A Technical Results

In this section, it will be convenient to adopt the ESI notation [29]:

Definition 12 (Exponential Stochastic Inequality (ESI) notation). Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space. Further, let X, Y be any two random variables and \mathcal{G} be a sub- σ -algebra of \mathcal{F} . For $\eta > 0$, we define

$$X \trianglelefteq_{\eta}^{\mathcal{G}} Y \iff X - Y \trianglelefteq_{\eta}^{\mathcal{G}} 0 \iff \mathbf{E} \left[e^{\eta (X - Y)} \mid \mathcal{G} \right] \le 1.$$

For $\mathcal{G} = \mathcal{F}$, we simply write \trianglelefteq_{η} instead of $\oiint_{\eta}^{\mathcal{G}}$. In what follows, given random variables Z_1, Z_2, \ldots and loss ℓ satisfying Assumption 1, we denote by

$$X_i^h \coloneqq \ell(h, Z_i) - \ell(h_*, Z_i), \quad h \in \mathcal{H}, i \in \mathbb{N},$$

the excess-loss random variable, where $h_* \in \arg \inf_{h \in \mathcal{H}} L(h)$ (with L as in Assumption 1). Let

$$\Phi_{i,\eta} \coloneqq \frac{1}{\eta} \ln \mathbf{E}_{i-1} \left[e^{-\eta X_i^h} \right] = \frac{1}{\eta} \ln \mathbf{E} \left[e^{-\eta X_i^h} \mid Z_1, \dots, Z_{i-1} \right]$$
(13)

be the (conditional) normalized cumulant generating function of X_i^h . We note that since the loss ℓ takes values in the interval [0, 1], we have

$$X_i^h \in [-1, 1], \text{ for all } h \in \mathcal{H}, \text{a.s.}$$

We now present some existing results pertaining to the excess-loss random variable X_i^h and its normalized cumulant generating function, which will be useful in our proofs:

Lemma 13 ([29]). Let $h \in \mathcal{H}$ and $i \in \mathbb{N}$. Further, let X_i^h , and $\Phi_{i,\eta}$ be as above. Then, for all $\eta \ge 0$,

$$\alpha_{\eta} \cdot (X_i^h)^2 - X_i^h(Z) \trianglelefteq_{\eta}^{\mathcal{G}_{i-1}} \Phi_{i,2\eta} + \alpha_{\eta} \cdot \Phi_{i,2\eta}^2, \quad \text{where } \alpha_{\eta} \coloneqq \frac{\eta}{1 + \sqrt{1 + 4\eta^2}}.$$

and \mathcal{G}_{i-1} is the σ -algebra generated by Z_1, \ldots, Z_{i-1} .

Lemma 14 ([29]). If the (β, B) -Bernstein condition (Definition 3) holds for $(\beta, B) \in [0, 1] \times \mathbb{R}_{>0}$, then for $\Phi_{i,\eta}$ as in (13), it holds that

$$\Phi_{i,\eta} \leq (B\eta)^{\frac{1}{1-\beta}}, \quad \text{for all } \eta \in (0,1], \ i \geq 1.$$

Lemma 15 ([10]). For $\Phi_{i,\eta}$ as in (13), it holds that

$$\Phi_{i,\eta} \leq \frac{\eta}{2}, \quad for \ all \ \eta \in \mathbb{R}, \ i \geq 1.$$

Lemma 16 ([10]). For $i \ge 1$ and $h \in \mathcal{H}$, the excess-loss random variable X_i^h satisfies

$$X_i^h - \mathbf{E}_{i-1}[X_i^h] \trianglelefteq_{\eta}^{\mathcal{G}_{i-1}} \eta \cdot \mathbf{E}_{i-1}[(X_i^h)^2], \quad for \ all \ \eta \in [0,1],$$

where \mathcal{G}_{i-1} is the σ -algebra generated by Z_1, \ldots, Z_{i-1} and $\mathbf{E}_{i-1}[\cdot] \coloneqq \mathbf{E}[\cdot | \mathcal{G}_{i-1}]$.

The following useful proposition is imported from [38] with minor modifications:

Proposition 17. [ESI Transitivity] Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space and \mathcal{G} be a sub- σ -algebra of \mathcal{F} . Further, let Z_1, \ldots, Z_n be random variables such that for $(\gamma_i)_{i \in [n]} \in (0, +\infty)^n$, $Z_i \trianglelefteq_{\gamma_i}^{\mathcal{G}} 0$, for all $i \in [n]$. Then

$$\sum_{i=1}^{n} Z_{i} \trianglelefteq_{\nu_{n}}^{\mathcal{G}} 0, \quad \text{where } \nu_{n} \coloneqq \left(\sum_{i=1}^{n} \frac{1}{\gamma_{i}}\right)^{-1}.$$

To prove our time-uniform concentration inequality in Section 3, we will require the following generalization of Markov's inequality (we state the version found in [27]):

Lemma 18 (Ville's inequality). If $(M_n)_{n\geq 0}$ is a non-negative supermartingale, then for any a > 0,

$$\mathbf{P}\big[\exists n \ge 1 : M_n \ge a\big] \le \frac{M_0}{a}.$$

The upcoming lemmas will help us bound the sequence of gaps (ξ_k) in (9) under the Bernstein condition.

Lemma 19. Let $P_0 \in \Delta(\mathcal{H})$, $\beta \in [0,1]$ and B > 0, and suppose that the (β, B) -Bernstein condition holds. Then, under Assumption 1, for any $\eta \in [0, 1/2]$ and $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$\frac{\eta}{n} \sum_{i=1}^{n} \mathbf{E}_{Q(h)} [(\ell(h, Z_i) - \ell(h_\star, Z_i))^2] \le 8(L(Q) - L(h_\star)) + 4C_\beta \cdot \eta^{\frac{1}{1-\beta}} + \frac{8(\mathrm{KL}(Q \| P_0) + \ln \delta^{-1})}{n\eta},$$
(14)

for all $n \ge 1$, where $h_{\star} \in \arg \inf_{h \in \mathcal{H}} L(h)$ and $C_{\beta} \coloneqq \left((1-\beta)^{1-\beta}\beta^{\beta}\right)^{\frac{p}{1-\beta}} + 3/2(2B)^{\frac{1}{1-\beta}}$.

Proof of Lemma 19. Let $\delta \in (0,1)$ and define $X_i^h \coloneqq \ell(h, Z_i) - \ell(h_*, Z_i)$. We recall that \mathcal{G}_i is the σ -algebra generated by Z_1, \ldots, Z_i , and $\mathbf{E}_{i-1}[\cdot] \coloneqq \mathbf{E}[\cdot | \mathcal{G}_{i-1}]$. Note that under Assumption 1, $\mathbf{E}_{i-1}[X_i^h] = L(h) - L(h_*)$, for all $i \ge 1$ and $h \in \mathcal{H}$. For any $\eta \in [0, 1/2]$ and $h \in \mathcal{H}$ our strategy is to show that, under the (β, B) -Bernstein condition,

$$M_{n}^{h} \coloneqq \exp\left(\eta^{2} \sum_{i=1}^{n} (X_{i}^{h})^{2} / 8 - n\eta \cdot (L(h) - L(h_{\star})) + nC_{\beta} \cdot \eta^{\frac{2-\beta}{1-\beta}} / 2\right),$$
(15)

is a non-negative supermartingale, for all $h \in \mathcal{H}$. After that, invoking Ville's inequality (Lemma 18) and applying a change of measure argument (Lemma 21), we get the desired result.

