\prime}, Z_{t}\right)\right]\right)^{2} .
\end{aligned}
$$

Plugging this into (36) and multiplying the resulting inequality by 2 , leads to the desired inequality.

Lemma 24 leads to the following corollary that will be useful for our excess risk rates:
Corollary 25. Let $\rho>0, P_{0} \in \triangle(\mathcal{H})$, and \mathcal{Q}_{n} be as in (8). Under Assumption 1 we have for $\delta \in(0,1)$ and n_{δ} as in 34), with probability at least $1-\delta$,

$$
L(Q)-L\left(Q^{\prime}\right) \leq \widehat{L}_{n}(Q)-\widehat{L}_{n}\left(Q^{\prime}\right)+2 \sqrt{\frac{\sum_{i=1}^{n} \mathbf{E}_{Q(h), Q^{\prime}\left(h^{\prime}\right)}\left[\left(\ell\left(h, Z_{i}\right)-\ell\left(h^{\prime}, Z_{i}\right)\right)^{2}\right] \cdot \varepsilon_{n}}{n}}+\frac{4 \varepsilon_{n}}{\rho+1}
$$

for all $n \geq n_{\delta}$ and $Q, Q^{\prime} \in \mathcal{Q}_{n}$, where $\varepsilon_{k}:=\frac{2(\rho+1)}{k}\left(\mathrm{KL}\left(Q \times Q^{\prime} \| P_{0} \times P_{0}\right)+\ln \frac{\phi_{\rho}(k)}{\delta}\right)$.

Proof of Corollary 25, Let $\varepsilon_{n}\left(Q, Q^{\prime}\right)$ and $\widehat{V}_{n}\left(Q, Q^{\prime}\right)$ be as in Lemma 24 The corollary follows by Lemma 24 and the facts that $1-\varepsilon_{n}\left(Q, Q^{\prime}\right) \geq 1 / 2$, for all $n \geq n_{\delta}$ and $Q, Q^{\prime} \in \mathcal{Q}_{n}$; and

$$
\widehat{V}_{n}\left(Q, Q^{\prime}\right) \leq \frac{1}{k} \sum_{t=1}^{k} \mathbf{E}_{Q_{k}\left(h, h^{\prime}\right)}\left[\left(\ell\left(h, Z_{t}\right)-\ell\left(h^{\prime}, Z_{t}\right)\right)^{2}\right]
$$

The next lemma provides a way of bounding the square-root term in the previous corollary under the Bernstein condition (Definition 3):

Lemma 26. Let $B>1$ and $\beta \in[0,1]$, and suppose that the (β, B)-Bernstein condition holds. Further, let $\rho>1, \delta \in(0,1)$, and $\varepsilon_{k}\left(Q, Q^{\prime}\right)$ be as in (35), for $Q, Q^{\prime} \in \triangle(\mathcal{H})$. Then, under Assumptions 1 and 2. there exists a universal constant $C>0$ s.t. with probability at least $1-\delta$,

$$
\begin{align*}
& \sqrt{\frac{\sum_{i=1}^{n} \mathbf{E}_{Q(h)}\left[\left(\ell\left(h, Z_{i}\right)-\ell\left(h_{\star}, Z_{i}\right)\right)^{2}\right] \cdot \varepsilon_{n}\left(Q, Q^{\prime}\right)}{2^{-5} n}} \leq \frac{L(Q)-L\left(h_{\star}\right)}{2} \\
&+C \max _{\beta^{\prime} \in\{\beta, 1\}} \varepsilon_{n}\left(Q, Q^{\prime}\right)^{\frac{1}{2-\beta^{\prime}}} \tag{37}
\end{align*}
$$

for all $n \geq 1$ and $Q, Q^{\prime} \in \triangle(\mathcal{H})$, where $h_{\star} \in \arg \inf _{h \in \mathcal{H}} L(h)$.
Proof of Lemma 26. Applying the fact that $\sqrt{x y} \leq(\nu x+y / \nu) / 2$, for all $\nu>0$, to the LHS of (37) with

$$
\nu=\frac{\eta}{8}, \quad x=\frac{1}{n} \sum_{i=1}^{n} \mathbf{E}_{Q(h)}\left[\left(\ell\left(h, Z_{i}\right)-\ell\left(h_{\star}, Z_{i}\right)\right)^{2}\right], \quad \text { and } \quad y=2^{5} \varepsilon_{n}\left(Q, Q^{\prime}\right)
$$

