
NTopo: Mesh-free Topology Optimization using
Implicit Neural Representations

Jonas Zehnder
Department of Computer Science

and Operations Research
Université de Montréal

jonas.zehnder@umontreal.ca

Yue Li
Department of Computer Science

ETH Zurich
yue.li@inf.ethz.ch

Stelian Coros
Department of Computer Science

ETH Zurich
scoros@inf.ethz.ch

Bernhard Thomaszewski
Department of Computer Science

ETH Zurich
bthomasz@ethz.ch

Abstract

Recent advances in implicit neural representations show great promise when it
comes to generating numerical solutions to partial differential equations. Compared
to conventional alternatives, such representations employ parameterized neural
networks to define, in a mesh-free manner, signals that are highly-detailed, contin-
uous, and fully differentiable. In this work, we present a novel machine learning
approach for topology optimization—an important class of inverse problems with
high-dimensional parameter spaces and highly nonlinear objective landscapes. To
effectively leverage neural representations in the context of mesh-free topology
optimization, we use multilayer perceptrons to parameterize both density and dis-
placement fields. Our experiments indicate that our method is highly competitive
for minimizing structural compliance objectives, and it enables self-supervised
learning of continuous solution spaces for topology optimization problems.

1 Introduction

Deep neural networks are starting to show their potential for solving partial differential equations
(PDEs) in a variety of problem domains, including turbulent flow, heat transfer, elastodynamics, and
many more [1, 2, 3, 4, 5]. Thanks to their smooth and analytically-differentiable nature, implicit
neural representations with periodic activation functions are emerging as a particularly attractive
and powerful option in this context [4]. In this work, we explore the potential of implicit neural
representations for structural topology optimization—a challenging inverse elasticity problem with
widespread application in many fields of engineering [6].

Topology optimization (TO) methods seek to find designs for physical structures that are as stiff
as possible (i.e. least compliant) with respect to known boundary conditions and loading forces
while adhering to a given material budget. While TO with mesh-based finite element analysis
is a well-studied problem [7], we argue that mesh-free methods provide unique opportunities for
machine learning. We propose the first self-supervised, fully mesh-free method based on implicit
neural representations for topology optimization. The core of our approach is formed by two neural
networks: a displacement network representing force-equilibrium configurations that solve the
forward problem, and a density network that learns optimal material distributions in the domain of
interests. To leverage the power of these representations, we cast TO as a stochastic optimization
problem using Monte Carlo sampling. Compared to conventional mesh-based TO, this setting

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

introduces new challenges that we must address. To account for the nonlinear nature of implicit
neural representations, we introduce a convex density-space objective that guides the neural network
towards desirable solutions. We furthermore introduce several concepts from FEM-based topology
optimization methods into our learning-based Monte Carlo setting to stabilize the training process
and to avoid poor local minima.

We evaluate our method on a set of standard TO problems in two and three dimensions. Our
results indicate that neural topology optimization with implicit representations is able to match the
performance of state-of-the-art mesh-based solvers. To further explore the potential advantages of
this approach over conventional methods, we show how our formulation enables self-supervised
learning of continuous solution spaces for this challenging class of problems.

Figure 1: Neural topology optimization pipeline. We compute optimal material distributions by
alternately training two neural networks: the displacement network Φu and the density network Φρ,
mapping spatial coordinates ω to equilibrium displacements u and optimal densities ρ, respectively.
In each iteration, we first update Φu by minimizing the total potential energy of the system. We then
perform sensitivity analysis to compute density-space gradients which, after applying our sensitivity
filtering, give rise to target density fields ρ̂. Finally, we update Φρ by minimizing the convex objective
Ltopo based on mean squared error between current and target densities.

2 Related work

Neural Networks for Solving PDEs Deep neural networks have been widely used in different
fields to provide solutions for partial differential equations for both forward simulation and inverse
design problems [1, 4, 8]. In this context, PDEs can be solved either in their strong form [9, 10, 11]
or variational form [12, 13]. We refer to DeepXDE [5] for a detailed review. Explorations into
using deep learning alongside conventional solvers for simulation have been conducted with the goal
of accelerating computations [14] or learning the governing physics [15, 16, 17, 18, 19, 20]. With
their continuous and analytically-differentiable solution fields, neural implicit representations with
periodic activation functions [4] offer a promising alternative to mesh-based finite element analysis.
We leverage this new representation to solve high-dimensional inverse elasticity problems in a fully
mesh-free manner.

Differentiable Simulation for Machine Learning There is growing interest in differentiable
simulation methods that enable physics-based supervision in learning frameworks [21, 22, 23, 24,
25, 15]. Liang et al. [22] proposed a differentiable cloth simulation method for optimizing material
properties, external forces, and control parameters. Hu et al. [21] targets reinforcement learning
problems with applications in soft robotics. Geilinger et al. [24] proposed an analytically differentiable
simulation framework that handles frictional contacts for both rigid and deformable bodies. To reduce
numerical errors in a traditional solver Um et al. [25] leverage a differentiable fluid simulator inside
the training loop. Similar to these existing methods, our approach relies on differentiable simulation
at its core, but targets mesh-free, stochastic integration for elasticity problems.