Under the (β, B) -Bernstein condition, Lemmas 13-15 imply, for all $\eta \in [0, 1/2]$ and $i \ge 1$,

$$\eta \cdot (X_i^h)^2 / 4 \leq_{\eta}^{\mathcal{G}_{i-1}} X_i^h + 3/2 (2B\eta)^{\frac{1}{1-\beta}},$$
(16)

where we used the fact that $\alpha_{\eta} = \frac{\eta}{1+\sqrt{1+4\eta^2}} \ge \eta/4$, for all $0 \le \eta \le 1/2$ (α_{η} is involved in Lemma 13). Now, due to the Bernstein inequality (Lemma 16), we have for all $\eta \in [0, 1/2]$ and $i \ge 1$,

$$X_{i}^{h} \leq_{\eta}^{\mathcal{G}_{i-1}} L(h) - L(h_{\star}) + \eta \cdot \mathbf{E}_{i-1}[(X_{i}^{h})^{2}],$$

$$\leq_{\eta}^{\mathcal{G}_{i-1}} L(h) - L(h_{\star}) + \eta \cdot (L(h) - L(h_{\star}))^{\beta}, \quad \text{(by the Bern. cond. \& Assumption 1)}$$

$$\leq_{\eta}^{\mathcal{G}_{i-1}} 2(L(h) - L(h_{\star})) + c_{\beta}^{\frac{\beta}{1-\beta}} \cdot \eta^{\frac{1}{1-\beta}}, \quad \text{where } c_{\beta} \coloneqq (1-\beta)^{1-\beta} \beta^{\beta}. \tag{17}$$

The last inequality follows by the fact that $z^{\beta} = c_{\beta} \cdot \inf_{\nu>0} \{z/\nu + \nu^{\frac{\beta}{1-\beta}}\}$, for $z \ge 0$ (in our case, we set $\nu = c_{\beta}\eta$ to get to (17)). By chaining (16) with (17) using Proposition 17, we get:

$$\eta \cdot (X_{i}^{h})^{2}/4 \leq_{\eta/2}^{\mathcal{G}_{i-1}} 2(L(h) - L(h_{\star})) + c_{\beta}^{\frac{\overline{\beta}}{-\beta}} \cdot \eta^{\frac{1}{1-\beta}} + 3/2(2B\eta)^{\frac{1}{1-\beta}}.$$

$$\leq_{\eta/2}^{\mathcal{G}_{i-1}} 2(L(h) - L(h_{\star})) + C_{\beta} \cdot \eta^{\frac{1}{1-\beta}}.$$
 (18)

This implies that M_n^h in (15) is a non-negative supermartingale. This in turn implies that for any distribution P_0 , $\mathbf{E}_{P_0(h)}[M_n^h]$ is also a supermartingale. Thus, by Ville's inequality (Lemma 18), we have, for any $\delta \in (0, 1)$,

$$\delta \ge \mathbf{P} \left[\exists n \ge 1, \mathbf{E}_{P_0(h)} [M_n^h] \ge \delta^{-1} \right], \tag{19}$$

On the other hand, by the KL-change of measure lemma (Lemma 21), we have for all $Q \in \triangle(\mathcal{H})$

$$\mathbf{E}_{Q(h)}[\ln M_n^h] \leq \mathrm{KL}(Q \| P_0) + \mathbf{E}_{P_0(h)}[M_n^h].$$

Combining this with (19), we get the desired result.

Lemma 20. For A, B > 0, we have

$$\inf_{\eta \in \{0,1/2\}} \left\{ A\eta^{\frac{1}{1-\beta}} + B/\eta \right\} \le \frac{A(3-2\beta)}{1-\beta} \left(\frac{(1-\beta)B}{A} \right)^{\frac{1}{2-\beta}} + 2B.$$
(20)

Proof. The unconstrained minimizer of the LHS of (20) is given by $\eta_* \coloneqq \left(\frac{(1-\beta)B}{A}\right)^{\frac{1-\beta}{2-\beta}}$. If $\eta_* \le 1/2$, then

$$\inf_{\eta \in \{0, 1/2\}} \left\{ A\eta^{\frac{1}{1-\beta}} + B/\eta \right\} \le A\eta_{\star}^{\frac{1}{1-\beta}} + B/\eta_{\star} = \frac{A(2-\beta)}{1-\beta} \left(\frac{(1-\beta)B}{A}\right)^{\frac{1}{2-\beta}}.$$
 (21)

Now if $\eta_{\star} > 1/2$, we have $(1/2)^{\frac{1}{1-\beta}} < \left(\frac{(1-\beta)B}{A}\right)^{\frac{1}{2-\beta}}$, and so, we have

$$\inf_{\eta \in \{0, 1/2\}} \left\{ A\eta^{\frac{1}{1-\beta}} + B/\eta \right\} \le A(1/2)^{\frac{1}{1-\beta}} + 2B,$$

$$\leq A \left(\frac{(1-\beta)B}{A}\right)^{\frac{2-\beta}{2-\beta}} + 2B.$$
(22)

By combining (21) and (22) we get the desired result.

We need one more classical change of measure result (see e.g. [1]):

Lemma 21 (KL-change of measure). For all distributions P and Q such that $Q \ll P$, it holds that

$$\mathbf{E}_{Q}[X] \leq \inf_{\eta > 0} \left\{ \eta \mathrm{KL}(Q \| P) + \eta^{-1} \ln \mathbf{E}_{P} \left[e^{\eta \cdot X} \right] \right\}.$$

B Proofs of the New Concentration Inequalities

To prove our first concentration inequality for MDS in Proposition 5, we start by constructing a non-negative supermartingale with the help of the recent FREEGRAD algorithm [39]. As mentioned in the introduction, our proof technique is similar to the one introduced in [28] with the difference that we use the specific shape of FREEGRAD's potential function to build our supermartingale. Using the latter leads to a desirable empirical variance term in our final concentration bound.

To express the FREEGRAD supermartingale, we define

$$\Phi_{\gamma}(S,Q) \coloneqq \frac{\gamma}{\sqrt{\gamma^2 + Q}} \cdot \exp\left(\frac{|S|^2}{2\gamma^2 + 2Q + 2|S|}\right), \quad S,Q \ge 0, \gamma > 0.$$

$$(23)$$

Proposition 22. Let $\gamma > 0$ and $(\mathcal{F}_t)_{t \in \mathbb{N}}$ be a filtration. For any random variables $X_1, X_2, \dots \in [-1, 1]$ s.t. X_i is \mathcal{F}_i -measurable and $\mathbf{E}[X_i | \mathcal{F}_{i-1}] = 0$, for all $i \in [n]$, the process $(\Phi_{\gamma}(S_n, Q_n))$, where $S_n \coloneqq \sum_{i=1}^n X_i$ and $Q_n \coloneqq \sum_{i=1}^n X_i^2$ is a non-negative supermartingale w.r.t. $(\mathcal{F}_t)_{t \in \mathbb{N}}$; that is,

$$\Phi_{\gamma}(S_n, Q_n) \ge 0$$
, and $\mathbf{E}[\Phi_{\gamma}(S_{n+1}, Q_{n+1}) \mid \mathcal{F}_n] \le \Phi_{\gamma}(S_n, Q_n)$, for all $n \ge 1$.