which leads to, for all $\eta>0$, and $k=2^{5}$,

$$
\begin{align*}
r_{n}(Q) & :=\sqrt{\frac{k \sum_{i=1}^{n} \mathbf{E}_{Q(h)}\left[\left(\ell\left(h, Z_{i}\right)-\ell\left(h_{\star}, Z_{i}\right)\right)^{2}\right] \cdot \varepsilon_{n}\left(Q, Q^{\prime}\right)}{n}} \\
& \leq \frac{\eta}{16 n} \sum_{i=1}^{n} \mathbf{E}_{Q(h)}\left[\left(\ell\left(h, Z_{i}\right)-\ell\left(h_{\star}, Z_{i}\right)\right)^{2}\right]+\frac{4 k \varepsilon_{n}\left(Q, Q^{\prime}\right)}{\eta} \tag{38}
\end{align*}
$$

Now, let $C_{\beta}:=\left((1-\beta)^{1-\beta} \beta^{\beta}\right)^{\frac{\beta}{1-\beta}}+3 / 2(2 B)^{\frac{1}{1-\beta}}$. By combining 38) and Lemma 19, we get, for any $\delta \in(0,1)$ and $\eta \in[0,1 / 2]$, with probability at least $1-\delta$,

$$
\begin{align*}
\forall Q \in \Delta(\mathcal{H}), \forall n \geq 1, \quad r_{n}(Q) \leq & \left(L(Q)-L\left(h_{\star}\right)\right) / 2+C_{\beta} \cdot \eta^{\frac{1}{1-\beta}} / 4 \\
& +\frac{\mathrm{KL}\left(Q \| P_{0}\right)+\ln \delta^{-1}}{2 n \eta}+\frac{4 k \varepsilon_{n}\left(Q, Q^{\prime}\right)}{\eta}, \\
\leq & \left(L(h)-L\left(h_{\star}\right)\right) / 2+C_{\beta} \cdot \eta^{\frac{1}{1-\beta}} / 4+\frac{(4 k+1 / 4) \varepsilon_{n}\left(Q, Q^{\prime}\right)}{\eta} \tag{39}
\end{align*}
$$

Now, minimizing the RHS of 39 over $\eta \in(0,1 / 2)$ and invoking Lemma 20, we get, for any $\delta \in(0,1)$, with probability at least $1-\delta$,

$$
\begin{align*}
\forall Q \in \Delta(Q), \forall n \geq 1, \quad r_{n}(Q) \leq & \frac{L(Q)-L\left(h_{\star}\right)}{2}++2(16 k+1 / 2) \varepsilon_{n}\left(Q, Q^{\prime}\right) \\
& +\frac{C_{\beta} \cdot(3-2 \beta)}{4(1-\beta)}\left(\frac{4(1-\beta)(4 k+1 / 4) \varepsilon_{n}\left(Q, Q^{\prime}\right)}{C_{\beta}}\right)^{\frac{1}{2-\beta}} \\
\leq & \frac{L(Q)-L\left(h_{\star}\right)}{2}+2(4 k+1 / 4) \varepsilon_{n}\left(Q, Q^{\prime}\right) \\
& +\frac{C_{\beta}^{\frac{1-\beta}{2-\beta}} \cdot(3-2 \beta)}{4(1-\beta)}\left(4(1-\beta)(4 k+1 / 4) \varepsilon_{n}\left(Q, Q^{\prime}\right)\right)^{\frac{1}{2-\beta}} \tag{40}
\end{align*}
$$

Combining with the fact that $\beta \mapsto C_{\beta}^{\frac{1-\beta}{2-\beta}}$ is bounded in $[0,1)$, we get the desired result.
We now move on to the proofs of the main results of Section 4 .

