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Abstract

Stochastic gradient descent (SGD) is a prevalent optimization technique for large-scale
distributed machine learning. While SGD computation can be efficiently divided between
multiple machines, communication typically becomes a bottleneck in the distributed setting.
Gradient compression methods can be used to alleviate this problem, and a recent line of work
shows that SGD augmented with gradient compression converges to an ε-first-order stationary
point. In this paper we extend these results to convergence to an ε-second -order stationary point
(ε-SOSP), which is to the best of our knowledge the first result of this type. In addition, we show
that, when the stochastic gradient is not Lipschitz, compressed SGD with RandomK compressor
converges to an ε-SOSP with the same number of iterations as uncompressed SGD [Jin et al.,
2021], while improving the total communication by a factor of Θ̃(

√
dε−3/4), where d is the

dimension of the optimization problem. We present additional results for the cases when the
compressor is arbitrary and when the stochastic gradient is Lipschitz.

1 Introduction

Stochastic Gradient Descent (SGD) and its variants are the main workhorses of modern machine
learning. Distributed implementations of SGD on a cluster of machines with a central server and
a large number of workers are frequently used in practice due to the massive size of the data. In
distributed SGD each machine holds a copy of the model and the computation proceeds in rounds.
In every round, each worker finds a stochastic gradient based on its batch of examples, the server
averages these stochastic gradients to obtain the gradient of the entire batch, makes an SGD step,
and broadcasts the updated model parameters to the workers. With a large number of workers,
computation parallelizes efficiently while communication becomes the main bottleneck [Chilimbi
et al., 2014, Strom, 2015], since each worker needs to send its gradients to the server and receive the
updated model parameters. Common solutions for this problem include: local SGD and its variants,
when each machine performs multiple local steps before communication [Stich, 2018]; decentralized
architectures which allow pairwise communication between the workers [McMahan et al., 2017] and
gradient compression, when a compressed version of the gradient is communicated instead of the
full gradient [Bernstein et al., 2018, Stich et al., 2018, Karimireddy et al., 2019]. In this work, we
consider the latter approach, which we refer to as compressed SGD.

Most machine learning models can be described by a d-dimensional vector of parameters x and
the model quality can be estimated as a function f(x). Hence optimization of the model parameters
can be cast a minimization problem minx f(x), where f : Rd → R is a continuous function, which can
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be optimized using continuous optimization techniques, such as SGD. Fast convergence of compressed
SGD to a first-order stationary point (FOSP, ‖∇f(x)‖ < ε) was shown recently for various gradient
compression schemes [Bernstein et al., 2018, Stich et al., 2018, Karimireddy et al., 2019, Ivkin et al.,
2019, Alistarh et al., 2017]. However, even an exact FOSP can be either a local minimum, a saddle
point or a local maximum. While local minima often correspond to good solutions in machine
learning applications [Ge et al., 2016, Sun et al., 2016, Bhojanapalli et al., 2016], saddle points and
local maxima are always suboptimal and it is important for an optimization algorithm to avoid
converging to them. In particular, Choromanska et al. [2015] show that for neural networks many
local minima are almost optimal, but the corresponding loss functions have a combinatorial explosion
in the number of saddle points. Furthermore, Dauphin et al. [2014] show that saddle points can
significantly slow down SGD convergence and hence it is important to be able to escape from them
efficiently.

Since finding a local minimum is NP-hard in general [Anandkumar and Ge, 2016], a common
relaxation of this requirement is to find an approximate second-order stationary point (SOSP), i.e. a
point with a small gradient norm (‖∇f(x)‖ < ε) and the smallest (negative) eigenvalue being small in
absolute value (λmin(∇2f(x)) > −εH). When f has ρ-Lipschitz Hessian (i.e. ‖∇2f(x)−∇2f(y)‖ ≤
ρ‖x−y‖ for all x, y), a standard choice of εH is√ρε [Nesterov and Polyak, 2006], and such approximate
SOSP is commonly referred as an ε-SOSP. While second-order optimization methods allow one to
escape saddle points, such methods are typically substantially more expensive computationally. A
line of work originating with the breakthrough of Ge et al. [2015] shows that first-order methods can
escape saddle points when perturbations are added at certain iterations. In particular, a follow-up Jin
et al. [2021] show that SGD converges to an ε-SOSP in an almost optimal number of iterations.

In this paper, we show that even compressed SGD can efficiently converge to an ε-SOSP. To
the best of our knowledge, this is the first result showing convergence of compressed methods to a
second-order stationary point.

1.1 Related Work

Escaping from saddle points While it is known that gradient descent with random initialization
converges to a local minimum almost surely [Lee et al., 2016], existence of saddle points may result
in exponential number of steps with non-negligible probability [Du et al., 2017]. Classical approaches
for escaping from saddle points assume access to second-order information [Nesterov and Polyak,
2006, Curtis et al., 2014]. Although these algorithms find a second-order stationary point in O(ε−3/2)
iterations, each iteration requires computation of the full Hessian matrix, which can be prohibitive for
high-dimensional problems in practice. Some approaches relax this requirement, and instead of full
Hessian matrix they only require access to a Hessian-vector product oracle [Carmon and Duchi, 2016,
Agarwal et al., 2017]. While in certain settings, including training of neural networks, it’s possible
to compute Hessian-vector products (HVP) efficiently [Pearlmutter, 1994, Schraudolph, 2002], such
an oracle might not be available in general. Furthermore, in practice HVP-based approaches are
significantly more complex compared to SGD (especially if the workers aren’t communicating in
every iteration in the distributed setting) and require additional hyperparameter tuning. Moreover,
HVP is typically used for approximate an eigenvector computation, which may increase the number
of iterations by a logarithmic factor.

Limitations of second-order methods motivate a long line of recent research on escaping from
saddle points using first-order algorithms, starting from Ge et al. [2015]. Jin et al. [2017] show that
perturbed gradient descent finds ε-SOSP in Õ(ε−2) iterations. Later, this is improved by a series of
accelerated algorithms [Carmon et al., 2016, Agarwal et al., 2017, Carmon et al., 2017, Jin et al.,
2018] which achieves Õ

(
ε−7/4

)
iteration complexity. There are also a number of algorithms designed
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for finite sum setting where f(x) =
∑n

i=1 fi(x) [Reddi et al., 2017, Allen-Zhu and Li, 2018, Fang
et al., 2018], or in case when only stochastic gradients are available [Tripuraneni et al., 2018, Jin et al.,
2021], including variance reduction techniques [Allen-Zhu, 2018, Fang et al., 2018]. The sharpest
rates in these settings have been obtained by Fang et al. [2018], Zhou and Gu [2019] and Fang et al.
[2019].

Compressed SGD While gradient compression may require a complex communication protocol,
from theoretical perspective this process is often treated as a black-box function: a (possibly
randomized) function C is called a µ-compressor if E

[
‖x− C(x)‖2

]
< (1− µ)‖x‖2. In a simplified

form, the update step in compressed SGD can be expressed as xt+1 ← xt − ηC(∇f(x))1. Notable
examples of compressors include the following:

Sign function C(x) = ‖x‖1
d sign(x) is a 1/d-compressor [Bernstein et al., 2018]. Representation of

C(x) requires O(d) bits, but it is hard to compute in distributed settings: it’s not clear how to find
the signs of the coordinates without knowing the full vector, which requires each worker to send all
coordinates. A practical solution is for each worker to communicate Sign of its local gradient, and
the final sign for each coordinate is selected by majority vote. Unfortunately, the resulting vector is
not necessarily a compression of the gradient.

Quantization [Alistarh et al., 2017] uniformly splits segment [0, ‖x‖] into s buckets of the
same size. Let `i =

⌊
|xi|
‖x‖/s

⌋
; then |xi| is randomly rounded to one of `i

‖x‖
s and (`i + 1)‖x‖s . The

compressor returns non-zero coordinates after rounding. For s = 1, Quantization Q(x) can be
represented using Õ(

√
d) bits. While it doesn’t fall into the compression framework, since ‖Q(x)−x‖

can be much greater than ‖x‖, it has a property E [Q(x)] = x, which allows one to show convergence.
TopK function preserves only k largest (by the absolute value) coordinates of a vector and is a

k/d-compressor [Stich et al., 2018]. This compressor can be represented using Õ(k) bits, but similarly
to Sign, it is hard to compute in distributed settings. To address this issue, Alistarh et al. [2018]
assume that TopK of the average gradient is close to the average of TopK of local gradients and
show that this assumption holds in practice.

Sketch-based TopK [Ivkin et al., 2019] is randomized communication-efficient compressor
based on Count Sketch, which recovers top-k coordinates in a distributed setting. It uses the fact that
Count Sketch is a linear sketch (and therefore it can be easily combined across multiple machines)
and can be used to recover top-k coordinates of the vector with high probability. Therefore, it can
be used as an efficient k/d-compressor requiring Õ(k) communication.