As mentioned above, the proof of the proposition is based on the guarantee of the parameter-free online learning algorithm FREEGRAD. The algorithm operates in rounds, where at each round t, FREEGRAD outputs \hat{w}_t (that is a deterministic function of the past) in some convex set \mathcal{W} , say \mathbb{R}^d , then observes a vector $\boldsymbol{g}_t \in \mathbb{R}^d$, typically the sub-gradient of a loss function at round t. The algorithm guarantees a regret bound of the form $\sum_{t=1}^T \boldsymbol{g}_t^{\mathsf{T}}(\hat{\boldsymbol{w}}_t - \boldsymbol{w}) \leq \widetilde{O}(\|\boldsymbol{w}\| \sqrt{Q_T})$, for all $\boldsymbol{w} \in \mathcal{W}$, where $Q_T \coloneqq \sum_{t=1}^T \|\boldsymbol{g}_t\|^2$. What is more, FREEGRAD's outputs $(\hat{\boldsymbol{w}}_t)$ ensure the following (see [39, Theorem 5]):

$$\widehat{\boldsymbol{w}}_t^{\mathsf{T}} \boldsymbol{g}_t + \Phi_{\gamma}(S_t, Q_t) \le \Phi_{\gamma}(S_{t-1}, Q_{t-1}), \tag{24}$$

where $S_t \coloneqq \|\sum_{i=1}^t g_i\|$ and $Q_t \coloneqq \sum_{i=1}^t \|g_i\|^2$. In the proof of Proposition 22, we will reason about the outputs of FREEGRAD in one dimension (i.e. d = 1) in response to the inputs $(g_t) \equiv (X_t)$.

One way to prove Proposition 22 is to show that FREEGRAD is a betting algorithm that bets fractions smaller than one of its current wealth at each round. In this case, Proposition 22 would follow from existing results due to, for example, [28]. However, for the sake of simplicity, we decided to present a proof that does not explicitly refer to bets.

Proof of Proposition 22. By [39, Theorem 5 and proof of Theorem 20], FREEGRAD's outputs (\widehat{w}_i) in response to (X_i) and parameter $\gamma > 0$ (playing the role of $1/\epsilon$ in their Theorem 20) guarantee⁸,

$$\widehat{w}_{n+1} \cdot X_{n+1} + \Phi_{\gamma}(S_{n+1}, Q_{n+1}) \le \Phi_{\gamma}(S_n, Q_n), \quad \text{for all } n \in \mathbb{N},$$

Re-arranging this inequality and taking the expectation $\mathbf{E}[\cdot | \mathcal{F}_n]$ yields

 $\mathbf{E}[\Phi_{\gamma}(S_{n+1}, Q_{n+1}) - \Phi_{\gamma}(S_n, Q_n) | \mathcal{F}_n] \leq -\mathbf{E}[\widehat{w}_{n+1} \cdot X_{n+1} | \mathcal{F}_n] = -\widehat{w}_{n+1} \cdot \mathbf{E}[X_{n+1} | \mathcal{F}_n] = 0,$ where the penultimate equality follows by the fact that \widehat{w}_{n+1} is a deterministic function of the history up to round n, and so it is \mathcal{F}_n -measurable. Finally, the last equality follows by the assumption that $\mathbf{E}[X_{n+1} | \mathcal{F}_n] = 0.$

Next, using standard tools from PAC-Bayesian analyses, we extend the result of Proposition 22 by allowing the random variables (X_t) to depend on $h \in \mathcal{H}$. We will also "mix" over the free parameter γ to obtain the optimal (doubly-logarithmic) dependence in n in our final concentration bounds.

Proposition 23. Let $(\mathcal{F}_t)_{t\in\mathbb{N}}$ be a filtration and $\{X_t^h\}$ be a family of random variables in [-1,1] s.t. X_t^h is \mathcal{F}_t -measurable and $\mathbf{E}[X_t^h | \mathcal{F}_{t-1}] = 0$, for all $t \ge 1$ and $h \in \mathcal{H}$. Further, let π and P_0 be prior distributions on $\mathbb{R}_{>0}$ and \mathcal{H} , respectively. Then, for any $\delta \in (0,1)$, we have

 $\mathbf{P}\left[\forall n \ge 1, \forall P \in \Delta(\mathcal{H}), \ \mathbf{E}_{P(h)}\left[\ln \mathbf{E}_{\pi(\gamma)}\left[\Phi_{\gamma}(S_{n}^{h}, Q_{n}^{h})\right]\right] \le \mathrm{KL}(P \| P_{0}) + \ln(1/\delta)\right] \ge 1 - \delta,$ where $S_{n}^{h} \coloneqq \sum_{i=1}^{n} X_{i}^{h}$ and $Q_{n}^{h} \coloneqq \sum_{i=1}^{n} (X_{i}^{h})^{2}.$

Proof of Proposition 23. By the KL-change of measure lemma (Lemma 21), we have

$$\mathbf{E}_{P(h)}\left[\ln \mathbf{E}_{\pi(\gamma)}\left[\Phi_{\gamma}(S_{n}^{h},Q_{n}^{h})\right]\right] \leq \mathrm{KL}(P\|P_{0}) + \ln \mathbf{E}_{P_{0}(h)}\mathbf{E}_{\pi(\gamma)}\left[\Phi_{\gamma}(S_{n}^{h},Q_{n}^{h})\right], \quad (25)$$

for all $n \ge 1$ and $P \in \Delta(\mathcal{H})$. On the other hand, by Proposition 22, we know that the process $(\Phi_{\gamma}(S_n^h, Q_n^h))$ is a supermartingale for any $\gamma > 0$. This in turn implies that $(\mathbf{E}_{P_0(h)}\mathbf{E}_{\pi(\gamma)}[\Phi_{\gamma}(S_n^h, Q_n^h)])_n$ is also a non-negative supermartingale, since a mixture of supermartingales is also a supermartingale. Now, by Ville's inequality (Lemma 18), we have, for all $\delta \in (0, 1)$,

$$\mathbf{P}\left[\forall n \ge 1, \ \mathbf{E}_{P_0(h)}\mathbf{E}_{\pi(\gamma)}\left[\Phi_{\gamma}(S_n^h, Q_n^h)\right] \le 1/\delta\right] \ge 1 - \delta.$$

By combining this inequality with (25), we obtain the desired result.

We now use Proposition 23 to prove Proposition 5 (some of the steps in the next proof are similar to ones found in [28]):

Proof of Proposition 5. Let $\rho > 1$ and $Q_n^h \coloneqq \sum_{i=1}^n (X_i^h)^2$. We will apply Proposition 23 with a specific choice of prior π . In particular, we let π be a prior on $\{\rho^{k/2} : k \ge 1\}$, such that for $k \ge 1$,

$$\pi(\rho^{k/2}) \coloneqq \pi_k \coloneqq \frac{1}{ck \ln^2(k+1)},$$

where c is as in (4). For $n \ge 1$ and $h \in \mathcal{H}$, let $k_n \ge 1$ be such that

$$o^{k_n - 1} \le 1 \lor Q_n^h \le \rho^{k_n}. \tag{26}$$

Note that k_n is guaranteed to exist and (26) implies that $k_n \leq \ln_{\rho}(1 \vee Q_n^h) + 1 \leq \ln_{\rho}(n) + 1$. Let $\gamma_n \coloneqq \rho^{k_n/2}$. With our choice of π , we have, for all $h \in \mathcal{H}$, $\ln \mathbf{E}_{-(\infty)} \left[\Phi_{\gamma}(S^h, Q^h) \right] > \ln \Phi_{\gamma}(S^h, Q^h) + \ln \pi(\gamma_n)$.