Neural Representations Using implicit neural representation for complex signals has been an on-
going topic of research in computer vision [26, 27], computer graphics [28, 29], and engineering [4, 1].
PIFu [26] learns implicit representations of human bodies for monocular shape estimation. Sitzmann
et al. [4] use MLPs with sinusoidal activation functions to represent signed distance fields in a
fully-differentiable manner. Takikawa et al. [30] introduced an efficient neural representation that
enables real-time rendering of high-quality surface reconstructions. Mildenhall et al. [28] describe a
neural radiance field representation for novel view synthesis. We leverage the advantages of implicit

2

neural representations, demonstrated in these previous works, to learn the high-dimensional solutions
of topology optimization problems.

Topology Optimization with Deep Learning Topology optimization methods aim to find an
optimal material distribution of a design domain given a material budget, boundary conditions, and
applied forces. Building on a large body of finite-element based methods [31, 6, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44], recent efforts have explored the use of deep learning techniques in this
context. One line of work leverages mesh-based simulation data and convolutional neural networks
(CNNs) to accelerate the optimization process [45, 46, 47, 48, 49, 50, 51]. Perhaps closest to our
work is the method by Hoyer et al. [52], who reparameterize design variables with CNNs, but use
mesh-based finite element analysis for simulation. While Hoyer et al. [52] map latent vectors to
discrete grid densities, Chandrasekhar et al. [53] use multilayer perceptrons to learn a continuous
mapping from spatial locations to density values. However, as we show in our comparisons, their
choice of using ReLU activation functions leads to overly simplified solutions whose structural
performance is not on par with results from conventional methods [54, 55, 56]. In addition, both
methods use an explicit mesh for forward simulation and sensitivity analysis, whereas our method is
entirely based on neural implicit representations.

3 Problem Statement and Overview

Given applied forces, boundary conditions, and a target material volume ratio V̂ , the goal of topology
optimization is to find the material distribution that leads to the stiffest structure. This task can be
formulated as a constrained bilevel minimization problem,

Lcomp(ρ) =

∫
Ω

e(ρ, u, ω) dω

s. t. u(ρ) = arg min
u′

Lsim(u′, ρ), ρ(ω) ∈ {0, 1}, 1

|Ω|

∫
Ω

ρ dω = V̂ ,

(1)

where the loss Lcomp measures how compliant the material is, ρ is the material density field, ω
runs over the domain Ω and |Ω| is the volume of Ω. The displacement u is a result of minimizing
the simulation loss Lsim, ensuring the configuration is in force equilibrium. e is the pointwise
compliance, which is equivalent to the internal energy up to a constant factor and is measuring how
much the material is deformed under load; see Section 4.1 for details. Although manufacturing
typically demands binary material distributions, densities are often allowed to take on continuous
values while convergence to binary solutions is encouraged. We follow the same strategy and
parameterize densities ρ and displacements u using implicit neural representations, Φρ(ω; θ) and
Φu(ω; γ), respectively. By sampling a batch of locations ωb and ρb = ρ(ωb), we compute an estimate
of Lcomp using Monte Carlo integration, Lcomp ≈ |Ω|n

∑n
i e(ω

b
i) . If u is a displacement in force

equilibrium, we can compute the total gradient of the compliance loss with respect to the densities of
the batch as

s =
dLcomp

dρ
=
∂Lcomp

∂ρ
+
∂Lcomp

∂u

du

dρ
= −∂Lcomp

∂ρ
. (2)

We will refer to this expression as the density-space gradient; see the supplemental document for a
detailed derivation. The density-space gradient indicates how the compliance loss changes w.r.t. the
density values, assuming that the force equilibrium constraints remain satisfied.

On this basis, we compute the total gradient of the compliance loss with respect to the neural network
parameters as dLcomp

dθ =
dLcomp

dρ
∂ρ
∂θ .

Using this gradient together with a penalty on the volume constraint would be one potential option for
solving Equation (1). In practice, however, we observed that this approach does not lead to satisfying
behavior. We elaborate on this problem below.

TO is a non-convex optimization problem, whose solutions depend on the optimization method [52]
and the path density values take. Much research has been done on developing optimization strate-
gies that converge to good local minima for FEM-based solvers. The density-space gradient is
generally considered a good update direction for mesh-based approaches. However, when using

3

Figure 2: Failure of naive gradient descent. Left:
negative density-space gradient on the domain for
the beam example in the first iteration. Log-scale
coloring is used to emphasize structure. Right:
after one step of gradient descent (learning rate
10−5), the neural network output has lost all struc-
ture from the density-space gradient.

standard optimizers to update the parameters
for our density network, the resulting change in
densities is not at all aligned with the density-
space gradient; see Figure 2. We tested both
ADAM [57] and SGD with little difference in
the results—eventually, both approaches con-
verge to local minima that are meaningless from
a structural point of view; see Section 5.4.