RandomK compressor preserves k random coordinates of a vector. It is a k/d-compressor [Stich
et al., 2018] requiring O(k) communication.

While it is known that compressed SGD converges (e.g. Karimireddy et al. [2019] and the works
above), the convergence was shown only to a FOSP. The crucial idea to facilitate convergence is to
use error-feedback [Stich et al., 2018]: the difference between the true gradient and its compression
is propagated to the next iteration.

1.2 Our Contributions

Our main contribution is the analysis showing that perturbed compressed SGD with error-feedback
can escape from saddle points efficiently. Moreover, we show faster convergence rate for a certain
type of compressors and show that such compressors exist. Inspired by the ideas from Jin et al. [2021]
and Stich et al. [2018], we present an algorithm (Algorithm 1) which uses perturbed compressed
gradients with error-feedback and converges to an ε-second-order stationary point (see Theorem 3.3).

1The actual update equation is more complicated, see Algorithm 1.
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Our main results shows that compressed SGD with RandomK compressor achieves substantial
communication improvement:2

Theorem 1.1 (Informal, Theorem 3.4 and Corollary 3.5) Assume that f has Lipschitz gra-
dient and Lipschitz Hessian. Let α = 1 when the stochastic gradient is Lipschitz and α = d otherwise.
Then SGD with RandomK compressor (which selects k random coordinates) with k = dε

3/4
√
α

converges

to an ε-SOSP after Õ
(
α
ε4

)
iterations, with Õ

(
d
√
α

ε3+1/4

)
total communication per worker.

Compared with the uncompressed case, the total communication improves by ε−1/4 when the
stochastic gradient is Lipschitz and by

√
dε−3/4 otherwise (the sharpest results for SGD are by Fang

et al. [2019] and Jin et al. [2021] respectively). In Theorem 1.1, we heavily rely on the following
property of RandomK: when its randomness (i.e. sampled k coordinates) is fixed, the compressor
becomes a linear function. For other compressors, this property doesn’t necessarily hold; in this case,
we show convergence with a slower convergence rate:

Theorem 1.2 (Informal, Theorem 3.3 and Corollary 3.6) Assume that f has Lipschitz gra-
dient and Lipschitz Hessian. Let α = 1 when the stochastic gradient is Lipschitz and α = d otherwise.
Let C be a k/d-compressor requiring Õ(k) communication. Then SGD with compressor C with
k = d

√
dε

3/4
√
α

converges to an ε-SOSP after Õ
(
α
ε4

)
iterations, with Õ

(
d
√
d
√
α

ε3+1/4

)
total communication

per worker.

Compared with the uncompressed case, the total communication improves by ε−
1/4
√
d

when the
stochastic gradient is Lipschitz (note that this is the only setting where the convergence improvement is
conditional, requiring ε = o(d−2)) and by ε−3/4 otherwise. Table 1 in Section 3.2 shows communication
improvements for various choices of compression parameters. We outline our main techniques and
technical contributions in Section 3.3 and give the complete proof in Appendix A and B.

2 Preliminaries

Function Properties For a twice differentiable nonconvex function f : Rd → R, we consider the
unconstrained minimization problem minx∈Rd f(x). We use the following standard [Jin et al., 2021,
Fang et al., 2019, Xu et al., 2018, Allen-Zhu, 2018, Zhou et al., 2018] assumptions about the objective
function f :

Assumption A f is fmax-bounded, L-smooth and has ρ-Lipschitz Hessian, i.e. for all x, y:

|f(x)− f(y)| ≤ fmax, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ‖∇2f(x)−∇2f(y)‖ ≤ ρ‖x− y‖

Assumption B Access to an unbiased stochastic gradient oracle ∇F (x, θ), whose randomness is
controlled by a parameter θ ∼ Da, with bounded variance, i.e. for all x:

Eθ∼D [∇F (x, θ)] = ∇f(x), Eθ∼D
[
‖∇F (x, θ)−∇f(x)‖2

]
≤ σ2

aE.g. θ is a minibatch selected at the current iteration

2Õ hides polylogarithmic dependence dependence on d and ε and polynomial dependence on other parameters.
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As shown by the above works, smoothness allows one to achieve fast convergence for nonconvex
optimization problems (namely, to use the folklore descent lemma). Similarly, Lipschitz Hessian
allows one to show fast second-order convergence, since, within a certain radius, the function stays
close to its quadratic approximation (see e.g. Boyd et al. [2004, Section 9.5.3]). As common in the
literature, in our convergence rates we treat L, ρ and σ2 as constants. We also consider an additional
optional assumption (see [Jin et al., 2021] for a justification):

Assumption C (Lipschitz stochastic gradient, optional) For any x,y, θ:

‖∇F (x, θ)−∇F (y, θ)‖ ≤ ˜̀‖x− y‖.

From machine learning perspective, Assumption C means that for the same mini-batch, if the
initial models are close, their updates are also close. For neural networks, since each network layer is
a composition of an activation function and a linear function, the assumption holds when activation
functions are Lipschitz (note however that ˜̀may grow exponentially with the number of layers)

Gradient Compression Our goal is to optimize f in a distributed setting [Dekel et al., 2012,
Li et al., 2014]: given W workers, for each worker i we have a corresponding data distribution Di.
Then the each worker has a corresponding function fi(x) = Eθi∼Di [F (x, θi)] and f =

∑W
i=1 fi. In a

typical distributed SGD setting, each worker computes a stochastic gradient ∇Fi(x, θi) and sends
it to the coordinator machine. The coordinator machine computes the average of these gradients
v = 1

W
∑W

i=1∇Fi(x, θi) and broadcasts it to the workers, which update the local parameters
x← x− ηv (η is the step size).

With this approach, with increase of the number of machines, the computation can be perfectly
parallelized. However, with each machine required to send its gradient, communication becomes the
main bottleneck [Chilimbi et al., 2014, Strom, 2015]. There exist various solutions to this problem
(see Section 1), including gradient compression, when each machine sends an approximation of
its gradient. Then coordinator averages these approximations and broadcasts the average to all
machines (possibly compressing it again, see discussion on TopK and Sign in Section 1.1).

Depending on the compression method, this protocol results in different gradient approximation
and different communication per machine. There is a natural trade-off between approximation and
communication, and it’s not clear whether having smaller per-iteration communication results in
smaller total communication required for convergence. The approximation quality can be formalized
using the following definition:

Definition 2.1 (Stich et al. [2018]) Function C(x, θ̃), whose randomness is controlled by a pa-
rameter θ̃ ∼ D̃a, is a µ-compressor if

Eθ̃∼D̃
[
‖x− C(x, θ̃)‖2

]
< (1− µ)‖x‖2.

aE.g. for RandomK, θ̃ is the set of indices of preserved coordinates.

Section 1.1 provides examples of important compressors. In our analysis, we consider gen-
eral and linear compressors separately, and in the latter case, we show an improved convergence
rate.

Definition 2.2 C is a linear compressor if C(·, θ̃) is a linear function for any θ̃.

5



One example of a linear compressor is RandomK, which sets all but k coordinates of a vector to 0;
it’s a k/d-compressor [Stich et al., 2018] and can be computed easily in the distributed setting.

Stationary Points The optimization problem of finding a global minimum or even a local minimum
is NP-hard for nonconvex objectives [Nesterov, 2000, Anandkumar and Ge, 2016]. Instead, as is
standard in the literature, we show convergence to an approximate FOSP or an approximate SOSP,
see Section 1.

Definition 2.3 If f is differentiable then x is an ε-First-Order Stationary Point if ‖∇f(x)‖ ≤ ε.

An ε-FOSP can be a local maximum, a local minimum or a saddle point. While local minima
typically correspond to good solutions, saddle points and local maxima are inherently suboptimal.
Assuming non-degeneracy, saddle points and local maxima have escaping directions, corresponding
to Hessian’s negative eigenvectors. Following Nesterov and Polyak [2006] we refer to points with
no escape directions (up to a second-order approximation) as approximate second-order stationary
points:

Definition 2.4 (Nesterov and Polyak [2006]) If f is a twice differentiable ρ-Hessian Lipschitz
function then x is an ε-Second-Order Stationary Point if ‖∇f(x)‖ ≤ ε and λmin(∇2f(x)) ≥ −√ρε,
where λmin is the smallest eigenvaluea.

aWhile one can consider two threshold parameters – εg for ∇f and εH for ∇2f – we follow convention of Nesterov
and Polyak [2006] which selects εH = −√ρε, which, intuitively, balances first-order and second-order variability.

An important property of points which are not ε-SOSP is that they are unstable: adding a small
perturbation allows gradient descent to escape them [Ge et al., 2015] (similar results were shown for
e.g. stochastic [Jin et al., 2021] and accelerated [Jin et al., 2018] gradient descent). In this work we
show that this property holds even for SGD with gradient compression.