$$\mathbb{E}_{\pi(\gamma)}\left[\mathbb{E}_{\gamma}(\mathcal{O}_{n}, \mathcal{Q}_{n})\right] \geq \mathbb{I}_{\pi}\mathbb{E}_{\gamma_{n}}(\mathcal{O}_{n}, \mathcal{Q}_{n}) + \mathbb{I}_{\pi}(\langle \langle n \rangle, \langle n \rangle) + \mathbb{I}_{\pi}(\langle n \rangle, \langle n \rangle) + \mathbb{I$$

$$\geq \frac{|S_n^{h}|^2}{2\gamma_n + 2Q_n^{h} + 2|S_n^{h}|} + \ln\left(\frac{\gamma_n}{\sqrt{\gamma_n^2 + Q_n^{h}}}\right) + \ln\pi(\gamma_n),$$

$$\geq \frac{|S_n^{h}|^2}{2(\rho+1)(1\vee Q_n^{h}) + 2|S_n^{h}|} - \ln\sqrt{\rho+1} + \ln\pi(\gamma_n),$$
(27)

$$\geq \frac{|S_n^h|^2}{2(\rho+1)V_n^h+2|S_n^h|} - \ln\left(c\sqrt{\rho+1}(\ln_\rho(n)+1)\ln^2(\ln_\rho(n)+2)\right),$$
(28)

$$=4\sup_{\eta\geq 0}\left\{\eta|S_{n}^{h}|-2\eta^{2}(\rho+1)V_{n}^{h}-2\eta^{2}|S_{n}^{h}|\right\}-\ln\phi_{\rho}(n),$$
(29)

⁸Technically, FREEGRAD also requires a sequence of hints (h_t) that provides upper bounds on $(|X_t|)$. Since $X_i \in [-1, 1]$, these hints can all be set to 1.

where in (27) we used (26) and in (28) we used the fact that $k_n \le 1 + \ln_{\rho}(n)$. Now, by an application of Jensen's inequality, we get from (29) that

$$\begin{split} \mathbf{E}_{P(h)} \left[\ln \mathbf{E}_{\pi(\gamma)} \left[\Phi_{\gamma}(S_{n}^{h}, Q_{n}^{h}) \right] \right] &\geq 4 \sup_{\eta \geq 0} \left\{ \eta \mathbf{E}_{P(h)} |S_{n}^{h}| - 2\eta^{2} (\rho + 1) \mathbf{E}_{P(h)} [V_{n}^{h}] - 2\eta^{2} \mathbf{E}_{P(h)} |S_{n}^{h}| \right\} \\ &- \ln \phi_{\rho}(n), \\ &= \frac{(\mathbf{E}_{P(h)} |S_{n}^{h}|)^{2}}{2(\rho + 1) \mathbf{E}_{P(h)} [V_{n}^{h}] + 2 \mathbf{E}_{P(h)} |S_{n}^{h}|} - \ln \phi_{\rho}(n). \end{split}$$

Thus, we have $\mathbf{E}_{P(h)}\left[\ln \mathbf{E}_{\pi(\gamma)}\left[\Phi_{\gamma}(S_{n}^{h}, Q_{n}^{h})\right]\right] \leq \mathrm{KL}(P \| P_{0}) + \ln(1/\delta)$ only if

$$\frac{(\mathbf{E}_{P(h)}[|S_n^h|])^2}{2(\rho+1)\mathbf{E}_{P(h)}[V_n^h] + 2\mathbf{E}_{P(h)}[|S_n^h|]} \le C_n(P) \coloneqq \mathrm{KL}(P||P_0) + \ln \frac{\phi_\rho(n)}{\delta}.$$

Combining this fact with Proposition 23 implies the desired result.

Proof of Theorem 6. We will apply Proposition 5 with $X_t^h \coloneqq \ell(h, Z_t) - \mathbf{E}_{t-1}[\ell(h, Z_t)] = \ell(h, Z_t) - L(h)$, where the last equality follows by Assumption 1. As before, we let $S_n^h \coloneqq \sum_{i=1}^n X_i^h$ and $V_n^h \coloneqq 1 + \sum_{i=1}^n (X_i^h)^2$. By the classical bias-variance decomposition, we have

$$\mathbf{E}_{P(h)}[V_n^h] = n\widehat{V}_n(P) + \mathbf{E}[S_i^h]^2/n,$$
(30)

where $\widehat{V}_n(P)$ is as in the theorem's statement. Thus,

$$\frac{(\mathbf{E}_{P(h)}|S_n^h|)^2}{2(\rho+1)\mathbf{E}_{P(h)}[V_n^h] + 2\mathbf{E}_{P(h)}|S_n^h|} \le C_n(P) \coloneqq \mathrm{KL}(P||P_0) + \ln\frac{\phi_\rho(n)}{\delta},\tag{31}$$

holds only if,

$$\frac{\mathbf{E}_{P(h)}[S_n^h]^2}{2(\rho+1)n\widehat{V}_n(P) + 2(\rho+1)\mathbf{E}_{P(h)}[S_n^h]^2/n + 2|\mathbf{E}_{P(h)}[S_n^h]|} \le C_n(P),$$
(32)

where we used the bias-variance decomposition in (30) together with the facts that $|\mathbf{E}_{P(h)}[S_n^h]| \leq \mathbf{E}_{P(h)}[|S_n^h|]$ (Jensen's inequality) and that the function $x \mapsto x^2/(x+v)$ is increasing on $\mathbb{R}_{\geq 0}$ for all v > 0. On the other hand, (32) is true for $P \in \mathcal{P}_n$, only if,

$$\left|\mathbf{E}_{P(h)}[S_i^h]\right| \le \frac{2C_n(P)/n + \sqrt{2(\rho+1)}\widehat{V}_n(P) \cdot C_n(P)/n}{1 - 2(\rho+1)C_n(P)/n}.$$
(33)

Thus, (31) holds only if (33) is true, and so we obtain the desired result by Proposition 5. \Box

C Proofs of Monotonicity and Excess Risk Rates

To simplify notation in this section, we define

$$\widehat{L}_n(h) \coloneqq \frac{1}{n} \sum_{i=1}^n \ell(h, Z_i), \quad \widehat{L}(Q) \coloneqq \mathbf{E}_{Q(h)}[\widehat{L}_n(h)], \quad \text{for all } Q \in \triangle(\mathcal{H}).$$

We start by presenting a sequence of intermediate results needed in the proofs of Theorems 8 and 9.

C.1 Intermediate Results

We now present a bound on the risk difference L(Q) - L(Q'), for any $Q, Q' \in \Delta(\mathcal{H})$, using our new time-uniform empirical Bernstein inequality in Theorem 6. For $\delta \in (0, 1)$, $\rho > 1$ and $k \ge 1$, we recall the definitions

$$\epsilon_k \coloneqq \frac{2\left(\operatorname{KL}(\mathsf{B}(Z_{1:k}) \times P_{k-1} \| P_0 \times P_0) + \ln \frac{\phi_{\rho}(k)}{\delta}\right)}{k \cdot (\rho+1)^{-1}}; \quad n_{\delta} \coloneqq \sup\left\{n : 8(\rho+1) \ln \frac{\phi_{\rho}(n)}{\delta} > n\right\}, \quad (34)$$

where (P_k) are the outputs of Algorithm 1 and ϕ_{ρ} is as in Proposition 5.