C. 2 Proofs of Theorems 8 and 9

Let $\left(\xi_{k}\right)$ and n_{δ} be as in (9) and (34), respectively. Further, it will be useful to define the event

$$
\begin{equation*}
\mathcal{E}:=\left\{\forall n \geq n_{\delta}, L\left(\widetilde{P}_{n}\right)-L\left(P_{n-1}\right) \leq \widehat{L}_{n}\left(\widetilde{P}_{n}\right)-\widehat{L}_{n}\left(P_{n-1}\right)+\xi_{n}\right\}, \tag{41}
\end{equation*}
$$

where $\widetilde{P}_{k}:=\mathrm{B}\left(Z_{1: k}\right)$ and $\left(P_{k}\right)$ are as in Algorithm 1 with the choice of $\left(\xi_{k}\right)$ in (9). Observe that by Lemma 24 , we have $\mathbf{P}[\mathcal{E}] \geq 1-\delta$, under Assumptions 1 and 2 . We begin by the proof of risk-monotonicity:

Proof of Theorem 8, Let $\Delta_{n}:=L\left(P_{n}\right)-L\left(P_{n-1}\right)$. Using the definitions of \mathcal{E} and $\left(\xi_{k}\right)$ as in 41) and (9), respectively, we have

$$
\begin{align*}
\Delta_{n} & =\left(L\left(\widetilde{P}_{n}\right)-L\left(P_{n-1}\right)\right) \cdot \mathbb{I}\left\{P_{n} \not \equiv P_{n-1}\right\}+\left(L\left(P_{n}\right)-L\left(P_{n-1}\right)\right) \cdot \mathbb{I}\left\{P_{n} \equiv P_{n-1}\right\}, \\
& =\left(L\left(\widetilde{P}_{n}\right)-L\left(P_{n-1}\right)\right) \cdot \mathbb{I}\left\{P_{n} \not \equiv P_{n-1}\right\} . \tag{42}
\end{align*}
$$

Now, when $P_{n} \not \equiv P_{n-1}$, Line 2 of Algorithm 1 implies that

$$
\begin{equation*}
\widehat{L}_{n}\left(\widetilde{P}_{n}\right) \leq \widehat{L}_{n}\left(P_{n-1}\right)-\xi_{n} \tag{43}
\end{equation*}
$$

Using this and 42, we have that under the event \mathcal{E},

$$
\forall n \geq n_{\delta}, \quad L\left(\widetilde{P}_{n}\right)-L\left(P_{n-1}\right) \leq \widehat{L}_{n}\left(\widetilde{P}_{n}\right)-\widehat{L}_{n}\left(P_{n-1}\right)+\xi_{n} \leq 0 .
$$

This, combined with the fact that $\mathbf{P}[\mathcal{E}] \geq 1-\delta$ (Lemma 24) completes the proof.
Proof of Theorem 9, Let $\widetilde{P}_{k}:=\mathrm{B}\left(Z_{1: k}\right)$ and $\left(P_{k}\right)$ be as in Algorithm 1 with the choice of $\left(\xi_{k}\right)$ in (9). Further, we let ϵ_{n} be as in (9) and

$$
\begin{equation*}
\xi_{k}^{\prime}:=2 \sqrt{\frac{\sum_{i=1}^{n} \mathbf{E}_{\widetilde{P}_{k}(h), P_{k-1}\left(h^{\prime}\right)}\left[\left(\ell\left(h, Z_{i}\right)-\ell\left(h^{\prime}, Z_{i}\right)\right)^{2}\right] \cdot \epsilon_{k}}{k}}+\frac{4 \epsilon_{k}}{\rho+1} . \tag{44}
\end{equation*}
$$

It will be convenient to also consider the events:

$$
\left.\begin{array}{c}
\mathcal{E}:=\left\{\forall n \geq n_{\delta}, L\left(\widetilde{P}_{n}\right)-L\left(P_{n-1}\right) \leq \widehat{L}_{n}\left(\widetilde{P}_{n}\right)-\widehat{L}_{n}\left(P_{n-1}\right)+\xi_{n}^{\prime}\right\}, \\
\mathcal{E}^{\prime}:=\left\{\begin{array}{c}
\\
\forall n \geq 1, Q, Q^{\prime} \in \Delta(\mathcal{H}), \\
\frac{\sqrt{\sum_{i=1}^{n} \mathbf{E}_{Q(h)}\left[\left(\ell\left(h, Z_{i}\right)-\ell\left(h_{\star}, Z_{i}\right)\right)^{2}\right] \cdot \varepsilon_{n}\left(Q, Q^{\prime}\right)}}{2^{-5} n}
\end{array}\right\},
\end{array}\right\},
$$

where C and $\varepsilon_{n}\left(Q, Q^{\prime}\right)$ are as in Lemma 26 . We note that by Corollary 25 and Lemma 26, we have

$$
\begin{equation*}
\mathbf{P}[\mathcal{E}] \wedge \mathbf{P}\left[\mathcal{E}^{\prime}\right] \geq 1-\delta \tag{45}
\end{equation*}
$$