To analyze this unexpected behavior, we con-
sider the change in densities induced by a step
in the negative direction of the density-space gra-
dient ∆ρ = −αdLcomp

dρ , where α is the learning
rate. The corresponding first-order change in
network parameters ∆θ is −αdLcomp

dρ
∂ρ
∂θ . How-

ever, using this parameter change in the Taylor series expansion of the network output, we obtain

∆ρ′ = ρ(θ + ∆θ)− ρ(θ) = −αdLcomp

dρ

∂ρ

∂θ

∂ρ

∂θ

T

+O(α2) . (3)

It is evident that, unless the Jacobian ∂ρ/∂θ of the neural network is a unitary matrix, the direction of
density change ∆ρ′ is different from ∆ρ even as α→ 0.

To avoid converging to bad local minima, we seek to update the network parameters such that the
network output changes along the density-space gradient. To this end, we define point-wise density
targets ρ̂b indicating how the network output should change. We then minimize the convex loss
function

Ltopo(θ) =
1

nbn

nb∑
b

n∑
j

∥∥ρ(ωbj ; θ)− ρ̂(ωbj)
∥∥2

. (4)

While our density-space optimization strategy greatly improves results, we have still observed
convergence to minima with undesirable artefacts. Drawing inspiration from mesh-based TO methods
[58], we solve this problem with a sensitivity filtering approach (termed FT in Algorithm 1). To
further accelerate convergence, we also adapt the optimality criterion method [7] to our setting (OC
in Algorithm 1). Our resulting neural topology optimization algorithm, which we dubbed NTopo, is
summarized in Algorithm 1 and further explained in the following Section.

Algorithm 1 NTopo: Neural topology optimization.

1: Initialize γ(−1), θ(0) for Φρ, Φu; Initialize two optimizers: optθ, optγ
2: Run initial simulation: γ(0) ← arg minγ Lsim(γ, θ(0))
3: for nopt iterations do
4: for nsim iterations do γ(l+1) ← optγ .step(γ(l), ∂Lsim/∂γ) end for
5: for batch b = 1, .., nb do compute ρb, sb end for
6: ŝ← FT (ρ1,...,nb , s1,...,nb)

7: ρ̂← OC(ρ1,...,nb , ŝ1,...,nb , V̂)
8: for batch b = 1, .., nb do θ(l+1) ← optθ.step(θ(l), ρ̂b, ∂Ltopo/∂θ) end for
9: end for

10: return Φρ

4 Neural Topology Optimization

We start the technical description of our algorithm with a brief overview of the neural representation
that we use. We then explain how to compute equilibrium configurations and how to update the
density field. Finally, we introduce an extension of our method from individual solutions to entire
solution spaces for a given continuous parameter range.

4

We use SIREN [4] as neural representation, which is a dense multilayer perceptron (MLP) with
sinusoidal activation functions. A SIREN-MLP with l layers, l − 1 hidden layers, and h neurons in
each hidden layer is defined as

Φ(x) = Wl(φl−1 ◦ φl−2 ◦ . . . ◦ φ0)(ω0x) + bl, φi(x) = sin(Wixi + bi) (5)

where x is the input vector, y is the output vector, Wi are weight matrices, bi are biases, and ω0

is a frequency dependent factor. We use a standard five-layer MLP with residual links and no
regularization. The weights of all layers are initialized as suggested by Sitzmann et al. [4].

4.1 Computing Static Equilibrium Solutions

We parametrize the displacement field u using a neural network Φu(ω; γ) with network weights γ.
To find the displacement field u in static equilibrium, we minimize the variational form of linear
elasticity which is given by

min
γ
Lsim(u(γ)) = min

γ

∫
Ω

1

2
ε(u) : σ(u)− uT f dω s.t. u|∂ΩD

= uD (6)

where ∂ΩD is the part of the boundary of the domain with prescribed displacement uD. The
internal energy in linear elasticity is given through 1

2 ε : σ, where the tensor contraction ":" is
defined as ε : σ =

∑
ij εijσij . In two dimensions we compute the stress tensor under plane

stress assumption σ =
(
E/
(
1− ν2

))
((1− ν)ε+ ν trace(ε)I) where ν is Poisson’s ratio, E is the

Young’s modulus, I ∈ R2×2 is the identity matrix and ε =
(
∇u+∇uT

)
/2 is the linear Cauchy

strain. In 3D we use Hooke’s law σ = λ trace(ε)I + 2µε where λ = Eν/((1 + ν)(1 − 2ν)) and
µ = E/(2(1 + ν)). Following SIMP [37], we parameterize the Young’s modulus E using the
density field as E(ρ) = ρpE1. Larger values for the exponent p together with the volume constraint
encourage binary solutions.

Sampling To evaluate the integral in Equation (6) we resort to a Quasi-Monte Carlo sampling
approach. We generate stratified samples on a grid with nx × ny cells in 2D (and nx × ny × nz in
3D). We adjust nx, ny, nz to match the aspect ratio of the domain.

Enforcing Dirichlet Boundary Conditions By constructing a function d that is zero on the
fixed boundary and an interpolator of the function uD, we enforce the displacement field u(ω) =
d(ω)Φu(ω; γ) + (I ◦ uD)(ω) to always satisfy the essential boundary conditions, thus turning the
constrained problem into an unconstrained one [59]. We use simple boundaries in our examples for
which analytic functions d are readily available; see the supplemental document for more details.