Lemma 24. Let $\rho > 0$, $P_0 \in \Delta(\mathcal{H})$, and \mathcal{Q}_n be as in (8). Further, let $\delta \in (0,1)$ and n_{δ} as in (34). Then, under Assumption 1, we have, with probability at least $1 - \delta$, for all $n \ge n_{\delta}$ and $Q, Q' \in \mathcal{Q}_n$,

$$L(Q) - L(Q') \leq \widehat{L}_{n}(Q) - \widehat{L}_{n}(Q') + \frac{\sqrt{\frac{\widehat{V}_{n}(Q,Q') \cdot \varepsilon_{n}(Q,Q')}{n}} + \frac{2\varepsilon_{n}(Q,Q')}{\rho+1}}{1 - \varepsilon_{n}(Q,Q')},$$

where $\varepsilon_{k}(Q,Q') \coloneqq \frac{2(\rho+1)(\operatorname{KL}(Q \times Q' \| P_{0} \times P_{0}) + \ln \frac{\phi_{\rho}(k)}{\delta})}{k}$ and (35)

$$\widehat{V}_{k}(Q,Q') \coloneqq \frac{1}{k} \sum_{t=1}^{k} \mathbf{E}_{Q_{k}(h,h')} \left[\left(\ell(h,Z_{t}) - \ell(h',Z_{t}) \right)^{2} \right] - \left(\frac{1}{k} \sum_{t=1}^{k} \mathbf{E}_{Q_{k}(h,h')} \left[\ell(h,Z_{t}) - \ell(h',Z_{t}) \right] \right)^{2}.$$

Proof of Lemma 24. The proof follows by our new time-uniform concentration inequality in Theorem 6 with the function $f : \mathcal{H}^2 \times \mathcal{Z} \rightarrow [0, 1]$ defined by

$$f((h, h'), z) = (\ell(h, z) - \ell(h', z) + 1)/2.$$

Theorem 6 implies that, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$\mathbf{E}_{Q(h),Q'(h')}[L(h) - L(h') + 1]/2 \le \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}_{Q(h),Q'(h')}[f((h,h'),Z_i)] + \frac{\sqrt{\hat{V}_n \varepsilon_n + \frac{\varepsilon_n}{\rho+1}}}{1 - \varepsilon_n}, \quad (36)$$

for all $n \ge n_{\delta}$ and $Q, Q' \in Q_n$, where $\varepsilon_n = \varepsilon_n(Q, Q')$ and \widehat{V}_n is given by:

$$\begin{split} \widehat{V}_{n} &= \frac{1}{n} \sum_{t=1}^{n} \mathbf{E}_{Q(h),Q'(h')} \left[\left(f((h,h'),Z_{t}) - \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}_{Q(\tilde{h}),Q'(\tilde{h}')} [f((\tilde{h},\tilde{h}'),Z_{i})] \right)^{2} \right], \\ &= \frac{1}{4n} \sum_{t=1}^{n} \mathbf{E}_{Q(h),Q'(h')} \left[\left(\ell(h,Z_{t}) - \ell(h',Z_{t}) - \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}_{Q(\tilde{h}),Q'(\tilde{h}')} [\ell(\tilde{h},Z_{i}) - \ell(\tilde{h}',Z_{i})] \right)^{2} \right], \\ &= \frac{1}{4n} \sum_{t=1}^{n} \mathbf{E}_{Q(h),Q'(h')} \left[\left(\ell(h,Z_{t}) - \ell(h',Z_{t}) \right)^{2} \right] - \left(\frac{1}{2n} \sum_{t=1}^{n} \mathbf{E}_{Q(h),Q'(h')} [\ell(h,Z_{t}) - \ell(h',Z_{t})] \right)^{2} \right]. \end{split}$$

Plugging this into (36) and multiplying the resulting inequality by 2, leads to the desired inequality. \Box

Lemma 24 leads to the following corollary that will be useful for our excess risk rates:

Corollary 25. Let $\rho > 0$, $P_0 \in \Delta(\mathcal{H})$, and \mathcal{Q}_n be as in (8). Under Assumption 1, we have for $\delta \in (0, 1)$ and n_{δ} as in (34), with probability at least $1 - \delta$,

$$L(Q) - L(Q') \leq \widehat{L}_n(Q) - \widehat{L}_n(Q') + 2\sqrt{\frac{\sum_{i=1}^n \mathbf{E}_{Q(h),Q'(h')} [(\ell(h, Z_i) - \ell(h', Z_i))^2] \cdot \varepsilon_n}{n}} + \frac{4\varepsilon_n}{\rho + 1},$$

for all $n \geq n_\delta$ and $Q, Q' \in \mathcal{Q}_n$, where $\varepsilon_k \coloneqq \frac{2(\rho+1)}{k} \left(\mathrm{KL}(Q \times Q' \| P_0 \times P_0) + \ln \frac{\phi_\rho(k)}{\delta} \right).$

Proof of Corollary 25. Let $\varepsilon_n(Q,Q')$ and $\widehat{V}_n(Q,Q')$ be as in Lemma 24. The corollary follows by Lemma 24 and the facts that $1 - \varepsilon_n(Q,Q') \ge 1/2$, for all $n \ge n_\delta$ and $Q, Q' \in Q_n$; and

$$\widehat{V}_n(Q,Q') \leq \frac{1}{k} \sum_{t=1}^k \mathbf{E}_{Q_k(h,h')} \left[\left(\ell(h,Z_t) - \ell(h',Z_t) \right)^2 \right].$$

The next lemma provides a way of bounding the square-root term in the previous corollary under the Bernstein condition (Definition 3):

Lemma 26. Let B > 1 and $\beta \in [0, 1]$, and suppose that the (β, B) -Bernstein condition holds. Further, let $\rho > 1$, $\delta \in (0, 1)$, and $\varepsilon_k(Q, Q')$ be as in (35), for $Q, Q' \in \Delta(\mathcal{H})$. Then, under Assumptions 1 and 2, there exists a universal constant C > 0 s.t. with probability at least $1 - \delta$,

$$\sqrt{\frac{\sum_{i=1}^{n} \mathbf{E}_{Q(h)} [(\ell(h, Z_{i}) - \ell(h_{\star}, Z_{i}))^{2}] \cdot \varepsilon_{n}(Q, Q')}{2^{-5}n}} \leq \frac{L(Q) - L(h_{\star})}{2} + C \max_{\beta' \in \{\beta, 1\}} \varepsilon_{n}(Q, Q')^{\frac{1}{2-\beta'}}, \quad (37)$$

for all $n \ge 1$ and $Q, Q' \in \Delta(\mathcal{H})$, where $h_* \in \arg \inf_{h \in \mathcal{H}} L(h)$.

Proof of Lemma 26. Applying the fact that $\sqrt{xy} \le (\nu x + y/\nu)/2$, for all $\nu > 0$, to the LHS of (37) with

$$\nu = \frac{\eta}{8}, \quad x = \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}_{Q(h)} [(\ell(h, Z_i) - \ell(h_\star, Z_i))^2], \quad \text{and} \quad y = 2^5 \varepsilon_n(Q, Q')$$

which leads to, for all $\eta > 0$, and $k = 2^5$,

$$r_n(Q) \coloneqq \sqrt{\frac{k \sum_{i=1}^n \mathbf{E}_{Q(h)} [(\ell(h, Z_i) - \ell(h_\star, Z_i))^2] \cdot \varepsilon_n(Q, Q')}{n}},$$

$$\leq \frac{\eta}{16n} \sum_{i=1}^n \mathbf{E}_{Q(h)} [(\ell(h, Z_i) - \ell(h_\star, Z_i))^2] + \frac{4k\varepsilon_n(Q, Q')}{\eta}.$$
 (38)

Now, let $C_{\beta} \coloneqq \left((1-\beta)^{1-\beta}\beta^{\beta}\right)^{\frac{\beta}{1-\beta}} + 3/2(2B)^{\frac{1}{1-\beta}}$. By combining (38) and Lemma 19, we get, for any $\delta \in (0,1)$ and $\eta \in [0,1/2]$, with probability at least $1-\delta$,

$$\forall Q \in \Delta(\mathcal{H}), \forall n \ge 1, \ r_n(Q) \le (L(Q) - L(h_\star))/2 + C_\beta \cdot \eta^{\frac{1}{1-\beta}}/4$$

$$+ \frac{\mathrm{KL}(Q \| P_0) + \ln \delta^{-1}}{2n\eta} + \frac{4k\varepsilon_n(Q,Q')}{\eta},$$

$$\le (L(h) - L(h_\star))/2 + C_\beta \cdot \eta^{\frac{1}{1-\beta}}/4 + \frac{(4k + 1/4)\varepsilon_n(Q,Q')}{\eta}.$$
(39)