For the rest of this proof, we will assume the event $\mathcal{E} \cap \mathcal{E}^{\prime}$ holds, and let $n \geq n_{\delta}$ throughout. We consider two cases pertaining to the condition in Line 2 of Algorithm 1

Case 1. Suppose that the condition in Line 2 of Algorithm 1 is satisfied for $k=n$. In this case, we have

$$
\begin{equation*}
L\left(P_{n}\right)-L\left(h_{\star}\right)=L\left(\widetilde{P}_{n}\right)-L\left(h_{\star}\right) \tag{46}
\end{equation*}
$$

Case 2. Now suppose the condition in Line 2 does not hold for $k=n$. This means that $P_{n} \equiv P_{n-1}$, and so

$$
\begin{equation*}
\widehat{L}_{n}\left(P_{n}\right)-\widehat{L}_{n}\left(\widetilde{P}_{n}\right) \leq \xi_{n} \leq \xi_{n}^{\prime} \tag{47}
\end{equation*}
$$

where the last inequality follows by the fact that $1-\epsilon_{n} \geq 1 / 2$, for all $n \geq n_{\delta}$ under Assumption 2 Thus, by the assumption that \mathcal{E}^{\prime} is true, we have,

$$
\begin{align*}
L\left(P_{n}\right)= & L\left(\widetilde{P}_{n}\right)+\left(L\left(P_{n}\right)-L\left(\widetilde{P}_{n}\right)\right), \\
& \leq L\left(\widetilde{P}_{n}\right)+\widehat{L}_{n}\left(P_{n}\right)-\widehat{L}_{n}\left(\widetilde{P}_{n}\right)+\xi_{n}^{\prime}, \\
& \leq L\left(\widetilde{P}_{n}\right)+2 \xi_{n}^{\prime}, \\
= & L\left(\widetilde{h}_{n}\right)+4 \sqrt{\frac{\sum_{i=1}^{n} \mathbf{E}_{\widetilde{P}_{n}(h), P_{n-1}(h)}\left[\left(\ell\left(h, Z_{i}\right)-\ell\left(h, Z_{i}\right)\right)^{2}\right] \cdot \epsilon_{n}}{n}+\frac{8 \epsilon_{n}}{\rho+1},} \\
= & L\left(\widetilde{P}_{n}\right)+4 \sqrt{\frac{\sum_{i=1}^{n} \mathbf{E}_{\widetilde{P}_{n}(h), P_{n}\left(h^{\prime}\right)}\left[\left(\ell\left(h, Z_{i}\right)-\ell\left(h^{\prime}, Z_{i}\right)\right)^{2}\right] \cdot \epsilon_{n}}{n}}+\frac{8 \epsilon_{n}}{\rho+1}, \quad\left(P_{n} \equiv P_{n-1}\right) \\
\leq & L\left(\widetilde{P}_{n}\right)+4 \sqrt{\frac{2 \sum_{i=1}^{n} \mathbf{E}_{\widetilde{P}_{n}(h)}\left[\left(\ell\left(h, Z_{i}\right)-\ell\left(h_{\star}, Z_{i}\right)\right)^{2}\right] \cdot \epsilon_{n}}{n}}+\frac{8 \epsilon_{n}}{\rho+1} \\
& +4 \sqrt{\frac{2 \sum_{i=1}^{n} \mathbf{E}_{P_{n}(h)}\left[\left(\ell\left(h, Z_{i}\right)-\ell\left(h_{\star}, Z_{i}\right)\right)^{2}\right] \cdot \epsilon_{n}}{n}}, \tag{48}
\end{align*}
$$

where to obtain the last inequality, we used the fact that $(a-c)^{2} \leq 2(a-b)^{2}+2(b-c)^{2}$ and $\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}$ for all $a, b, c \in \mathbb{R}_{\geq 0}$. Now, by (48), the fact that \mathcal{E}^{\prime} holds, and Assumption 2 (which implies that $\epsilon_{n}^{\frac{1}{2-\beta}} \leq O\left(\epsilon_{n}\right)$ for $n \geq n_{\delta}$), we have