4.2 Density Field Optimization

We reparameterize the density field using a neural network Φρ which maps spatial locations to their
corresponding density values. The bound constraints on the densities are enforced by applying a
scaled logistic sigmoid function to the network output, specifically ρ(ω) = sigmoid(5 Φρ(ω)). The
total volume constraint is satisfied by the optimality criterion method described below.

Moving Mean Squared Error (MMSE). Equation (4) can be interpreted as a mean squared error

1

|Ω|

∫
Ω

||ρ(ω; θ)− ρ̂(ω)||2 dω . (7)

We minimize this loss using a mini-batch gradient descent strategy, where we use every batch only
once. We collect multiple batches of data from ρ̂ before we update ρ and ρ̂, specifically ρ̂ changes
once every outer iteration. For this reason, we refer to this updating scheme as moving mean squared
error in the following.

Sensitivity filtering FT . In conventional TO algorithms, filtering is an essential component for
discovering desirable minima that avoid artefacts such as checkerboarding [33]. While our neural
representation does not suffer from the same discretization limitations that give rise to checkerboard
patterns, we have nevertheless observed convergence to undesirable minima. Indeed, the neural

5

representation alone does not remove the inherent reason for such artefacts: TO is an underconstrained
optimization problem with a high-dimensional null-space. Isolating good solutions from this null-
space requires additional priors, filters, or other regularizing information.

In order to address this problem, we propose a continuous sensitivity filtering approach that, instead
of using discrete approximations [58], is based on continuous convolutions. Following this strategy,
we obtain filtered sensitivities as

ŝ(ω) =

∫
H(∆ω)ρ(ω + ∆ω)s(ω + ∆ω) d∆ω

max(ε, ρ(ω))
∫
H(∆ω) d∆ω

(8)

where ε is set to 10−3 and H is the kernel H(∆ω) = max (0, r − ‖∆ω‖), with radius r. Since the
samples ωi are distributed inside a grid, we can compute an approximation to the continuous filter as

ŝij =

∑
k∈Nj H(ωij − ωik)ρiks

i
k

max(ε, ρij)
∑
k∈Nj H(ωij − ωik)

(9)

where the neighborhood N is defined by cell sizes and radius r such that points inside the footprint of
the kernel H are in the neighborhood N . Although this approximation is not an unbiased estimator
of Equation (8), it led to satisfying results in all our experiments.

Multi Batch-based Optimality Criterion Method OC We leverage the optimality criterion
method [36] to compute density targets that automatically satisfy volume constraints, thus avoiding
penalty functions or other constraint enforcement mechanisms. To this end, we extend the discrete,
mesh-based formulation to the continuous Monte Carlo setting. One chooses a Lagrange multiplier
λ such that the the volume constraint is satisfied after the variables have been updated. Since it is
computationally infeasible to compute the constraint exactly, we choose to satisfy the constraint in
terms of its estimator using the collected batches. Additionally, we adopt a heuristic updating scheme
very similar to the ones proposed by other authors [36], which leads to the following scheme: First a
set of multiplicative updates Bi are computed, which then are applied to compute the target densities
ρ̂i = clamp(ρi(Bi)η,max(0, ρi −m),min(1, ρi + m)), where m limits the maximum movement
of a specific target density and η is a damping parameter. We used m = 0.2 and η = 0.5. The
updated Bi are computed using Bi = −ŝi/(λ ∂V∂ρi) where λ is found using a binary search such that
the estimated volume of the updated densities using Monte Carlo integration matches the desired
volume ratio across all batches 1

nbn

∑nb

b

∑n
j ρ̂

b
j = V̂ .

4.3 Continuous Solution Space

Apart from solving individual TO problems for fixed boundary conditions and material budgets, our
method can be readily extended to learn entire spaces of optimal solutions, e.g., a continuous range
of material volume constraints {V̂ i} or boundary conditions such as force locations. To this end,
we seek to find a density function ρ(ω, q) which yields the optimal density at any point ω in the
domain for any parameter vector q representing, e.g., material volume ratio q := V̂ in the target
range Q = [V , V]. In a supervised setting, a common approach is to first compute k solutions
corresponding to different parameters {qk} and then fit the neural network using a mean squared error.
By contrast, our formulation invites a fully self-supervised approach based on a modified moving
mean squared error,

1

|Q||Ω|

∫
Q

∫
Ω

‖ρ(ω, q; θ)− ρ̂(ω, q)‖2 dωdq . (10)

We minimize this loss by sampling q at random and then update the density network using the same
method as described for the single target volume case.

5 Results

To analyze our method and evaluate its results, we start by comparing material distributions obtained
with our approach on a set of 2D examples. We demonstrate the effectiveness of our method through
comparisons to a state-of-the-art FEM solver (Section 5.1). We then investigate the ability of our
formulation to learn continuous spaces of solutions in a fully self-supervised manner. Comparisons

6

to a data-driven, supervised approach indicate better efficiency for our method, suggesting that our
approach opens new opportunities for design exploration in engineering applications (Section 5.2).
We then turn to TO problems with non-trivial boundary conditions and demonstrate generalization
to 3D examples (Section 5.3). An ablation study justifies our choices of using sensitivity filtering
and casting the nonlinear topology objective into an MMSE form (Section 5.4). We further compare
the impact of different activation functions and provide detailed descriptions of our learning settings
(Section 5.5).