3 Algorithm and Analysis

Algorithm We present our algorithm in Algorithm 1, a compressed stochastic gradient descent
approach based on Stich et al. [2018, Algorithm 1]. In order to achieve convergence to a SOSP,
similarly to Jin et al. [2021], we add artificial random noise ξt to gradient at every iteration, which
allows compressed gradient descent to escape saddle points. At every iteration t, we compute the
stochastic gradient ∇F (xt, θt). Then we add artificial noise ξt, compress the resulting value (Line 10)
and update the current iterate xt using the compressed value (Line 11). However, the information is
not lost during compression: the difference between the computed value and the compressed value
(Line 12), et+1, is added to the gradient in the next iteration. Karimireddy et al. [2019] show that
carrying over the error term improves convergence of compressed SGD to a FOSP. Algorithm 1 sets
et to 0 (Line 7) when conditions in Line 5 hold: either we moved far from the point where the
condition was triggered last time (intuitively, the condition indicates that we successfully escaped
from a saddle point), or we spent a certain number of iterations since that event (to ensure that the
accumulated compression error is sufficiently bounded).

Distributed Setting Algorithm 1 provides a general framework for compressed SGD in distributed
settings, with implementation details depending on the choice of the compressor function C. θt,
θ̃t and ξt can be efficiently shared between machines using shared randomness. Each machine i
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Algorithm 1: Compressed SGD
parameters: η – step size, T – number of iterations, r2 – variance of the artificial noise, I –
the number of iterations required for escaping, R – escaping radius
input : objective f , compressor function C, starting point x0

output : ε-SOSP of f
1 e0 ← 0d

2 t′ ← 0
3 for t = 0 . . . T − 1 do
4 // Reset the error after I iterations or in case we moved far from the initial point
5 if (t− t′ > I or ‖xt′ − (xt − ηet)‖ > R then
6 if f(xt) < f(xt′) then xt ← xt − ηet else xt ← xt′ ;
7 t′ ← t, et ← 0d

8 end
9 Sample ξt ∼ Nd(0d, r2), θt ∼ D, θ̃t ∼ D̃

10 gt ← C(et +∇F (xt, θt) + ξt, θ̃t) // Compressed gradient
11 xt+1 ← xt − ηgt // Compressed gradient descent step
12 et+1 ← et +∇F (xt, θt) + ξt − gt // Update the error
13 end
14 return xT

maintains its own local e
(i)
t which can be computed as e

(i)
t+1 ← e

(i)
t +∇Fi(xt, θt) + ξt − g

(i)
t . Then

et = 1
W
∑W

i=1 e
(i)
t . Finally, the norm in Line 7 of Algorithm 1 can be efficiently computed within

multiplicative approximation using linear sketches.

3.1 Convergence to an ε-FOSP

In the following statements, Õ hides polynomial dependence on L, ρ, fmax, σ, ˜̀ and polylogarithmic
dependence on all parameters. The first result is similar to that of Stich et al. [2018] (after
reformulation in terms of ε-FOSP), but is more general: it covers the case when µ is close to 0 and
doesn’t require any bounds on ‖∇F (x, θ)‖ or ‖∇fi(x)−∇f(x)‖, which are common assumptions in
the literature (see Section 1.1). The proof of the theorem is presented in Appendix A.

Theorem 3.1 (Convergence to ε-FOSP) Let f satisfy Assumptions A and B and let C be a
µ-compressor. Then for Algorithm 1 with reset_error = false and η = Õ

(
min

(
ε2, µ√

1−µε
))

, after

T = Õ( 1
ε2η

) = Õ
(

1
ε4

+
√
1−µ
µε3

)
iterations, at least half of visited points are ε-FOSP.

Corollary 3.2 For a 1/d-compressor with Õ(1) communication (polylogarithmic on all parameters),
the total communication per worker is Õ

(
1
ε4

+ d
ε3

)
, which outperforms full SGD communication

Õ
(
d
ε4

)
by a factor of min

(
d, ε−1

)
.

3.2 Convergence to an ε-SOSP

The next two theorems present our main result, namely that compressed SGD converges to an
ε-SOSP3. The first theorem addresses the general compressor case.

3see proof sketch in Section 3.3 and the full proof in Appendix B
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Theorem 3.3 (Convergence to ε-SOSP for general compressor) Let f satisfy Assumptions A
and B, let C be a µ-compressor. Let α = 1 when Assumption C holds and α = d otherwise. Then for
Algorithm 1 with η = Õ

(
min

(
ε2

α ,
µε√
1−µ ,

µ2
√
ε

(1−µ)d

))
, after T = Õ

(
1
ε2η

)
= Õ

(
α
ε4

+
√
1−µ
µε3

+ d(1−µ)
µ2ε2

√
ε

)
iterations, at least half points x0, . . . ,xT are ε-SOSP w.h.p.

In general, convergence to an ε-SOSP is noticeably slower than convergence to an ε-FOSP. The
reason for such behavior is that, in the analysis of convergence to a SOSP, compression introduces
error similar to that of the stochastic noise. When the stochastic gradient is not Lipschitz (i.e.
Assumption C doesn’t hold), the number of iterations increases by a factor of d due to stochastic
noise. Unfortunately, in general the compression is not Lipschitz even for deterministic gradients:
consider a TopK compression of a vector where each coordinate is 1 with small perturbations.
However, if the compressor is linear (Definition 2.2), we show improved convergence rate: the last
term in the number of iterations decreases by the factor of d.

Theorem 3.4 (Convergence to ε-SOSP for linear compressor) Let f satisfy Assumptions A
and B, let C be a linear compressor. Let α = 1 when Assumption C holds and α = d otherwise. Then
for Algorithm 1 with η = Õ

(
min

(
ε2

α ,
µε√
1−µ ,

µ2
√
ε

1−µ

))
, after T = Õ

(
1
ε2η

)
= Õ

(
α
ε4

+
√
1−µ
µε3

+ 1−µ
µ2ε2

√
ε

)
iterations, at least half of points x0, . . . ,xT are ε-SOSP w.h.p.

Since RandomK is a linear compressor, by balancing the terms we have:

Corollary 3.5 For RandomK compressor with k = dε
3/4
√
α
, the total number of iterations of Al-

gorithm 1 is Õ( α
ε4

) and the total communication per worker is Õ
(
d
√
α

ε3+1/4

)
. When Assumption C

holds, the total communication for RandomK decreases by the factor of Θ̃(ε−1/4) compared with the
unconstrained case [Fang et al., 2019]. Otherwise, the total communication decreases by the factor of
Θ̃(
√
dε−3/4) compared with [Jin et al., 2021].

Compressed SGD in Distributed Settings Below we consider different scenarios to illustrate
how convergence depends on the properties of the compressor. Recall that sketch-based TopK is a k/d-
compressor which requires Õ(k) communication. Selecting µ = k/d, with k � d, by Theorem 3.3 we
have η = Õ

(
min

(
ε2

α ,
kε
d ,

k2
√
ε

d3

))
. Therefore, the total number of iterations is Õ

(
1
ε4

+ d
kε3

+ d3

k2ε2
√
ε

)
and the total communication is Õ

(
k
ε4

+ d
ε3

+ d3

kε2
√
ε

)
.

Note that the above reasoning considers a worst-case scenario. However, in practice it’s often
possible to achieve good compression at a low communication cost due to the fact that gradient
coordinates have heavy-hitters, which are easy to recover using TopK. We formulate this beyond
worst-case scenario as the following optional assumption:

Assumption D (Optional) There exists a constant c < 1 such that for all t, C(∇F (xt, θt)+ξt+et)
provides a c-compression and requires Õ(1) bits of communication per worker.

In other words, Assumption D means that for all computed values, C provides a constant
compression and requires a polylogarithmic amount of communication. This assumption can be
satisfied under various conditions. For example, some methods may take advantage of the situation
when gradients between adjacent iterations are close [Hanzely et al., 2018]. In cases when certain
coordinates are much more prominent in the gradient compared to others, TopK compressor will
show good performance.
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Table 1: Convergence to ε-SOSP with uncompressed SGD, with sketch-based TopK compressor,
with RandomK compressor, and with a constant-compressor requiring constant communication
(Assumption D, beyond worst-case assumption). We considered two settings depending on whether
the stochastic gradient is Lipschitz (i.e. Assumption C holds). For each setting we select the
optimal µ based on our bounds. The results show that communication of SGD with RandomK
compression outperforms that of the uncompressed SGD by Õ(ε−1/4) when Assumption C holds and
by Õ(

√
dε−3/4) otherwise. Based on our results, since a constant-memory constant-communication

compressor is not necessarily linear, depending on d and ε, it may converge slower than RandomK.