$$
L\left(P_{n}\right)-L\left(h_{\star}\right) \leq L\left(\widetilde{P}_{n}\right)-L\left(h_{\star}\right)+\frac{L\left(\widetilde{P}_{n}\right)-L\left(h_{\star}\right)}{2}+\frac{L\left(P_{n}\right)-L\left(h_{\star}\right)}{2}+O\left(\epsilon_{n}\right)^{\frac{1}{2-\beta}}
$$

which, after re-arranging, becomes

$$
\begin{equation*}
\frac{L\left(P_{n}\right)-L\left(h_{\star}\right)}{2} \leq \frac{3\left(L\left(\widetilde{P}_{n}\right)-L\left(h_{\star}\right)\right)}{2}+O\left(\epsilon_{n}\right)^{\frac{1}{2-\beta}} \tag{49}
\end{equation*}
$$

Multiplying on both sides by 2 and using (45) with a union bound leads to the desired result.

C. 3 Additional Results and Proofs

Using the lemmas in Section C.1 we derive the excess-risk rate of ERM under the Bernstein condition:
Lemma 27. Let $B>1, \beta \in[0,1]$ and suppose that the (β, B)-Bernstein condition holds and \mathcal{H} is finite. Further, let $\rho>1, \delta \in(0,1)$, and n_{δ} be as in 34). Then, under Assumptions 1 and 2 the ERM $\hat{h}_{n} \in \arg \min _{h \in \mathcal{H}} \frac{1}{n} \sum_{t=1}^{n} \ell\left(h, Z_{t}\right)$ satisfies, with probability at least $1-\delta$,

$$
\begin{equation*}
L\left(\hat{h}_{n}\right)-L\left(h_{\star}\right) \leq O\left(\frac{\ln (\ln (n|\mathcal{H}|) / \delta)}{n}\right)^{\frac{1}{2-\beta}}+\frac{\ln (\ln (n|\mathcal{H}|) / \delta)}{n} \tag{50}
\end{equation*}
$$

for all $n \geq n_{\delta} \vee(16(\rho+1) \ln |\mathcal{H}|)$.
Proof of Lemma 27, Let n_{δ} be as in (34) and define

$$
\epsilon_{k}:=\frac{2(\rho+1)\left(2 \ln |\mathcal{H}|+\ln \frac{\phi_{\rho}(k)}{\delta}\right)}{k}, \text { and } \xi_{n}^{\prime}:=2 \sqrt{\frac{\sum_{i=1}^{n}\left(\ell\left(\hat{h}_{n}, Z_{i}\right)-\ell\left(h_{\star}, Z_{i}\right)\right)^{2} \cdot \epsilon_{n}}{n}+\frac{4 \epsilon_{n}}{\rho+1} . . ~}
$$

Further, consider the events

$$
\begin{gathered}
\mathcal{E}:=\left\{\forall n \geq n_{\delta}, L\left(\hat{h}_{n}\right)-L\left(h_{\star}\right) \leq \widehat{L}_{n}\left(\hat{h}_{n}\right)-\widehat{L}_{n}\left(h_{\star}\right)+\xi_{n}^{\prime}\right\}, \\
\mathcal{E}^{\prime}:=\left\{\forall n \geq 1, \sqrt{\frac{\sum_{i=1}^{n}\left(\ell\left(\hat{h}_{n}, Z_{i}\right)-\ell\left(h_{\star}, Z_{i}\right)\right)^{2} \cdot \epsilon_{n}}{2^{-5} n}} \leq \frac{L\left(\hat{h}_{n}\right)-L\left(h_{\star}\right)}{2}+C \cdot\left(\epsilon_{n}^{\frac{1}{2-\beta}}+\epsilon_{n}\right)\right\},
\end{gathered}
$$

where C is as in Lemma 26. By Corollary 25 and Lemma 26, instantiated with P_{0} equal to the uniform prior over \mathcal{H} and Q [resp. Q^{\prime}] equal to the Dirac at \hat{h}_{n} [resp. h_{\star}], we have

$$
\begin{equation*}
\min \left(\mathbf{P}[\mathcal{E}], \mathbf{P}\left[\mathcal{E}^{\prime}\right]\right) \geq 1-\delta \tag{51}
\end{equation*}
$$