5.1 Comparisons with FEM Solutions

We demonstrate that our results are competitive to those produced by a SIMP, a reference FEM
approach [36] for mesh-based topology optimization. As can be seen in Figure 3, results are
qualitatively similar, but our method often finds more complex supporting structures that lead to lower
compliance values (see Table 1). To put these results in perspective, there is no topology optimization
method fundamentally better than SIMP, despite decades of research. For fair comparisons, the
compliance values of these structures are evaluated using the FEM solver and we consistently use
fewer degrees of freedom (DoFs). The DoFs in these two methods are the number of network
weights and the number of finite element cells, respectively. As can be seen, our method is more
computationally expensive, but we would like to emphasize that the goal of our approach is not to
outperform conventional solvers for single-solution cases, but rather find insight for a learning-based
and fully mesh-free approach to topology optimization that allows for self-supervised learning of
solution spaces. We refer to the supplemental material for further details of these examples.

Figure 3: 2D comparison on four example problems. Solutions produced by our method are
qualitatively equivalent to corresponding FEM solutions. Force and Dirichlet boundary conditions
are visualized in the top-row images.

Table 1: Statistics of 2D comparisons. Our results achieve quantitatively lower compliance values
(Comp.) than the reference solver (SIMP) for all examples.

FEM OURS

EXP. COMP. DOFS ITER. TIME COMP. DOFS ITER. TIME

SHORTBEAM 1.173× 10−3 30,000 122 34 s 1.166× 10−3 28,300 200 33 min

LONGBEAM 2.595× 10−4 31,250 155 47 s 2.592× 10−4 28,300 200 33 min
DISTRIBUTED 2.026× 101 30,000 454 114 s 2.012× 101 28,300 400 66 min
BRIDGE 4.441× 100 31,250 233 72 s 4.385× 100 28,300 200 33 min

5.2 Learning Continuous Solution Spaces

Optimal designs for different volume constraints Here we demonstrate the capability of our
method to learn continuous spaces of optimal density distributions for a continuous range of material
volume constraints. We minimize the objective defined in Equation (10) for volume constraint samples
drawn randomly from the range [30%, 70%]. To evaluate the accuracy of our learned solutions, we
apply our single-volume algorithm for 11 discrete material volume constraints sampled uniformly
across the target range. As can be seen in Figure 5, our solution space network does not compromise
the quality of individual designs. The mean and maximum errors in compliance and volume violation
are 0.75%, 3.83%, 0.5% and 2.83%, respectively. We therefore conclude that our model successfully
learned the continuous solution space. Furthermore, we argue that the level of accuracy is acceptable
for design exploration in many engineering applications.

7

Different solution spaces To further analyze the behavior of our solution space approach, we
conducted two additional experiments: the beam example with fixed volume but varying location
for the applied forces and the bridge example with varying density constraint; see Figure 4. Both
examples confirmed our initial observations, showing smoothly evolving topology and compliance
values close to the single-solution reference. For both examples, we sample 25 volume fractions/force
locations during each iteration using stratified sampling. In addition to our single solution setup, we
shuffle the density pairs randomly during the MMSE fitting step. The training takes 280 iterations in
total, leading to 37.3 hours. Once trained, the inference enables real-time exploration of the solution
space (0.014s/71.4FPS for 300× 100 samples).

Figure 4: Different solution spaces. Here we show additional results varying the volume fraction
constraints for the bridge example (first row) as well as varying the applied force location for the
cantilever beam (second row). See Figure 3 for boundary conditions.

Comparison with supervised setting We further compare our self-supervised training techniques
with a supervised setting under the same computational budget. The cost of performing 1, 000
optimization steps (5.25h) with our larger solution space network is similar to (but somewhat lower
than) the cost of computing 11 solutions under single volume constraints. We select 11 volume
constraint values uniformly and train the network from these solutions in a supervised fashion. As
can be seen in Figure 6, the network performs poorly for unseen data leading to infeasible designs
and significant volume violations. On the contrary, our self-supervised approach leads to physically
valid material distributions.

5.3 Irregular BCs and 3D Results

Our formulation extends to more complex boundaries, which we illustrate on a set of addi-
tional examples. Figure 8 shows multiple examples where densities are constrained on circu-

Figure 5: Results and compliance comparisons
between evaluating our solution space network
at discrete volume locations and the reference
solution produced by our method in the single
volume constraint case. As can be seen, the
learned solution space does not compromise the
quality of individual solutions.

Figure 6: Comparisons with supervised setting.
Our self-supervised learning methods outper-
forms its supervised counterparts with less com-
putational cost. The target volume constraint
is shown on the x-axis and the constraint viola-
tion (in percentage) of the resulting structures is
given on the y-axis.

8

Figure 7: The solutions for two 3D examples demonstrate the promise of our method in 3D. A 3D
cantilever beam (left) and a 3D bridge (right). The mesh has been generated using a marching-cubes
algorithm [60].

lar sub-domains and the Dirichlet boundary ∂ΩD is also circular in one of the two examples.
Our method shows promise in 3D, as demonstrated on the two examples shown in Figure 7.