Setting µ Iterations Total comm.
per worker

Total comm.
improvement

Li
ps
ch
it
z
∇
F

Uncompressed
[Fang et al., 2019] 1 Õ

(
1
ε3.5

)
Õ
(
d
ε3.5

)
−

Sketch-based
TopK

√
dε3/4

(ε = o(d−2))
Õ
(

1
ε4

)
Õ
(

d
√
d

ε3+1/4

)
Θ̃
(
ε−

1/4
√
d

)
RandomK ε3/4 Õ

(
1
ε4

)
Õ
(

d
ε3+1/4

)
Θ̃
(
ε−1/4

)
Constant-memory
c-compressor c > 0 Õ

(
1
ε4

+ d
ε2
√
ε

)
Õ
(

1
ε4

+ d
ε2
√
ε

)
Θ̃
(

min(d, 1√
ε
)
)

no
n-
Li
ps
ch
it
z
∇
F

Uncompressed
[Jin et al., 2021] 1 Õ

(
d
ε4

)
Õ
(
d2

ε4

)
−

Sketch-based
TopK

ε3/4 Õ
(
d
ε4

)
Õ
(

d2

ε3+1/4

)
Θ̃
(
ε−3/4

)
RandomK ε

3/4
√
d

Õ
(
d
ε4

)
Õ
(

d
√
d

ε3+1/4

)
Θ̃
(√

dε−3/4
)

Constant-memory
c-compressor c > 0 Õ

(
d
ε4

)
Õ
(
d
ε4

)
Θ̃ (d)

Corollary 3.6 Algorithm 1 converges to ε-SOSP in a number of settings, as shown in Table 1.

3.3 Proof Sketch

In this section, we outline the main techniques used to prove Theorems 3.3 and 3.4. A recent
breakthrough line of work focused on convergence of first-order methods to ε-SOSP Ge et al. [2015],
Carmon and Duchi [2016], Jin et al. [2017], Tripuraneni et al. [2018], Jin et al. [2021] has developed
a comprehensive set of analytic techniques. We start by outlining Jin et al. [2021], which is the
sharpest known SGD analysis in the case when the stochastic gradient is not Lipschitz.

Let x0 be an iterate such that λmin(∇2f(x0)) < −√ρε, and v1 be the eigenvector corresponding
to λmin. Consider sequences {xt} and {x′t} starting with x0 which are referred to as coupling
sequences : their distributions match the distribution of compressed SGD iterates (i.e. both sequences
can be produced by Algorithm 1), and they share the same randomness, with an exception that
their artificial noise has the opposite sign in the direction v1. The main idea is that such artificial
noise combined with SGD updates ensures that projection of xt − x′t on v1 increases exponentially,
and therefore at least one of the sequences moves far from x. After that, one can use an “Improve
or localize” Lemma which states that, if we move far from the original point, then the objective
decreases substantially.

If we have an access to a deterministic gradient oracle and the objective function is quadratic,
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then gradient descent behaves similarly to the power method, since in this case:

xt+1 = xt − η∇f(xt) = xt − η∇2f(x0)xt = (I − η∇2f(x0))xt.

Adding artificial noise guarantees that there is a non-trivial projection of xt − x′t on direction v1,
and the power method further amplifies this projection. In general, the SGD behavior deviates from
power method due to: 1) the difference between f and its quadratic approximation and 2) stochastic
noise. Jin et al. [2021] show that the errors introduced by these deviations are dominated by the
increase in direction v1, and therefore SGD successfully escapes saddle points.

Outline of our compressed SGD analysis The analysis above is not applicable to our
algorithm due to gradient compression and error-feedback. Moreover, in the case of an arbitrary
compressor we change the algorithm even further by periodically setting et to 0.

One of the major changes is that errors introduced by the compression lead to even greater
deviation of SGD from the power method, and this deviation can potentially dominate other terms:
if the compression error is accumulated from the beginning of the algorithm execution, then the
compression error can be arbitrarily large. Let e′t be the compression error sequence corresponding
to x′t such that e′0 = e0. The deviation of SGD from the power method caused by compression can
be expressed as:

η2∇2f(x0)
t−1∑
i=1

(I − η∇2f(x0))
t−1−i(ei − e′i). (Proposition B.12 and Lemma B.16)

It remains to bound ‖ei−e′i‖ for all i. For Gt = et+∇F (xt, θt)+ξt (with G′t defined analogously),
since et+1 = Gt − C(Gt), by linearity of C we have:

E
[
‖et+1 − e′t+1‖2

]
= E

[
‖(Gt −G′t)− C(Gt −G′t, θ̃t)‖2

]
≤ (1− µ)E

[
‖Gt −G′t‖2

]
= (1− µ)E

[
‖(et − e′t) + (∇F (xt, θt)−∇F (x′t, θt)) + (ξt − ξ′t)‖2

]
.

Since e0 = e′0, after telescoping, ‖et+1 − e′t+1‖ can be bounded using ‖∇F (xi, θi) − ∇F (x′i, θi)‖
and ‖ξi − ξ′i‖ for i ∈ [0 : t] (Lemma B.17). In other words, when escaping from a saddle point, the
deviation can bounded based on gradients and noises encountered during escaping. Therefore it is
comparable to other terms and can be bounded with an appropriate choice of η.

Unfortunately, for the arbitrary compressor case we don’t have a good estimation on Et, since
in general we don’t have better bound on ‖ei − e′i‖ than ‖ei‖ + ‖e′i‖ (see proof of Lemma B.16).
Lemma A.5 bounds the compression error et in terms of ‖∇f(x0)‖, . . . , ‖∇f(xt)‖:

E
[
‖et‖2

]
≤ 2(1− µ)

µ

t−1∑
i=0

(
1− µ

2

)t−i
E
[
‖∇f(xi)‖2 + χ2

]
,

but the bound depends on all gradients starting from the first iteration. To solve this problem,
we periodically set the compression error to 0 (Line 5 of Algorithm 1). Let t′ be an iteration such
that et′ is set to 0: then, when escaping from xt′ , we can apply Lemma A.5 with i starting from
t′. This leads to major difference from the Jin et al. [2021] analysis: we need to consider large-
and small-gradient cases separately. When the gradient at xt′ is large (Lemma B.7), we show that
nearby gradients are also large, and the objective improves by the Compressed Descent Lemma A.7.
Otherwise, we can bound the error norm for the next few iterations (Lemma B.16).
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Figure 1: Convergence of distributed SGD (η = 0.1, batch size is 8 per machine) with RandomK
compressor when 100% (full gradient), 10%, 1% and 0.1% of coordinates are used. ResNet34 model
is trained on CIFAR-10 distributed across 10 machines: each machine corresponds to a single class.
SGD with 10% and 1% compression achieves performance similar to that of uncompressed SGD,
while requiring significantly less communication

Finally, the analysis uses not only the sequence of iterates {xt}, but also the corrected sequence
{yt} where yt = xt−ηet (similarly, y′t = x′t−ηe′t). Intuitively, et accumulates the difference between
the communicated and the original gradient, and therefore the goal of yt is to offset the compression
error. Typically, xt is used as an argument of ∇f(·), while yt is used in distances and as an argument
of f(·), which noticeably complicates the analysis. In particular, if some property holds for xt, it
doesn’t necessarily hold for yt and vice versa: for example, since xt and yt are not necessarily close,
bound ‖yt − y′t‖ doesn’t in general imply bound on ‖xt − x′t‖. However, in our analysis, we show
that we can bound ‖xt − x′t‖, which is required to bound ‖∇f(xt)−∇f(x′t)‖ in Lemma B.18.

4 Experiments

In our experiments, we show that noisy Compressed SGD achieves convergence comparable with full
SGD and successfully escapes saddle points. We perform our first set of experiments on ResNet34
model trained using CIFAR-10 dataset with step size 0.1. We distribute the data across 10 machines,
such that each machine contains data from a single class. We analyze convergence of compressed
SGD with RandomK compressor when 100%, 10%, 1% and 0.1% random gradient coordinates
are communicated. Figure 1 shows that SGD with RandomK with 10% or 1% of coordinates
compression converges as fast as the full SGD, while requiring substantially smaller communication.

In our second set of experiments, we show that SGD indeed encounters saddle points and noise
facilitates escaping from them. We compare uncompressed SGD, SGD with TopK compressor
(0.1% of coordinates), and SGD with RandomK compressor (0.1% of coordinates) on deep MNIST
autoencoder4. In all settings, we compare their convergence rates with and without noise. Figure 2
shows that SGD does encounter saddle points: e.g. in Figure 2a, for SGD without noise, during
epochs 1-3, the gradient norm is close to 0 and the objective value doesn’t improve. However,
compressed SGD escapes from the saddle points, and noise significantly improves the escaping rate.