For the rest of this proof, we will assume that the event $\mathcal{E} \cap \mathcal{E}^{\prime}$ holds, and let $n \geq n_{\delta}$. By the assumption that \mathcal{E} holds, we have

$$
\begin{array}{rlr}
L\left(\hat{h}_{n}\right) & =L\left(h_{\star}\right)+\left(L\left(\hat{h}_{n}\right)-L\left(h_{\star}\right)\right), & \\
& \leq L\left(h_{\star}\right)+\widehat{L}_{n}\left(\hat{h}_{n}\right)-\widehat{L}_{n}\left(h_{\star}\right)+\xi_{n}^{\prime}, & \left(\mathcal{E}^{\text {is true })}\right. \\
& \leq L\left(h_{\star}\right)+\xi_{n}^{\prime}, & \\
& =L\left(h_{\star}\right)+2 \sqrt{\frac{\sum_{i=1}^{n}\left(\ell\left(\tilde{h}_{n}, Z_{i}\right)-\ell\left(h_{\star}, Z_{i}\right)\right)^{2} \cdot \epsilon_{n}}{n}}+4 \epsilon_{n} . & \tag{52}
\end{array}
$$

Now by the assumption that \mathcal{E}^{\prime} holds, we can bound the middle term on the RHS of 52), leading to

$$
\begin{align*}
L\left(\hat{h}_{n}\right) & =L\left(h_{\star}\right)+\frac{L\left(\hat{h}_{n}\right)-L\left(h_{\star}\right)}{2}+O\left(\max _{\beta^{\prime} \in\{1, \beta\}}\left(\frac{\ln (n|\mathcal{H}| / \delta)}{n}\right)^{\frac{1}{2-\beta^{\prime}}}\right)+4 \epsilon_{n} \\
& =L\left(h_{\star}\right)+\frac{L\left(\hat{h}_{n}\right)-L\left(h_{\star}\right)}{2}+O\left(\frac{\ln (n|\mathcal{H}| / \delta)}{n}\right)^{\frac{1}{2-\beta}} \tag{53}
\end{align*}
$$

for all $n \geq n_{\delta} \vee(16(\rho+1) \ln |\mathcal{H}|)$, where in the last inequality we used the definition of ϵ_{n}. Combining (53) with (51), and applying a union bound, we obtain the desired result.

Proof of Theorem 11. First, note that by linearity of the expectation it suffices to show that

$$
\mathbf{E}\left[L\left(P_{n}\right)-L\left(P_{n-1}\right)\right] \leq 0,
$$

where the expectation is over the randomness of the samples $Z_{1: n}$. Moving forward, we let $\Delta_{n}:=$ $L\left(P_{n}\right)-L\left(P_{n-1}\right)$, and for $n \geq N$, define the event

$$
\begin{equation*}
\mathcal{E}_{n}:=\left\{L\left(\widetilde{P}_{n}\right)-L\left(P_{n-1}\right) \leq \widehat{L}_{n}\left(\widetilde{P}_{n}\right)-\widehat{L}_{n}\left(P_{n-1}\right)+\xi_{n}^{\prime}\right\}, \tag{54}
\end{equation*}
$$

where $\widetilde{P}_{k}:=\mathrm{B}\left(Z_{1: k}\right)$ and $\left(P_{k}\right)$ as in Algorithm 1 with the choice of $\left(\xi_{k}^{\prime}\right)$ in the theorem's statement. Observe that by Lemma 24 , we have $\mathbf{P}\left[\mathcal{E}_{n}\right] \geq 1-1 / n^{b}$ for all $n \geq N$, under Assumptions 1 and 2