Figure 8: Curved boundaries: In the left example 3
holes have been put in the design using constraints
on the density field. On the right, the density field
is constrained to have a hole in the middle.

Due to the symmetry of the configuration, we
apply symmetric boundary conditions to reduce
the domain of interests to half and quarter for the
cantilever beam and bridge example respectively
to save computational cost and memory usage.
Our method finds smooth solutions with various
supporting features for the two tasks.

5.4 Ablation Studies

Here we provide evidence for the necessity of
using a sensitivity filter, our moving mean squared error loss during the optimization process, and
the influence of different neural networks. In the first test, we do not rely on the optimality criterion
method to compute the target density field nor do we use the mean squared error. Rather, we add
a soft penalty term to satisfy the volume constraint and update the neural network only once per
iteration. In the second test, we adopt the proposed method without filtering. Comparing with our
reference solutions at different iterations, the alternatives either converge significantly slower or
arrive at poor local minima with many artefacts, such as disconnected struts or rough boundaries. We
further compare our network structure with a ReLU-MLP as proposed in TOuNN [53]. As can be
seen from Figure 10, this approach fails to capture much of the geometric features that our method
(and SIMP) produce, leading to more compliant (i.e., less optimal) designs (compliance: 0.001196).
The Fourier feature network [29] leads to comparable results (compliance: 0.001172) and is thus also
a valid option for our method.

Figure 9: Ablation studies on the beam example. 1st column: without moving mean squared error
and optimality criterion—the density-space gradient is directly applied to the network, which is
updated once per optimization iteration. 2nd column: proposed method without filtering. 3rd column:
proposed method using ReLU-MLP as the density network, SIREN is adopted as simulation network
to obtain accurate equilibrium displacement. 4th column: Proposed method with Fourier feature
network. 5th column: Proposed method with SIREN network. We verify that our moving mean
squared error, filtering, and choice of activation function are all quintessential.

5.5 Training Details.

We use Adam [57] as our optimizer for both displacement and density networks and the learning rate
of both is set to be 3 · 10−4 for all experiments. We use ω0 = 60 for the first layer and 60 neurons in
each hidden layer in 2D, and 180 hidden neurons in 3D. For the solution space learning setup, we use
256 neurons in each hidden layer in the density network to represent the larger solution space. For all
experiments, we initialize the output of the density network close to a uniform density distribution of
the target volume constraint by initializing the weights of the last layer close to zero and adjusting

9

Figure 10: We use different network architectures to parameterize both the density and displacement
field. Since the ReLU-MLP fails to capture the high-frequency details, its solution for the forward
problem is far from being accurate, resulting in meaningless structures for the inverse problems.
Fourier feature and SIREN networks produced similar results, thus, suitable for our method.

the bias accordingly. We used E1 = 1, ν = 0.3, p = 3, nb = 50 and [nx, ny] = [150, 50] in 2D
and [nx, ny, nz] = [80, 40, 20] in 3D. The training iterations for the 3D examples are 100 with a
per iteration cost of 131.7s. All timings in the paper are reported on a GeForce RTX 2060 SUPER
graphics card.

6 Conclusion

We propose a novel, fully mesh-free TO method using implicit neural representations. At the heart
of our method lie two neural networks that represent force-equilibrium configurations and optimal
material distribution, respectively. Experiments demonstrate that our solutions are qualitatively on par
with the standard FEM method for structural compliance minimization problems, yet further enables
self-supervised learning of solution spaces. The proposed method can handle irregular boundary
conditions due to its mesh-free nature and is applicable to 3D problems as well. As such we consider
it a steppingstone towards solving many varieties of inverse design problems using neural networks.

Limitations and Future Works As we adopted the sigmoid function to enforce box constraints, it
naturally leads to small gradients when approaching 0 or 1. Although it did not lead to convergence
issue for us in practice, better ways of enforcing box constraints in density space is an interesting
avenue for future work. Like for other Monte Carlo-based methods, advanced sampling strategies,
e.g., importance sampling can also be explored to speed up the optimization process.

Acknowledgements

This research was supported by the Discovery Accelerator Awards program of the Natural Sciences
and Engineering Research Council of Canada (NSERC), the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (Grant No. 866480) and
the Swiss National Science Foundation (Grant No. 200021_200644).

10

References
[1] Oliver Hennigh, Susheela Narasimhan, Mohammad Amin Nabian, Akshay Subramaniam,

Kaustubh Tangsali, Max Rietmann, Jose del Aguila Ferrandis, Wonmin Byeon, Zhiwei Fang, and
Sanjay Choudhry. Nvidia simnetˆ{TM}: an ai-accelerated multi-physics simulation framework.
arXiv preprint arXiv:2012.07938, 2020.

[2] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[3] Chengping Rao, Hao Sun, and Yang Liu. Physics informed deep learning for computational
elastodynamics without labeled data. arXiv preprint arXiv:2006.08472, 2020.

[4] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33, 2020.

[5] Lu Lu, Xuhui Meng, Zhiping Mao, and George E Karniadakis. Deepxde: A deep learning
library for solving differential equations. arXiv preprint arXiv:1907.04502, 2019.