4The encoder is defined using 3 convolutional layers with ReLU activation, with the following parameters:
(channels=16, kernel=3, stride=2, padding=1), (channels=32, kernel=3, stride=2, padding=1) and (channels=64,
kernel=7, stride=1, padding=0). The decoder is symmetrical.
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(b) TopK loss
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(d) Uncompressed gradient norm

0 2 4 6 8 10
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
g 

Gr
ad

 n
or

m

(e) TopK gradient norm
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(f) RandomK gradient norm

Figure 2: Convergence of SGD (η = 0.1, batch size is 64) without compression (left), with TopK
(0.1% of coordinates) compression (middle), and with RandomK (0.1% of coordinates) compression
(right) on MNIST autoencoder dataset without noise (red) and with Gaussian noise (green, σ = 0.01
for each coordinate). Data points correspond to average over 10 executions and error bars correspond
to 10%- and 90%-quantiles. The bottom row shows the norms of the stochastic gradients averaged
over the last 100 iterations. The figure shows that SGD encounters and escapes saddle points for all
compressors, and adding noise facilitates escaping from the saddle points†.
† For the sake of presentation, to ensure that gradient converges to 0, we decrease the magnitude of the artificial
noise at later iterations. With a fixed noise magnitude, as our theory predicts, gradient norm converges if a smaller
step size is used, but this requires significantly more iterations. Note that this modification only affects the gradient
convergence as the objective converges even with fixed noise and a large step size.

5 Conclusion

We give the first result for convergence of compressed SGD to an ε-SOSP, and it’s possible that the
convergence rate and the total communication can be further improved. When Assumption C holds,
it is likely that the communication can be improved by an ε−1/4 factor using techniques from Fang
et al. [2019], which achieve Õ(ε−3.5) convergence rate under Assumption C. Using variance reduction
techniques, which achieve Õ(ε−3) convergence rate, we expect ε−1/2 improvement. Finally, it remains
open whether linearity of the compressor is required for Theorem 3.4: similarly to the stochastic
gradient case, it may suffice for the compressor to be Lipschitz.
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A Convergence to ε-FOSP

In this section we prove Theorem 3.1, showing that Algorithm 1 converges to an approximate first-
order stationary point. Results and proofs are inspired by Karimireddy et al. [2019], with the key
difference in that we show how to avoid using the bounded gradient assumption: E

[
‖∇F‖2

]
≤ G2

and handle the case of µ-compressors with µ � 1. Furthermore, Compressed Descent Lemma
(Lemma A.7) is a foundation for showing a second-order convergence.

Definition A.1 (Noise and compression parameters) We use the following notation:
• ζt = ∇F (xt, θt)−∇f(xt) is stochastic gradient noise. This noise has variance σ2

• ξt is artificial Gaussian noise added at every iteration. This noise has variance r2

• ψt = ζt + ξt is the total noise. This noise has variance χ2 = σ2 + r2.
• We assume that gradients are compressed using a µ-compressor C.

For the sake of the analysis, similarly to Karimireddy et al. [2019], we introduce an auxiliary
sequence of corrected iterates {yt}, which remove the impact of the compression error.

Definition A.2 (Corrected iterates) The sequence of corrected iterates {yt} is defined as

yt = xt − ηet

Proposition A.3 For the sequence {yt}, we have yt+1 − yt = −η(∇f(xt) + ψt)

Proof : Recall that et+1 = ∇f(xt) + ψt + et − gt and gt = C(∇f(xt) + ψt + et, θt) and thus

C(∇f(xt) + ψt + et, θ̃t) = ∇f(xt) + ψt + et − et+1.

Substituting this into equation for yt+1:

yt+1 = xt+1 − ηet+1

= xt − ηC(∇f(xt) + ψt + et, θ̃t)− ηet+1 (Since xt+1 = xt − ηC(∇f(xt) + ψt + et, θ̃t))
= xt − η(∇f(xt) + ψt + et − et+1)− ηet+1

= xt − η(∇f(xt) + ψt + et)

= xt − ηet − η(∇f(xt) + ψt)

= yt − η(∇f(xt) + ψt)

�

In our derivations, we’ll often use conditional expectation with respect to current iterates.

Definition A.4 (Conditional expectation w.r.t. iterate) Let t be an iteration and ξ be a ran-
dom variable. Then

Et [ξ] := E(θt,θ̃t,ξt),(θt+1,θ̃t+1,ξt+1),...
[ξ | xt, et]
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A.1 Compression Error Bound

Recall that the compression error terms et in Algorithm 1 represent the difference between the
computed gradient and the compressed gradient. Similarly to how stochastic noise increases the
number of iterations compared with deterministic gradient descent, compression errors also increase
the number of iterations, and therefore it’s important to bound ‖et‖.

Lemma A.5 (Compression Error Bound) Let xt, et be defined as in Algorithm 1 and let χ2 be
as in Definition A.1. Then under Assumptions A and B, for any t we have

E
[
‖et‖2

]
≤ 2(1− µ)

µ

t−1∑
i=0

(
1− µ

2

)t−i
E
[
‖∇f(xi)‖2 + χ2

]
,

In particular, by considering a uniform bound on E
[
‖∇f(xi)‖2

]
and taking the sum of the

geometric series, we get a result similar to Karimireddy et al. [2019, Lemma 3]:

E
[
‖et‖2

]
≤ 4(1− µ)

µ2

(
t−1

max
i=0

E
[
‖∇f(xi)‖2

]
+ χ2

)
Proof : The proof is similar to the one of Karimireddy et al. [2019, Lemma 3]. The main difference
is that we don’t rely on the bounded gradient assumption.

By definition of et+1:

E
[
‖et+1‖2

]
= E

[
‖et +∇f(xt) + ψt − C(et +∇f(xt) + ψt, θt)‖2

]
≤ (1− µ)E

[
‖et +∇f(xt) + ψt‖2

]
By using inequality ‖a+ b‖2 ≤ (1 + ν)‖a‖2 + (1 + 1

ν )‖b‖2 for any ν:

E
[
‖et+1‖2

]
≤ (1− µ)((1 + ν)E

[
‖et‖2

]
+ (1 +

1

ν
)E
[
‖∇f(xt) + ψt‖2

]
)

≤
t∑
i=0

(1− µ)t−i+1(1 + ν)t−i(1 +
1

ν
)E
[
‖∇f(xi) + ψi‖2

]
(Telescoping)

≤ 1

ν

t∑
i=0

((1− µ)(1 + ν))t−i+1 E
[
‖∇f(xi) + ψi‖2

]

By selecting ν = µ
2(1−µ) , we have (1− µ)(1 + ν) = 1− µ

2 . Therefore:

E
[
‖et+1‖2

]
≤ 2(1− µ)

µ

t∑
i=0

(
1− µ

2

)t−i+1
E
[
‖∇f(xi) + ψi‖2

]
=

2(1− µ)

µ

t∑
i=0

(
1− µ

2

)t−i+1
E
[
‖∇f(xi)‖2 + χ2

]
(E [χ | xi] = 0)

�

For the sum of ‖et‖2, we have the following, simpler expression:
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Corollary A.6 Under assumptions of Lemma A.5, we have
t∑

τ=0

E
[
‖eτ‖2

]
≤ 4(1− µ)

µ2

t∑
τ=0

(E
[
‖∇f(xτ )‖2

]
+ χ2)

Proof :
t∑

τ=0

E
[
‖eτ‖2

]
≤ 2(1− µ)

µ

t∑
τ=0

τ∑
i=0

(
1− µ

2

)τ−i+1
E
[
‖∇f(xi)‖2 + χ2

]
≤ 2(1− µ)

µ

t∑
i=0

(
E
[
‖∇f(xi)‖2 + χ2

] t∑
τ=i

(
1− µ

2

)τ−i+1
)

Bounding
∑

τ

(
1− µ

2

)τ−i+1 with the sum of the geometric series 2
µ , we have:

t∑
τ=0

E
[
‖eτ‖2

]
≤ 4(1− µ)

µ2

t∑
i=0

E
[
‖∇f(xi)‖2 + χ2

]
�

A.2 Compressed Descent Lemma

The following descent lemma is the key tool in the analysis as it allows us to bound gradient norms
across multiple iterations.