Now, by the law of the total expectation, we have

$$
\begin{aligned}
\mathbf{E}\left[\Delta_{n}\right] & =\mathbf{P}\left[\mathcal{E}_{n}\right] \cdot \mathbf{E}\left[\Delta_{n} \mid \mathcal{E}_{n}\right]+\mathbf{P}\left[\mathcal{E}_{n}^{\mathrm{c}}\right] \cdot \mathbf{E}\left[\Delta_{n} \mid \mathcal{E}_{n}^{\mathrm{c}}\right], \\
& \leq \mathbf{P}\left[\mathcal{E}_{n}\right] \cdot \mathbf{E}\left[\Delta_{n} \mid \mathcal{E}_{n}\right]+1 / n^{b} .
\end{aligned}
$$

where the last inequality follows by the fact that the loss ℓ takes values in $[0,1]$ and that $\mathbf{P}\left[\mathcal{E}_{n}^{c}\right] \leq 1 / n^{b}$. By applying the law of the total expectation again, we obtain

$$
\begin{align*}
\mathbf{E}\left[\Delta_{n}\right]=\mathbf{P}[& \left.\left\{P_{n} \equiv P_{n-1}\right\} \cap \mathcal{E}_{n}\right] \cdot \mathbf{E}\left[\Delta_{n} \mid\left\{P_{n} \equiv P_{n-1}\right\} \cap \mathcal{E}_{n}\right] \\
& +\mathbf{P}\left[\left\{P_{n} \not \equiv P_{n-1}\right\} \cap \mathcal{E}_{n}\right] \cdot \mathbf{E}\left[\Delta_{n} \mid\left\{P_{n} \not \equiv P_{n-1}\right\} \cap \mathcal{E}_{n}\right]+1 / n^{b}, \\
\leq & \mathbf{P}\left[\left\{P_{n} \not \equiv P_{n-1}\right\} \cap \mathcal{E}_{n}\right] \cdot \mathbf{E}\left[\Delta_{n} \mid\left\{P_{n} \not \equiv P_{n-1}\right\} \cap \mathcal{E}_{n}\right]+1 / n^{b}, \tag{55}
\end{align*}
$$

where the last inequality follows by the fact that if $P_{n} \equiv P_{n-1}$, then $\Delta_{n}=0$. Now, if $P_{n} \neq P_{n-1}$, then by Line 2 of Algorithm[1] we have

$$
\begin{equation*}
\widehat{L}_{n}\left(P_{n}\right)=\widehat{L}_{n}\left(\widetilde{P}_{n}\right) \leq \widehat{L}_{n}\left(P_{n-1}\right)-\xi_{n}^{\prime}, \tag{56}
\end{equation*}
$$

Under the event \mathcal{E}_{n}, we have

$$
L\left(\widetilde{P}_{n}\right)-L\left(P_{n-1}\right) \leq \widehat{L}_{n}\left(\widetilde{P}_{n}\right)-\widehat{L}_{n}\left(P_{n-1}\right)+\xi_{n}^{\prime}
$$

This, in combination with (56), implies that under the event $\mathcal{E}_{n} \cap\left\{P_{n} \not \equiv P_{n-1}\right\}$,

$$
\Delta_{n}=L\left(\widetilde{P}_{n}\right)-L\left(P_{n-1}\right) \leq-\xi_{n}^{\prime}+\xi_{n}^{\prime}=0 .
$$

As a result, we have

$$
\begin{equation*}
\mathbf{E}\left[\Delta_{n} \mid\left\{P_{n} \not \equiv P_{n-1}\right\} \cap \mathcal{E}_{n}\right] \leq 0 . \tag{57}
\end{equation*}
$$

Combining (55) and (57) yields the desired result.
Proof of Proposition 10. The risk monotonicity claim follows from Theorem 8, and the excess risk rate follows from Theorem 9 and Lemma 27.

D Risk Monotonicity without PAC-Bayes

In this section, we show how risk monotonicity can be achieved in the i.i.d. setting without Assumption 2 For this, we will use a concentration inequality due to [35] that has an empirical variance term under the square root just like ours in Theorem6. To present this inequality, we first present some new notation. For any $Z_{1: n} \in \mathcal{Z}^{n}$, we let $\ell \circ \mathcal{H}\left(Z_{1: n}\right):=\left(\ell\left(h, Z_{1}\right), \ldots, \ell\left(h, Z_{n}\right)\right)$. Further, for any subset $\mathcal{A} \subset \mathbb{R}^{n}$ and $\epsilon>0$, we let $\mathcal{N}\left(\epsilon, \mathcal{A},\|\cdot\|_{\infty}\right)$ be the cardinality of smallest subset $\mathcal{A}_{0} \subseteq \mathcal{A}$ such that \mathcal{A} is contained in the union of $\|\cdot\|_{\infty}$-balls of radii ϵ centered at points in \mathcal{A}_{0}. Finally, we consider the following complexity measure:

$$
\begin{equation*}
\mathcal{N}_{\infty}(\epsilon, \ell \circ \mathcal{H}, n):=\sup _{Z_{1: n} \in \mathcal{Z}^{n}} \mathcal{N}\left(\epsilon, \ell \circ \mathcal{H}\left(Z_{1: n}\right),\|\cdot\|_{\infty}\right) \tag{58}
\end{equation*}
$$