Now, minimizing the RHS of (39) over $\eta \in (0, 1/2)$ and invoking Lemma 20, we get, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$\begin{aligned} \forall Q \in \Delta(Q), \forall n \ge 1, \quad r_n(Q) \le \frac{L(Q) - L(h_\star)}{2} + 2(16k + 1/2)\varepsilon_n(Q, Q') \\ &+ \frac{C_\beta \cdot (3 - 2\beta)}{4(1 - \beta)} \left(\frac{4(1 - \beta)(4k + 1/4)\varepsilon_n(Q, Q')}{C_\beta}\right)^{\frac{1}{2 - \beta}}, \\ &\le \frac{L(Q) - L(h_\star)}{2} + 2(4k + 1/4)\varepsilon_n(Q, Q') \\ &+ \frac{C_\beta^{\frac{1 - \beta}{2 - \beta}} \cdot (3 - 2\beta)}{4(1 - \beta)} \left(4(1 - \beta)(4k + 1/4)\varepsilon_n(Q, Q')\right)^{\frac{1}{2 - \beta}}. \end{aligned}$$
(40)

Combining (40) with the fact that $\beta \mapsto C_{\beta}^{\frac{1-\beta}{2-\beta}}$ is bounded in [0, 1), we get the desired result.

We now move on to the proofs of the main results of Section 4.

C.2 Proofs of Theorems 8 and 9

Let (ξ_k) and n_{δ} be as in (9) and (34), respectively. Further, it will be useful to define the event

$$\mathcal{E} \coloneqq \left\{ \forall n \ge n_{\delta}, \ L(\widetilde{P}_n) - L(P_{n-1}) \le \widehat{L}_n(\widetilde{P}_n) - \widehat{L}_n(P_{n-1}) + \xi_n \right\},\tag{41}$$

where $\widetilde{P}_k \coloneqq \mathsf{B}(Z_{1:k})$ and (P_k) are as in Algorithm 1 with the choice of (ξ_k) in (9). Observe that by Lemma 24, we have $\mathbf{P}[\mathcal{E}] \ge 1 - \delta$, under Assumptions 1 and 2. We begin by the proof of risk-monotonicity:

Proof of Theorem 8. Let $\Delta_n \coloneqq L(P_n) - L(P_{n-1})$. Using the definitions of \mathcal{E} and (ξ_k) as in (41) and (9), respectively, we have

$$\Delta_{n} = (L(\widetilde{P}_{n}) - L(P_{n-1})) \cdot \mathbb{I}\{P_{n} \neq P_{n-1}\} + (L(P_{n}) - L(P_{n-1})) \cdot \mathbb{I}\{P_{n} \equiv P_{n-1}\},\$$

= $(L(\widetilde{P}_{n}) - L(P_{n-1})) \cdot \mathbb{I}\{P_{n} \neq P_{n-1}\}.$ (42)

Now, when $P_n \notin P_{n-1}$, Line 2 of Algorithm 1 implies that

$$\widehat{L}_n(\widetilde{P}_n) \le \widehat{L}_n(P_{n-1}) - \xi_n.$$
(43)

Using this and (42), we have that under the event \mathcal{E} ,

$$\forall n \ge n_{\delta}, \quad L(\widetilde{P}_n) - L(P_{n-1}) \le \widehat{L}_n(\widetilde{P}_n) - \widehat{L}_n(P_{n-1}) + \xi_n \le 0.$$

This, combined with the fact that $\mathbf{P}[\mathcal{E}] \ge 1 - \delta$ (Lemma 24) completes the proof.

Proof of Theorem 9. Let $\widetilde{P}_k \coloneqq \mathsf{B}(Z_{1:k})$ and (P_k) be as in Algorithm 1 with the choice of (ξ_k) in (9). Further, we let ϵ_n be as in (9) and

$$\xi'_{k} \coloneqq 2\sqrt{\frac{\sum_{i=1}^{n} \mathbf{E}_{\widetilde{P}_{k}(h), P_{k-1}(h')} [(\ell(h, Z_{i}) - \ell(h', Z_{i}))^{2}] \cdot \epsilon_{k}}{k}} + \frac{4\epsilon_{k}}{\rho + 1}.$$
(44)

It will be convenient to also consider the events:

$$\mathcal{E} \coloneqq \left\{ \forall n \ge n_{\delta}, \ L(\vec{P}_n) - L(P_{n-1}) \le \tilde{L}_n(\vec{P}_n) - \tilde{L}_n(P_{n-1}) + \xi'_n \right\},$$
$$\mathcal{E}' \coloneqq \left\{ \forall n \ge 1, \ Q, Q' \in \Delta(\mathcal{H}), \ \sqrt{\frac{\sum_{i=1}^n \mathbf{E}_{Q(h)} [(\ell(h, Z_i) - \ell(h_\star, Z_i))^2] \cdot \varepsilon_n(Q, Q')]}{2^{-5}n}} \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2-\beta}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2}} + \varepsilon_n(Q, Q')\right) \le \frac{L(Q) - L(h_\star)}{2} + C \cdot \left(\varepsilon_n(Q, Q')^{\frac{1}{2}} + \varepsilon_n(Q, Q')\right)$$

where C and $\varepsilon_n(Q, Q')$ are as in Lemma 26. We note that by Corollary 25 and Lemma 26, we have $\mathbf{P}[\mathcal{E}] \wedge \mathbf{P}[\mathcal{E}'] \ge 1 - \delta.$ (45)

For the rest of this proof, we will assume the event $\mathcal{E} \cap \mathcal{E}'$ holds, and let $n \ge n_{\delta}$ throughout. We consider two cases pertaining to the condition in Line 2 of Algorithm 1.

Case 1. Suppose that the condition in Line 2 of Algorithm 1 is satisfied for k = n. In this case, we have

$$L(P_n) - L(h_\star) = L(\widetilde{P}_n) - L(h_\star)$$
(46)

Case 2. Now suppose the condition in Line 2 does not hold for k = n. This means that $P_n \equiv P_{n-1}$, and so

$$\widehat{L}_n(P_n) - \widehat{L}_n(\widetilde{P}_n) \le \xi_n \le \xi'_n, \tag{47}$$

where the last inequality follows by the fact that $1 - \epsilon_n \ge 1/2$, for all $n \ge n_{\delta}$ under Assumption 2. Thus, by the assumption that \mathcal{E}' is true, we have,

$$L(P_n) = L(\widetilde{P}_n) + (L(P_n) - L(\widetilde{P}_n)),$$

$$\leq L(\widetilde{P}_n) + \widehat{L}_n(P_n) - \widehat{L}_n(\widetilde{P}_n) + \xi'_n, \qquad (\mathcal{E} \text{ is true})$$

$$\leq L(\widetilde{P}_n) + 2\xi'_n, \qquad (by (47))$$

$$= L(\tilde{h}_{n}) + 4\sqrt{\frac{\sum_{i=1}^{n} \mathbf{E}_{\tilde{P}_{n}(h), P_{n-1}(h)} [(\ell(h, Z_{i}) - \ell(h, Z_{i}))^{2}] \cdot \epsilon_{n}}{n}} + \frac{8\epsilon_{n}}{\rho + 1},$$