Lemma A.7 (Compressed Descent Lemma) Let f satisfy Assumptions A and B and χ2 be as
in Definition A.1. For η < 1

4L min( µ√
1−µ , 1), for any T we have:

T−1∑
τ=0

E
[
‖∇f(xτ )‖2

]
≤ 4(f(y0)− E [f(yT )])

η
+ ηTχ2

(
2L+

8L2η(1− µ)

µ2

)

Using this lemma, we’ll later show that for sufficiently large T , multiple visited points have small
gradients (note that by dividing the left-hand side by T we obtain an average squared gradient
norm), making them ε-FOSP. On the right-hand side the first term is bounded by 4fmax/η, while the
other two terms can be bounded by selecting a sufficiently small η. The second term arises from
stochastic gradient noise, while the last term stems from the compression error.
Proof : The proof is similar to the one of Karimireddy et al. [2019, Theorem II]. By the folklore
descent lemma, using notation Et [·] from Definition A.4:

Et [f(yt+1)]

≤ f(yt) + 〈∇f(yt),Et [yt+1 − yt]〉+
L

2
Et
[
‖yt+1 − yt‖2

]
= f(yt)− ηEθt,θ̃t [〈∇f(yt),∇f(xt) + ψt〉 | xt, et] +

Lη2

2
Eθt,θ̃t

[
‖∇f(xt) + ψt‖2 | xt, et

]
(Prop. A.3)

≤ f(yt)− η‖∇f(xt)‖2 − η〈∇f(yt)−∇f(xt),∇f(xt)〉+
Lη2

2
‖∇f(xt)‖2 +

Lη2χ2

2
(E [ψt] = 0)

≤ f(yt)− η
(

1− Lη

2

)
‖∇f(xt)‖2 +

Lη2χ2

2
− η〈∇f(yt)−∇f(xt),∇f(xt)〉
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Using inequality |〈a, b〉| ≤ ‖a‖
2

2 + ‖b‖2
2 and smoothness, we have:

Et [f(yt+1) | xt, et]

≤ f(yt)− η
(

1− Lη

2

)
‖∇f(xt)‖2 +

Lη2χ2

2
+
η

2
‖∇f(yt)−∇f(xt)‖2 +

η

2
‖∇f(xt)‖2

≤ f(yt)− η
(

1

2
− Lη

2

)
‖∇f(xt)‖2 +

Lη2χ2

2
+
ηL2

2
‖yt − xt‖2 (L-smoothness)

≤ f(yt)− η
(

1

2
− Lη

2

)
‖∇f(xt)‖2 +

Lη2χ2

2
+
η3L2

2
‖et‖2 (Def. A.2 of yt)

Using telescoping and taking the expectation, we bound f(yt+1):

E [f(yt+1)] ≤ f(y0)− η
(

1

2
− Lη

2

) t∑
τ=0

E
[
‖∇f(xτ )‖2

]
+
Lχ2η2(t+ 1)

2
+ η3L2

t∑
τ=0

E
[
‖eτ‖2

]
Bounding

∑
τ ‖eτ‖2 by Corollary A.6, we have:

E [f(yt)]

≤ f(y0)− η
(

1

2
− Lη

2

) t−1∑
τ=0

E
[
‖∇f(xτ )‖2

]
+
Lχ2η2t

2
+

2η3L2(1− µ)

µ2

t−1∑
i=0

E
[
‖∇f(xi)‖2 + χ2

]
≤ f(y0)− η

(
1

2
− Lη

2
− 2η2L2(1− µ)

µ2

) t−1∑
τ=0

E
[
‖∇f(xτ )‖2

]
+
Lχ2η2t

2
+

2η3L2χ2(1− µ)t

µ2

Using that η < 1
4L min

(
µ√
1−µ , 1

)
, we bound the coefficient before

∑t
τ=0 E

[
‖∇f(xτ )‖2

]
with η

4 :

E [f(yt)] ≤ f(y0)−
η

4

t−1∑
τ=0

E
[
‖∇f(xτ )‖2

]
+ η2χ2t

(
L

2
+

2L2η(1− µ)

µ2

)
After regrouping the terms, we get the final result:

t−1∑
τ=0

E
[
‖∇f(xτ )‖2

]
≤ 4(f(y0)− E [f(yt)])

η
+ ηχ2t

(
2L+

8L2η(1− µ)

µ2

)
�

When showing convergence to SOSP, we’ll need a generalization of this Lemma which start
tracking communication error from the last iteration when the error was 0:

Corollary A.8 Let f satisfy Assumptions A and B and χ2 be as in Definition A.1. If t0 is an
iteration of Algorithm 1 such that et0 = 0 and η < 1

4L min( µ√
1−µ , 1), then for any T we have:

T−1∑
τ=0

E
[
‖∇f(xt0+τ )‖2

]
≤ 4(f(yt0)− E [f(yt0+T )])

η
+ ηTχ2

(
2L+

8L2η(1− µ)

µ2

)
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A.3 Convergence to ε-FOSP

Theorem A.9 (Convergence to ε-FOSP) Let f satisfy Assumptions A and B. Then for η =

Õ
(

min
(
ε2, µ√

1−µε
))

, after T = Θ̃
(

1
ε4

+
√
1−µ
µε3

)
iterations, at least half of visited points are ε-FOSP.

Proof : Proof by contradiction. For η < 1
4L min

(
µ√
1−µ , 1

)
, if less than half points are ε-FOSP,

then by Lemma A.7:

Tε2

2
≤

T∑
τ=0

E
[
‖∇f(xτ )‖2

]
≤ 4fmax

η
+ ηχ2T

(
2L+

8L2η(1− µ)

µ2

)

It suffices to guarantee that all terms on the right-hand side are at most Tε2

6 :

2Lηχ2T ≤ Tε2

6
⇐⇒ η ≤ ε2

12Lχ2
= Θ̃(ε2)

8L2χ2η2T (1− µ)

µ2
≤ Tε2

6
⇐⇒ η ≤ µε

√
1− µLχ

√
48

= Θ̃

(
µε√
1− µ

)
4fmax

η
≤ Tε2

6
⇐⇒ T ≥ 24fmax

ε2η
= Θ̃

(
1

ηε2

)
= Θ̃

(
1

ε4
+

√
1− µ
µε3

)
Therefore, after Θ̃

(
1
ε4

+
√
1−µ
µε3

)
iterations at least half of the points are ε-FOSP. �
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B Convergence to ε-SOSP

By rescaling we can assume that ε ≤ 1. Recall that α = 1 when Assumption C holds and α = d
otherwise. We introduce the following auxiliary notation:

Definition B.1 (Step sizes)

max η for SGD ησ =
ε2

L(1 + dσ2)
+ min

(
ε2

L(1 + σ2)
,

√
ρε

˜̀2

)
= Õ

(
ε2

α

)
max η for compressed SGD:

For a general compressor: ηµ = min

(
µε√

1− µLσ
,

µ2
√
ε

(1− µ)L2d

)
= Õ

(
min

(
µε√
1− µ

,
µ2
√
ε

(1− µ)d

))
For a linear compressor: ηµ = min

(
µε√

1− µLσ
,
µ2
√
ρε

(1− µ)L2

)
= Õ

(
min

(
µε√
1− µ

,
µ2
√
ε

1− µ

))

Intuitively, selecting step size η ≤ ησ suffices to show convergence of SGD [Jin et al., 2021]. In
addition, selecting η ≤ ηµ allows us to extend the results to compressed SGD.

Definition B.2 Our choice of parameters is the following (cη, cI , cR, cF , cr hide polylogarithmic
dependence on all parameters, the conditions on them will be specified later):

Step size η = cη min(ησ, ηµ)

Iterations required for escaping I = cI
1

η
√
ρε

Escaping radius R = cR

√
ε

ρ

Objective change after escaping F = cF

√
ε3

ρ

Noise standard deviation r = cr
ε√
Lη

(1)

Recall that χ2 = σ2 + r2 = σ2 + crε2

Lη by Definition A.1 and fmax = f(xt0)− f(x∗). We will show
that after I iterations the objective decreases by F . Therefore, the objective decreases on average
by FI = Ω̃(ε2η) per iteration resulting in Õ

(
fmax

ε2η

)
iterations overall. See Table 1 for the number of

iterations and total communication in various settings.
Intuitively, the motivation for this choice of parameters is the following. Let x be a point such

that λmin(∇2f(x)) < −√ρε and ‖∇f(x)‖ = 0.

• Our analysis happens inside B(x,R), and we want λmin(∇2f(z)) < −
√
ρε
2 for all z ∈ B(x,R).

By the Hessian-Lipschitz property, for z ∈ B(x,R) we have ‖∇2f(x) −∇2f(z)‖ ≤ ρR. To
have ρR ≤

√
ρε
2 , we choose R ≤ 1

2

√
ε
ρ .

• Let −γ be the smallest eigenvalue and v1 be the corresponding eigenvector of ∇f2(x). Assume
that our function is quadratic and, after adding noise, the projection on v1 is Θ̃(1) (it is
actually polynomial or reverse-polynomial on all parameters, which doesn’t change the idea).
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Table 2: Convergence to ε-SOSP for full SGD and for constant-size compression (the choice of
parameters is not optimal; see Table 1 for the optimal choice). For any choice of µ and η: T = Õ(1/ηε2),
R = Õ(

√
ε), F = Õ(

√
ε3).