[6] Martin Philip Bendsoe and Ole Sigmund. Topology optimization: theory, methods, and applica-
tions. Springer Science & Business Media, 2013.

[7] Martin P Bendsøe and Ole Sigmund. Optimization of structural topology, shape, and material,
volume 414. Springer, 1995.

[8] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

[9] MWMG Dissanayake and Nhan Phan-Thien. Neural-network-based approximations for solving
partial differential equations. communications in Numerical Methods in Engineering, 10(3):195–
201, 1994.

[10] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–
1000, 1998.

[11] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving
partial differential equations. Journal of computational physics, 375:1339–1364, 2018.

[12] Juncai He, Lin Li, Jinchao Xu, and Chunyue Zheng. Relu deep neural networks and linear finite
elements. arXiv preprint arXiv:1807.03973, 2018.

[13] E Weinan and Bing Yu. The deep ritz method: a deep learning-based numerical algorithm for
solving variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

[14] Tianju Xue, Alex Beatson, Sigrid Adriaenssens, and Ryan Adams. Amortized finite element
analysis for fast pde-constrained optimization. In International Conference on Machine Learn-
ing, pages 10638–10647. PMLR, 2020.

[15] Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes with differentiable
physics. arXiv preprint arXiv:2001.07457, 2020.

[16] Peter W Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu.
Interaction networks for learning about objects, relations and physics. arXiv preprint
arXiv:1612.00222, 2016.

[17] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter Battaglia. Learning to simulate complex physics with graph networks. In International
Conference on Machine Learning, pages 8459–8468. PMLR, 2020.

[18] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning
mesh-based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

11

[19] Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. Neuroanimator: Fast neural
network emulation and control of physics-based models. In Proceedings of the 25th annual
conference on Computer graphics and interactive techniques, pages 9–20, 1998.

[20] Daniel Holden, Bang Chi Duong, Sayantan Datta, and Derek Nowrouzezahrai. Subspace
neural physics: Fast data-driven interactive simulation. In Proceedings of the 18th annual ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages 1–12, 2019.

[21] Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B Tenenbaum, William T Freeman,
Jiajun Wu, Daniela Rus, and Wojciech Matusik. Chainqueen: A real-time differentiable physical
simulator for soft robotics. In 2019 International conference on robotics and automation (ICRA),
pages 6265–6271. IEEE, 2019.

[22] Junbang Liang, Ming Lin, and Vladlen Koltun. Differentiable cloth simulation for inverse
problems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019.

[23] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and
Frédo Durand. Difftaichi: Differentiable programming for physical simulation. arXiv preprint
arXiv:1910.00935, 2019.

[24] Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski, and
Stelian Coros. Add: analytically differentiable dynamics for multi-body systems with frictional
contact. ACM Transactions on Graphics (TOG), 39(6):1–15, 2020.

[25] Kiwon Um, Philipp Holl, Robert Brand, Nils Thuerey, et al. Solver-in-the-loop: Learning from
differentiable physics to interact with iterative pde-solvers. arXiv preprint arXiv:2007.00016,
2020.

[26] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul Joo. Pifuhd: Multi-level pixel-
aligned implicit function for high-resolution 3d human digitization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 84–93, 2020.

[27] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 165–174,
2019.

[28] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
Conference on Computer Vision, pages 405–421. Springer, 2020.

[29] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimensional domains. arXiv preprint
arXiv:2006.10739, 2020.

[30] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. Neural geometric level of
detail: Real-time rendering with implicit 3d shapes. arXiv preprint arXiv:2101.10994, 2021.

[31] Martin Philip Bendsøe and Noboru Kikuchi. Generating optimal topologies in structural design
using a homogenization method. Computer Methods in Applied Mechanics and Engineering,
71(2):197–224, 1988.

[32] Michael Yu Wang, Xiaoming Wang, and Dongming Guo. A level set method for structural
topology optimization. Computer methods in applied mechanics and engineering, 192(1-2):227–
246, 2003.

[33] Ole Sigmund. Morphology-based black and white filters for topology optimization. Structural
and Multidisciplinary Optimization, 33(4-5):401–424, 2007.

12

[34] Martin P Bendsøe and Ole Sigmund. Material interpolation schemes in topology optimization.
Archive of applied mechanics, 69(9-10):635–654, 1999.

[35] Martin P Bendsøe. Optimal shape design as a material distribution problem. Structural
optimization, 1(4):193–202, 1989.

[36] Erik Andreassen, Anders Clausen, Mattias Schevenels, Boyan S Lazarov, and Ole Sigmund. Ef-
ficient topology optimization in matlab using 88 lines of code. Structural and Multidisciplinary
Optimization, 43(1):1–16, 2011.

[37] Ole Sigmund. A 99 line topology optimization code written in matlab. Structural and multidis-
ciplinary optimization, 21(2):120–127, 2001.

[38] Grégoire Allaire, François Jouve, and Anca-Maria Toader. Structural optimization using
sensitivity analysis and a level-set method. Journal of computational physics, 194(1):363–393,
2004.