With this, we state the concentration inequality due to [35] that we will need:
Theorem 28. Let Z be a random variable with values in a set \mathcal{Z} with distribution π, and let \mathcal{H} be a set of hypotheses. Further, let $\delta \in(0,1), n \geq 16$, and set

$$
\mathcal{M}(n):=10 \mathcal{N}_{\infty}(1 / n, \ell \circ \mathcal{H}, 2 n) .
$$

Then, with probability at least $1-2 \delta$ in the random vector $Z_{1: n} \sim \pi^{n}$, we have

$$
\forall h \in \mathcal{H}, \quad\left|\mathbf{E}[\ell(h, Z)]-\frac{1}{n} \sum_{i=1}^{n} \ell\left(h, Z_{i}\right)\right| \leq \sqrt{\frac{18 V_{n} \ln (\mathcal{M}(n) / \delta)}{n}}+\frac{15 \ln (\mathcal{M}(n) / \delta)}{n-1},
$$

where $V_{n}:=V_{n}\left(\ell \circ \mathcal{H}, Z_{1: n}\right):=\frac{1}{n(n-1)} \sum_{1 \leq i<j \leq n}\left(\ell\left(h, Z_{i}\right)-\ell\left(h, Z_{j}\right)\right)^{2}$.

```
Algorithm 2 A Deterministic Risk Monotonic Algorithm Wrapper
Require: A base learning algorithm \(\hat{h}: \bigcup_{i=1}^{\infty} \mathcal{Z}^{i} \rightarrow \mathcal{H}\).
            Initial hypothesis \(\hat{h}_{0} \in \mathcal{H}\).
                Samples \(Z_{1}, \ldots, Z_{n}\).
    for \(k=1, \ldots, n\) do
        Set \(\widehat{V}_{k}:=\frac{1}{k(k-1)} \sum_{1 \leq i<j \leq k}\left(\ell\left(h\left(Z_{1: k}\right), Z_{i}\right)-\ell\left(\hat{h}_{k-1}, Z_{i}\right)-\ell\left(h\left(Z_{1: k}\right), Z_{j}\right)+\ell\left(\hat{h}_{k-1}, Z_{j}\right)\right)^{2}\).
        Set \(\xi_{k}=\sqrt{\frac{18 \widehat{V}_{k} \ln (\mathcal{M}(k) / k)}{k}}+\frac{30 \ln (\mathcal{M}(k) / k)}{k-1}\).
        if \(\left.\frac{1}{k} \sum_{i=1}^{k} \ell\left(\hat{h}\left(Z_{1: k}\right), Z_{i}\right)\right]-\frac{1}{k} \sum_{i=1}^{k} \ell\left(\hat{h}_{k-1}, Z_{i}\right) \leq-\xi_{k}\) then
        Set \(\hat{h}_{k}=\hat{h}\left(Z_{1: k}\right)\).
        else
            Set \(\hat{h}_{k}=\hat{h}_{k-1}\).
    Return \(\hat{h}_{n}\).
```

Using Theorem 28 and following the same steps in the proof of Theorem 11 it follows that Algorithm 2 is risk monotonic in expectation (up to an additive $2 / k$ term) for all sample sizes. Furthermore, since the concentration inequality in Theorem 28 has an empirical variance term under the square-root (just like ours in Theorem6, the risk decomposition in our Theorem 9 also holds for Algorithm 2 , albeit with probability at least $1-O(1 / n)$ for sample size n.

[^0]: ${ }^{8}$ Technically, FREEGRAD also requires a sequence of hints $\left(h_{t}\right)$ that provides upper bounds on $\left(\left|X_{t}\right|\right)$. Since $X_{i} \in[-1,1]$, these hints can all be set to 1 .