Settings µ η I r

Uncompressed
Lipschitz ∇F 0 Õ

(
ε2
)

Õ
(
ε3/2
)

Õ (1)

Compressed
Lipschitz ∇F

1
d Õ

(
min

(
ε2, εd ,

√
ε

d3

))
Õ
(

1
η
√
ε

)
Õ
(

ε√
η

)
RandomK
Lipschitz ∇F

1
d Õ

(
min

(
ε2, εd ,

√
ε

d2

))
Õ
(

1
η
√
ε

)
Õ
(

ε√
η

)
Uncompressed

non-Lipschitz ∇F 0 Õ
(
ε2

d

)
Õ
(
dε3/2

)
Õ
(√

d
)

Compressed
non-Lipschitz ∇F

1
d Õ

(
min

(
ε2

d ,
√
ε

d3

))
Õ
(

1
η
√
ε

)
Õ
(

ε√
η

)
RandomK

non-Lipschitz ∇F
1
d Õ

(
min

(
ε2

d ,
√
ε

d2

))
Õ
(

1
η
√
ε

)
Õ
(

ε√
η

)

Then after t iterations, this projection increases by the factor of (1 + ηγ)t. For every 1/ηγ
iterations, the projection increases approximately by the factor of e. Therefore, to reach R
starting from Θ(1), we need Õ( 1

ηγ ) iterations, which is at most Õ( 1
η
√
ρε)

• In a certain sense, the best improvement we can hope to achieve is by moving from x to
x +Rv1. If ∇f(x) = 0 and the objective is quadratic in direction v1 with eigenvalue γ, the
objective decreases by γR2 = Ω(

√
ε3

ρ ), which motivates the choice of F .

• Bound on r arises from the fact that χ2 ≈ r2 and that we want to bound the last term in
Lemma B.4 with F .

We formalize the first item in the following proposition:

Proposition B.3 Let x be a point such that λmin(∇2f(x)) < −√ρε. Then for any z ∈ B(x,R),
λmin(∇2f(z)) < −√ρε/2.

B.1 Proof outline

Our proof is mainly based on the ideas from Jin et al. [2021]. We first introduce "Improve or localize"
lemma (Lemma B.4): if after the limited number of iterations the objective doesn’t sufficiently
improve, we conclude that we didn’t move far from the original point. Similarly to Jin et al. [2021],
we introduce a notion of coupling sequences: two gradient descent sequences having the same
distribution such that, as long as we start from a saddle point, at least one of these sequences escapes,
and therefore its objective improves. Since distributions of these sequences match distribution of
sequence generated by gradient descent, we conclude that the algorithm sufficiently improves the
objective.

Our analysis differs from Jin et al. [2021] in several ways. The first difference is that, aside
from {xt0+t}, our equations use another sequence {yt0+t} (xt0+t mainly participate as arguments
of ∇f(·), while yt0+t participate as argument of f(·) and in distances). This leads to the following
challenge: if some relation holds for yt0+t, it doesn’t necessary holds for xt0+t. For example, if we

22



have a bound on ‖yt0+t−y′t0+t‖, we don’t necessarily have a bound on ‖xt0+t−x′t0+t‖, and it needs
to be established separately.

Another difference is that, for a general compressor, we have to split our analysis into two parts:
large gradient case and small gradient case. When our initial gradient is large, then we either escape
the saddle points or the nearby gradients are also large, and by Lemma A.7 the objective improves
(see details in Lemma B.7). If the gradient is small, we use "Improve or localize" Lemma as described
above. In the latter case, similarly to Jin et al. [2021], we have to bound errors which arise from
the fact that the function is not quadratic and gradients are not deterministic (see Definition B.11).
However, we have an additional error term stemming from gradient compression (see Definition B.11);
to bound this term (see Lemma B.16), we need bounded ‖et0+t‖, and for that we use our assumptions
that gradients are small.

B.2 Improve or localize

We first show that, if gradient descent moves far enough from the initial point, then function value
sufficiently decreases. The following lemma considers the general case, while Corollary B.5 considers
the simplified form, obtained by substituting parameters from Definition B.2.

Lemma B.4 (Improve or localize) Let f satisfy Assumptions A and B and let yt0+t and χ be
defined as in Definition A.1. If t0 is an iteration of Algorithm 1 such that et0 = 0, then using
notation Et [·] from Definition A.4, for η < 1

4L min( µ√
1−µ , 1) we have

f(yt0)− Et0 [f(yt0+t)] ≥
Et0
[
‖yt0+t − yt0‖2

]
8ηt

− η2χ2t

(
L+

2(1− µ)L2η

µ2

)
− ηχ2

Proof : Let ψt = ζt + ξt0+t. By Proposition A.3, yi+1 = yt0+i − η(∇f(xt0+i) + ψi). Since noises
are independent:

Et0

[
‖
t−1∑
i=0

ψt0+i‖2
]

=
t−1∑
i=0

Et0
[
‖ψt0+i‖2

]
=

t−1∑
τ=0

χ2 = tχ2

By Proposition A.3:

Et0
[
‖yt0+t − yt0‖2

]
= η2Et0

[
‖
t−1∑
i=0

(∇f(xt0+i) + ψt0+i)‖2
]

≤ 2η2Et0

[
‖
t−1∑
i=0

∇f(xt0+i)‖2 + ‖
t−1∑
i=0

ψt0+i‖2
]

≤ 2η2t
t−1∑
i=0

Et0
[
‖∇f(xt0+i)‖2

]
+ 2η2χ2t

Since η < 1
4L min( µ√

1−µ , 1), by Corollary A.8:

Et0
[
‖yt0+t − yt0‖2

]
≤ 2η2t

(
4(f(yt0)− Et0 [f(yt0+t)])

η
+ ηχ2t

(
2L+

8(1− µ)L2η

µ2

))
+ 2η2χ2t

≤ 2ηt

(
4(f(yt0)− Et0 [f(yt0+t)]) + η2χ2t

(
4L+

8(1− µ)L2η

µ2

)
+ 4ηχ2

)
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After regrouping the terms, we have:

f(yt0)− Et0 [f(yt0+t)] ≥
Et0
[
‖yt0+t − yt0‖2

]
8ηt

− η2χ2t

(
L+

2(1− µ)L2η

µ2

)
− ηχ2,

�

Corollary B.5 Let t0 be an iteration of Algorithm 1 such that et0 = 0. Under Assumptions A
and B, for F , I chosen as specified in Definition B.2, for any t ≤ I we have:

f(yt0)− Et0 [f(yt0+t)] ≥
√
ρε

8cI
Et0
[
‖yt0+t − yt0‖2

]
−F

Proof : By Lemma B.4, the first term on the right-hand side stems from t ≤ I = cI
η
√
ρε . With our

choice of parameters, we can bound negative terms with F (recall that F = cF

√
ε3

ρ ).

Bounding ηχ2.

ηχ2 = ησ2 + ηr2 ≤ cη
ε2

L
+ c2r

ε2

L
= (cη + c2r)

√
ε3
√
ρ
·
√
ρε

L
≤ (cη + c2r)

√
ε3
√
ρ
,

where we use that √ρε ≤ L, since otherwise all ε-FOSP are ε-SOSP.

Bounding η2χ2tL. Since I = cI
1

η
√
ρε and t ≤ I:

η2χ2tL ≤ ηχ2L
√
ρε
≤ ηχ2,

and we use the estimation above.

Bounding η2χ2t · 2(1−µ)L
2η

µ2
.

η3χ2t(1− µ)L2

µ2
≤ cIη

2χ2(1− µ)L2

µ2
√
ρε

(t ≤ I =
cI

η
√
ρε

)

≤
cIη

2(1− µ)L2
(
σ2 + crε2

Lη

)
µ2
√
ρε

(χ2 = σ2 +
crε

2

Lη
)

≤ cI(1− µ)

µ2
√
ρε

(
η2µL

2σ2 + crηµLε
2
)

(η ≤ ηµ)

≤ 2cIcη

√
ε3
√
ρ

(ηµ ≤
µε√

1− µLσ
and ηµ ≤

µ2
√
ε

1− µ
)

To guarantee that the sum of these terms is at most F , it suffices to select parameters so that
cη + c2r + cIcη ≤ cF/2. �

Corollary B.6 Let t0 be an iteration of Algorithm 1 such that et0 = 0. Under Assumptions A
and B, for F ,R, I chosen as specified in Definition B.2, if there exists t ∈ [0, I] such that
Et0
[
‖yt0+t − yt0‖2

]
> R2, then f(yt0)− Et0 [f(yt0+t)] ≥ F .
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Proof : By Lemma B.4, since R = cR
√

ε
ρ and F = cF

√
ε3

ρ :

f(yt0)− Et0 [f(yt0+t)] ≥
√
ρεR2

8cI
−F =

c2Rεη
√
ρε

8cIηρ
−F =

(
c2R

8cIcF
− 1

)
F ≥ F ,

where the last inequality holds when 16cIcF ≤ c2R. �

B.3 Large gradient case: ‖∇f(xt0)‖ ≥ 4LR

In this section, we consider the case when the gradient is large, and therefore we can make sufficient
progress simply by the Compressed Descent Lemma. Note that the results from this section are only
required when the compressor is not linear.

Lemma B.7 (Large gradient case) Let t0 be an iteration of Algorithm 1 such that et0 = 0.
Under Assumptions A and B, for F ,R, I chosen as specified in Definition B.2, if ‖∇f(xt0)‖ > 4LR,
then after at most I iterations the objective decreases by F .