[39] Grégoire Allaire, Frédéric De Gournay, François Jouve, and Anca-Maria Toader. Structural
optimization using topological and shape sensitivity via a level set method. Control and
cybernetics, 34(1):59, 2005.

[40] Xu Guo, Weisheng Zhang, and Wenliang Zhong. Doing topology optimization explicitly and
geometrically—a new moving morphable components based framework. Journal of Applied
Mechanics, 81(8), 2014.

[41] Weisheng Zhang, Jian Zhang, and Xu Guo. Lagrangian description based topology optimiza-
tion—a revival of shape optimization. Journal of Applied Mechanics, 83(4), 2016.

[42] Weisheng Zhang, Junfu Song, Jianhua Zhou, Zongliang Du, Yichao Zhu, Zhi Sun, and Xu Guo.
Topology optimization with multiple materials via moving morphable component (mmc) method.
International Journal for Numerical Methods in Engineering, 113(11):1653–1675, 2018.

[43] Zhen Luo, Michael Yu Wang, Shengyin Wang, and Peng Wei. A level set-based parameterization
method for structural shape and topology optimization. International Journal for Numerical
Methods in Engineering, 76(1):1–26, 2008.

[44] Nico P van Dijk, Kurt Maute, Matthijs Langelaar, and Fred Van Keulen. Level-set methods
for structural topology optimization: a review. Structural and Multidisciplinary Optimization,
48(3):437–472, 2013.

[45] Yiquan Zhang, Airong Chen, Bo Peng, Xiaoyi Zhou, and Dalei Wang. A deep convolutional
neural network for topology optimization with strong generalization ability. arXiv preprint
arXiv:1901.07761, 2019.

[46] Yonggyun Yu, Taeil Hur, Jaeho Jung, and In Gwun Jang. Deep learning for determining a near-
optimal topological design without any iteration. Structural and Multidisciplinary Optimization,
59(3):787–799, 2019.

[47] Saurabh Banga, Harsh Gehani, Sanket Bhilare, Sagar Patel, and Levent Kara. 3d topology
optimization using convolutional neural networks. arXiv preprint arXiv:1808.07440, 2018.

[48] Erva Ulu, Rusheng Zhang, and Levent Burak Kara. A data-driven investigation and estimation of
optimal topologies under variable loading configurations. Computer Methods in Biomechanics
and Biomedical Engineering: Imaging & Visualization, 4(2):61–72, 2016.

[49] Zhenguo Nie, Tong Lin, Haoliang Jiang, and Levent Burak Kara. Topologygan: Topology
optimization using generative adversarial networks based on physical fields over the initial
domain. arXiv preprint arXiv:2003.04685, 2020.

[50] Xin Lei, Chang Liu, Zongliang Du, Weisheng Zhang, and Xu Guo. Machine learning-driven
real-time topology optimization under moving morphable component-based framework. Journal
of Applied Mechanics, 86(1), 2019.

13

[51] Qiyin Lin, Jun Hong, Zheng Liu, Baotong Li, and Jihong Wang. Investigation into the topology
optimization for conductive heat transfer based on deep learning approach. International
Communications in Heat and Mass Transfer, 97:103–109, 2018.

[52] Stephan Hoyer, Jascha Sohl-Dickstein, and Sam Greydanus. Neural reparameterization improves
structural optimization. arXiv preprint arXiv:1909.04240, 2019.

[53] Aaditya Chandrasekhar and Krishnan Suresh. Tounn: Topology optimization using neural
networks. Structural and Multidisciplinary Optimization, pages 1–15, 2020.

[54] Haixiang Liu, Yuanming Hu, Bo Zhu, Wojciech Matusik, and Eftychios Sifakis. Narrow-band
topology optimization on a sparsely populated grid. ACM Transactions on Graphics (TOG),
37(6):1–14, 2018.

[55] Yue Li, Xuan Li, Minchen Li, Yixin Zhu, Bo Zhu, and Chenfanfu Jiang. Lagrangian–eulerian
multidensity topology optimization with the material point method. International Journal for
Numerical Methods in Engineering, March 2021.

[56] Niels Aage, Erik Andreassen, Boyan S Lazarov, and Ole Sigmund. Giga-voxel computational
morphogenesis for structural design. Nature, 550(7674):84–86, 2017.

[57] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[58] Blaise Bourdin. Filters in topology optimization. International journal for numerical methods
in engineering, 50(9):2143–2158, 2001.

[59] Kevin Stanley McFall and James Robert Mahan. Artificial neural network method for solution
of boundary value problems with exact satisfaction of arbitrary boundary conditions. IEEE
Transactions on Neural Networks, 20(8):1221–1233, 2009.

[60] Thomas Lewiner, Hélio Lopes, Antônio Wilson Vieira, and Geovan Tavares. Efficient imple-
mentation of marching cubes’ cases with topological guarantees. Journal of graphics tools,
8(2):1–15, 2003.

14

	Introduction
	Related work
	Problem Statement and Overview
	Neural Topology Optimization
	Computing Static Equilibrium Solutions
	Density Field Optimization
	Continuous Solution Space

	Results
	Comparisons with FEM Solutions
	Learning Continuous Solution Spaces
	Irregular BCs and 3D Results
	Ablation Studies
	Training Details.

	Conclusion