$$= L(\tilde{P}_{n}) + 4\sqrt{\frac{\sum_{i=1}^{n} \mathbf{E}_{\tilde{P}_{n}(h), P_{n}(h')} [(\ell(h, Z_{i}) - \ell(h', Z_{i}))^{2}] \cdot \epsilon_{n}}{n}} + \frac{8\epsilon_{n}}{\rho + 1}, \quad (P_{n} = P_{n-1})$$

$$\leq L(\tilde{P}_{n}) + 4\sqrt{\frac{2\sum_{i=1}^{n} \mathbf{E}_{\tilde{P}_{n}(h)} [(\ell(h, Z_{i}) - \ell(h_{\star}, Z_{i}))^{2}] \cdot \epsilon_{n}}{n}} + \frac{8\epsilon_{n}}{\rho + 1}$$

$$+ 4\sqrt{\frac{2\sum_{i=1}^{n} \mathbf{E}_{P_{n}(h)} [(\ell(h, Z_{i}) - \ell(h_{\star}, Z_{i}))^{2}] \cdot \epsilon_{n}}{n}}, \quad (48)$$

where to obtain the last inequality, we used the fact that $(a - c)^2 \leq 2(a - b)^2 + 2(b - c)^2$ and $\sqrt{a + b} \leq \sqrt{a} + \sqrt{b}$ for all $a, b, c \in \mathbb{R}_{\geq 0}$. Now, by (48), the fact that \mathcal{E}' holds, and Assumption 2 (which implies that $\epsilon_n^{\frac{1}{2-\beta}} \leq O(\epsilon_n)$ for $n \geq n_{\delta}$), we have

$$L(P_{n}) - L(h_{\star}) \leq L(\widetilde{P}_{n}) - L(h_{\star}) + \frac{L(\widetilde{P}_{n}) - L(h_{\star})}{2} + \frac{L(P_{n}) - L(h_{\star})}{2} + O(\epsilon_{n})^{\frac{1}{2-\beta}},$$

which, after re-arranging, becomes

$$\frac{L(P_n) - L(h_\star)}{2} \le \frac{3(L(\widetilde{P}_n) - L(h_\star))}{2} + O\left(\epsilon_n\right)^{\frac{1}{2-\beta}}.$$
(49)

Multiplying on both sides by 2 and using (45) with a union bound leads to the desired result. \Box

C.3 Additional Results and Proofs

Using the lemmas in Section C.1, we derive the excess-risk rate of ERM under the Bernstein condition: **Lemma 27.** Let B > 1, $\beta \in [0,1]$ and suppose that the (β, B) -Bernstein condition holds and \mathcal{H} is finite. Further, let $\rho > 1$, $\delta \in (0,1)$, and n_{δ} be as in (34). Then, under Assumptions 1 and 2, the ERM $\hat{h}_n \in \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{t=1}^n \ell(h, Z_t)$ satisfies, with probability at least $1 - \delta$,

$$L(\hat{h}_n) - L(h_\star) \le O\left(\frac{\ln(\ln(n|\mathcal{H}|)/\delta)}{n}\right)^{\frac{1}{2-\beta}} + \frac{\ln(\ln(n|\mathcal{H}|)/\delta)}{n},\tag{50}$$

for all $n \ge n_{\delta} \lor (16(\rho + 1) \ln |\mathcal{H}|)$.

Proof of Lemma 27. Let n_{δ} be as in (34) and define

$$\epsilon_k \coloneqq \frac{2(\rho+1)\left(2\ln|\mathcal{H}| + \ln\frac{\phi_{\rho}(k)}{\delta}\right)}{k}, \text{ and } \xi'_n \coloneqq 2\sqrt{\frac{\sum_{i=1}^n (\ell(\hat{h}_n, Z_i) - \ell(h_\star, Z_i))^2 \cdot \epsilon_n}{n}} + \frac{4\epsilon_n}{\rho+1}.$$

Further, consider the events

$$\mathcal{E} \coloneqq \left\{ \forall n \ge n_{\delta}, \ L(\hat{h}_n) - L(h_{\star}) \le \widehat{L}_n(\hat{h}_n) - \widehat{L}_n(h_{\star}) + \xi'_n \right\},$$
$$\mathcal{E}' \coloneqq \left\{ \forall n \ge 1, \ \sqrt{\frac{\sum_{i=1}^n (\ell(\hat{h}_n, Z_i) - \ell(h_{\star}, Z_i))^2 \cdot \epsilon_n}{2^{-5}n}} \le \frac{L(\hat{h}_n) - L(h_{\star})}{2} + C \cdot \left(\epsilon_n^{\frac{1}{2-\beta}} + \epsilon_n\right) \right\},$$

where C is as in Lemma 26. By Corollary 25 and Lemma 26, instantiated with P_0 equal to the uniform prior over \mathcal{H} and Q [resp. Q'] equal to the Dirac at \hat{h}_n [resp. h_*], we have

$$\min(\mathbf{P}[\mathcal{E}], \mathbf{P}[\mathcal{E}']) \ge 1 - \delta.$$
(51)

For the rest of this proof, we will assume that the event $\mathcal{E} \cap \mathcal{E}'$ holds, and let $n \ge n_{\delta}$. By the assumption that \mathcal{E} holds, we have

$$L(\hat{h}_{n}) = L(h_{\star}) + (L(\hat{h}_{n}) - L(h_{\star})),$$

$$\leq L(h_{\star}) + \hat{L}_{n}(\hat{h}_{n}) - \hat{L}_{n}(h_{\star}) + \xi'_{n}, \qquad (\mathcal{E} \text{ is true})$$

$$\leq L(h_{\star}) + \xi'_{n}, \qquad (\hat{h}_{n} \text{ is the ERM})$$

$$= L(h_{\star}) + 2\sqrt{\frac{\sum_{i=1}^{n} (\ell(\tilde{h}_{n}, Z_{i}) - \ell(h_{\star}, Z_{i}))^{2} \cdot \epsilon_{n}}{n}} + 4\epsilon_{n}. \qquad (52)$$

Now by the assumption that \mathcal{E}' holds, we can bound the middle term on the RHS of (52), leading to

$$L(\hat{h}_n) = L(h_\star) + \frac{L(\hat{h}_n) - L(h_\star)}{2} + O\left(\max_{\beta' \in \{1,\beta\}} \left(\frac{\ln(n|\mathcal{H}|/\delta)}{n}\right)^{\frac{1}{2-\beta'}}\right) + 4\epsilon_n,$$
$$= L(h_\star) + \frac{L(\hat{h}_n) - L(h_\star)}{2} + O\left(\frac{\ln(n|\mathcal{H}|/\delta)}{n}\right)^{\frac{1}{2-\beta}},$$
(53)

for all $n \ge n_{\delta} \lor (16(\rho+1) \ln |\mathcal{H}|)$, where in the last inequality we used the definition of ϵ_n . Combining (53) with (51), and applying a union bound, we obtain the desired result.

Proof of Theorem 11. First, note that by linearity of the expectation it suffices to show that F

$$\mathbb{E}\left[L(P_n) - L(P_{n-1})\right] \le 0,$$

where the expectation is over the randomness of the samples $Z_{1:n}$. Moving forward, we let $\Delta_n \coloneqq$ $L(P_n) - L(P_{n-1})$, and for $n \ge N$, define the event

$$\mathcal{E}_{n} \coloneqq \left\{ L(\widetilde{P}_{n}) - L(P_{n-1}) \le \widehat{L}_{n}(\widetilde{P}_{n}) - \widehat{L}_{n}(P_{n-1}) + \xi_{n}' \right\},$$
(54)

where $\widetilde{P}_k \coloneqq \mathsf{B}(Z_{1:k})$ and (P_k) as in Algorithm 1 with the choice of (ξ'_k) in the theorem's statement. Observe that by Lemma 24, we have $\mathbf{P}[\mathcal{E}_n] \ge 1 - 1/n^b$ for all $n \ge N$, under Assumptions 1 and 2.

Now, by the law of the total expectation, we have

$$\mathbf{E}[\Delta_n] = \mathbf{P}[\mathcal{E}_n] \cdot \mathbf{E}[\Delta_n \mid \mathcal{E}_n] + \mathbf{P}[\mathcal{E}_n^c] \cdot \mathbf{E}[\Delta_n \mid \mathcal{E}_n^c],$$

$$\leq \mathbf{P}[\mathcal{E}_n] \cdot \mathbf{E}[\Delta_n \mid \mathcal{E}_n] + 1/n^b.$$

where the last inequality follows by the fact that the loss ℓ takes values in [0, 1] and that $\mathbf{P}[\mathcal{E}_n^c] \leq 1/n^b$. By applying the law of the total expectation again, we obtain

$$\mathbf{E}[\Delta_{n}] = \mathbf{P}[\{P_{n} \equiv P_{n-1}\} \cap \mathcal{E}_{n}] \cdot \mathbf{E}[\Delta_{n} \mid \{P_{n} \equiv P_{n-1}\} \cap \mathcal{E}_{n}] \\ + \mathbf{P}[\{P_{n} \notin P_{n-1}\} \cap \mathcal{E}_{n}] \cdot \mathbf{E}[\Delta_{n} \mid \{P_{n} \notin P_{n-1}\} \cap \mathcal{E}_{n}] + 1/n^{b}, \\ \leq \mathbf{P}[\{P_{n} \notin P_{n-1}\} \cap \mathcal{E}_{n}] \cdot \mathbf{E}[\Delta_{n} \mid \{P_{n} \notin P_{n-1}\} \cap \mathcal{E}_{n}] + 1/n^{b},$$
(55)

where the last inequality follows by the fact that if $P_n \equiv P_{n-1}$, then $\Delta_n = 0$. Now, if $P_n \notin P_{n-1}$, then by Line 2 of Algorithm 1, we have

$$\widehat{L}_n(P_n) = \widehat{L}_n(\widetilde{P}_n) \le \widehat{L}_n(P_{n-1}) - \xi'_n,$$
(56)

Under the event \mathcal{E}_n , we have

$$L(\widetilde{P}_n) - L(P_{n-1}) \le \widehat{L}_n(\widetilde{P}_n) - \widehat{L}_n(P_{n-1}) + \xi'_n.$$

This, in combination with (56), implies that under the event $\mathcal{E}_n \cap \{P_n \notin P_{n-1}\},\$

$$\Delta_n = L(P_n) - L(P_{n-1}) \le -\xi'_n + \xi'_n = 0.$$

As a result, we have

$$\mathbf{E}[\Delta_n \mid \{P_n \notin P_{n-1}\} \cap \mathcal{E}_n] \le 0.$$
(57)

Combining (55) and (57) yields the desired result.

Proof of Proposition 10. The risk monotonicity claim follows from Theorem 8, and the excess risk rate follows from Theorem 9 and Lemma 27.

D **Risk Monotonicity without PAC-Bayes**

In this section, we show how risk monotonicity can be achieved in the i.i.d. setting without Assumption 2. For this, we will use a concentration inequality due to [35] that has an empirical variance term under the square root just like ours in Theorem 6. To present this inequality, we first present some new notation. For any $Z_{1:n} \in \mathbb{Z}^n$, we let $\ell \circ \mathcal{H}(Z_{1:n}) \coloneqq (\ell(h, Z_1), \dots, \ell(h, Z_n))$. Further, for any subset $\mathcal{A} \subset \mathbb{R}^n$ and $\epsilon > 0$, we let $\mathcal{N}(\epsilon, \mathcal{A}, \|\cdot\|_{\infty})$ be the cardinality of smallest subset $\mathcal{A}_0 \subseteq \mathcal{A}$ such that \mathcal{A} is contained in the union of $\|\cdot\|_{\infty}$ -balls of radii ϵ centered at points in \mathcal{A}_0 . Finally, we consider the following complexity measure:

$$\mathcal{N}_{\infty}(\epsilon, \ell \circ \mathcal{H}, n) \coloneqq \sup_{Z_{1:n} \in \mathcal{Z}^n} \mathcal{N}(\epsilon, \ell \circ \mathcal{H}(Z_{1:n}), \|\cdot\|_{\infty}).$$
(58)

With this, we state the concentration inequality due to [35] that we will need:

Theorem 28. Let Z be a random variable with values in a set Z with distribution π , and let \mathcal{H} be a set of hypotheses. Further, let $\delta \in (0, 1)$, $n \ge 16$, and set

$$\mathcal{M}(n) \coloneqq 10\mathcal{N}_{\infty}(1/n, \ell \circ \mathcal{H}, 2n)$$

Then, with probability at least $1 - 2\delta$ in the random vector $Z_{1:n} \sim \pi^n$, we have

$$\forall h \in \mathcal{H}, \quad \left| \mathbf{E} \left[\ell(h, Z) \right] - \frac{1}{n} \sum_{i=1}^{n} \ell(h, Z_i) \right| \leq \sqrt{\frac{18V_n \ln(\mathcal{M}(n)/\delta)}{n}} + \frac{15 \ln(\mathcal{M}(n)/\delta)}{n-1}$$

where $V_n \coloneqq V_n (\ell \circ \mathcal{H}, Z_{1:n}) \coloneqq \frac{1}{n(n-1)} \sum_{1 \leq i < j \leq n} \left(\ell(h, Z_i) - \ell(h, Z_j) \right)^2.$

Algorithm 2 A Deterministic Risk Monotonic Algorithm Wrapper

Require: A base learning algorithm $\hat{h} : \bigcup_{i=1}^{\infty} Z^i \to \mathcal{H}$. Initial hypothesis $\hat{h}_0 \in \mathcal{H}$. Samples Z_1, \dots, Z_n . 1: for $k = 1, \dots, n$ do 2: Set $\hat{V}_k \coloneqq \frac{1}{k(k-1)} \sum_{1 \le i \le j \le k} \left(\ell(h(Z_{1:k}), Z_i) - \ell(\hat{h}_{k-1}, Z_i) - \ell(h(Z_{1:k}), Z_j) + \ell(\hat{h}_{k-1}, Z_j)) \right)^2$. 3: Set $\xi_k = \sqrt{\frac{18\hat{V}_k \ln(\mathcal{M}(k)/k)}{k}} + \frac{30\ln(\mathcal{M}(k)/k)}{k-1}$. 4: if $\frac{1}{k} \sum_{i=1}^k \ell(\hat{h}(Z_{1:k}), Z_i)] - \frac{1}{k} \sum_{i=1}^k \ell(\hat{h}_{k-1}, Z_i) \le -\xi_k$ then 5: Set $\hat{h}_k = \hat{h}(Z_{1:k})$. 6: else 7: Set $\hat{h}_k = \hat{h}_{k-1}$. 8: Return \hat{h}_n .

Using Theorem 28 and following the same steps in the proof of Theorem 11, it follows that Algorithm 2 is risk monotonic in expectation (up to an additive 2/k term) for all sample sizes. Furthermore, since the concentration inequality in Theorem 28 has an empirical variance term under the square-root (just like ours in Theorem 6), the risk decomposition in our Theorem 9 also holds for Algorithm 2, albeit with probability at least 1 - O(1/n) for sample size n.