Proof : Using notation Et [·] from Definition A.4, if there exists t ≤ I such that Et0
[
‖yt0+t − yt0‖2

]
>

R2, then by Corollary B.6, the objective decreases by at least F .
Consider the case when Et0

[
‖yt0+t − yt0‖2

]
≤ R2 for all t. First, to bound the error term, we

show by induction that Et0
[
‖∇f(xt0+t)‖2

]
≤ 4‖∇f(xt0)‖2 for all t ≤ I.

‖∇f(xt0+t)‖2 = ‖∇f(xt0)− (∇f(xt0)−∇f(xt0+t))‖2

≤ 2‖∇f(xt0)‖2 + 2‖∇f(xt0)−∇f(xt0+t)‖2 (‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2))
≤ 2‖∇f(xt0)‖2 + 2L2‖xt0 − xt0+t‖2 (Smoothness)

≤ 2‖∇f(xt0)‖2 + 4L2‖yt0 − yt0+t‖2 + 4L2‖yt0+t − xt0+t‖2 (Same inequality and xt0 = yt0)

≤ 2‖∇f(xt0)‖2 + 4L2‖yt0 − yt0+t‖2 + 4L2η2‖et0+t‖2 (Definition A.2 of yt0+t)

By Lemma A.5 and the induction hypothesis, we have:

Et0
[
‖et0+t‖2

]
≤ 4(1− µ)

µ2

(
t−1

max
τ=0

Et0
[
‖∇f(xt0+τ )‖2

]
+ χ2

)
≤ 4(1− µ)

µ2
(
4‖∇f(xt0)‖2 + χ2

)
,

and therefore for η chosen as in Definition B.2, L2η2Et0
[
‖et0+t‖2

]
≤ ‖∇f(xt0 )‖

2

4 . By taking the
expectation in the equation above, we have:

Et0
[
‖∇f(xt0+t)‖2

]
≤ 2‖∇f(xt0)‖2 + 4L2R2 +

‖∇f(xt0)‖2

4
≤ 4‖∇f(xt0)‖2

Given the bound on ‖et0+t‖, we can give a lower bound on gradient norm:

‖∇f(xt0+t)‖2 = ‖∇f(xt0)− (∇f(xt0)−∇f(xt0+t))‖2

≥ ‖∇f(xt0)‖2 + ‖∇f(xt0)−∇f(xt0+t)‖2 − 2‖∇f(xt0)‖ · ‖∇f(xt0)−∇f(xt0+t)‖
≥ ‖∇f(xt0)‖(‖∇f(xt0)‖ − 2‖∇f(yt0)−∇f(yt0+t)‖ − 2‖∇f(yt0+t)−∇f(xt0+t)‖)

By taking expectations and using the fact that Et0 [‖x‖] ≤
√

Et0 [‖x‖2] and bound on ‖et0+t‖,
we have:

Et0
[
‖∇f(xt0+t)‖2

]
≥ ∇f(xt0)(‖∇f(xt0)‖ − 2LR− ‖∇f(xt0)‖

4
) ≥ 4L2R2
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By Lemma A.7, we know:

I∑
τ=0

Et0
[
‖∇f(xt0+τ )‖2

]
≤ 4(f(yt0)− Et0 [f(yI)])

η
+ ηχ2I

(
2L+

8(1− µ)L2η

µ2

)
Therefore:

f(yt0)− Et0 [f(yt0+I)] ≥
ηI
4

(
4L2R2 − ηχ2(2L+

8(1− µ)L2η

µ2
)

)
≥ ηIL2R2 −F (See proof of Corollary B.5)

≥ cIη

η
√
ρε

c2RL
2ε

ρ
−F (R = cR

√
ε

ρ
and I =

cI
η
√
ρε

)

≥ cI√
ρε
c2Rε

2 −F (since L ≥ √ρε)

≥ F ,

where the last inequality holds when cIc2R ≥ 2cF . �

B.4 Small Gradient Case: ‖∇f(xt0)‖ < 4LR

Coupling Sequences

Let H = ∇2f(xt0), then g(x) = x>Hx is a quadratic approximation of f in the vicinity of xt0 . Let
−γ be the smallest eigenvalue of H and v1 be the corresponding eigenvector. Then we construct
coupling sequences xt0+t and x′t0+t in the following way: xt0+t is the sequence from Algorithm 1;
x′t0+t has the same stochastic randomness θ as xt0+t, and its artificial noise ξ′t0+t is the same as ξt0+t
with exception of the coordinate corresponding to v1, which has an opposite sign.

Definition B.8 (Coupling sequences) For iteration t0, given xt0 and et0 , the coupling sequences
are defined as follows (note the definition of ξ′t0+t):

e′t0 = et0

ξt0+t ∼ N (0, r2) ξ′t0+t = ξt0+t − 2〈v1, ξt0+t〉v1

θt0+t ∼ D, θ̃t0+t ∼ D̃ θ′t0+t = θt0+t, θ̃′t0+t = θ̃t0+t

gt0+t = C(∇F (xt0+t, θt0+t) + ξt0+t + et0+t, θ̃t0+t) g′t0+t = C(∇F (x′t0+t, θt0+t) + ξ′t0+t + e′t0+t, θ̃t0+t)

yt0+t = xt0+t − ηet0+t y′t0+t = x′t0+t − ηe
′
t0+t

xt+1 = xt0+t − ηgt x′t+1 = x′t0+t − ηg
′
t

et+1 = ∇F (xt0 + t, θt0+t) + ξt0+t + et0+t − gt0+t e′t+1 = ∇F (x′t, θt0+t) + ξ′t0+t + e′t0+t − g′t0+t

A notable fact is that both sequences correspond to the same distribution.

Proposition B.9 For any t0 and t, xt0+t and yt0+t from Definition B.8 have the same distribution
as x′t0+t and y′t0+t.

Proof : By definition of yt0+t and y′t0+t, it suffices show that xt0+t and et0+t have the same
distributions as x′t0+t and e′t0+t. Proof by Induction with trivial base case yt0 = y′t0 = xt0 − ηet0 .

We want to show that if the statement holds for t, then it holds for t+ 1. To show that xt0+t+1

and x′t0+t+1 habe the same distribution it remains to show that gt and g′t have the same distribution:
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• Since xt0+t and x′t0+t have the same distribution, ∇F (xt0+t, θt0+t) and ∇F (x′t0+t, θt0+t) have
the same distribution.

• Since N (0, r2) is symmetric and ξ′t0+t is the same as ξt0+t with exception of one coordinate,
which has an opposite sign, ξt0+t and ξ′t0+t have the same distribution.

• et0+t and e′t0+t have the same distribution.
Similarly, et+1 has the same distribution as e′t+1, since ∇F (xt0+t, θt0+t), ξt0+t, et0+t and gt have

the same distribution as ∇F (x′t0+t, θt0+t), ξ
′
t0+t, e′t0+t and g′t. �

Since our sequences have the same distribution, we have Et0 [f(xt0+t)] = Et0
[
f(x′t0+t)

]
. We want to

show that in a few iterations y′t0+t − yt0+t becomes sufficiently large and, therefore, at least one of
yt0+t and y′t0+t is far from xt0 . By applying Corollary B.6 we will show that the objective sufficiently
decreases.

Difference Between Coupling Sequences

In order to capture the difference between the coupling sequences, we introduce the following
notation:

Definition B.10 (Difference between sequences) Using notation from Definition B.8, we in-
troduce differences between the sequences:

x̂t0+t = x′t0+t − xt0+t êt0+t = e′t0+t − et0+t ζ̂t = ζ ′t0+t − ζt0+t
ξ̂t0+t = ξ′t0+t − ξt0+t ŷt0+t = y′t0+t − yt0+t

Definition B.11 (Error terms) Let δi =
∫ 1
0 ∇

2f(αx′t0+i + (1− α)xt0+i)dα−H. Then

∆t = η
t−1∑
i=0

(I − ηH)t−i−1δix̂t0+i

Et = η
t−1∑
i=0

(I − ηH)t−i−1(êt0+i − êt0+i+1)

Zt = η
t−1∑
i=0

(I − ηH)t−i−1ζ̂t0+i

Ξt = η

t−1∑
i=0

(I − ηH)t−i−1ξ̂t0+i,

Proposition B.12 For any t: x̂t0+t = −(∆t + Et + Zt + Ξt).

In the simplest case, the objective is quadratic and we have access to an uncompressed deterministic
gradient. When it’s not the case, the introduced terms show how the actual algorithm behavior is
different:

• ∆t corresponds to quadratic approximation error.
• Et corresponds to compression error.
• Zt corresponds to difference arising from SGD noise.
• Ξt corresponds to difference arising from artificial noise.
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Intuitively, Ξt is a good term, and other terms are negligible (‖∆t + Et + Zt‖ < 1
2‖Ξt‖).

Proof :

x̂t0+t+1

= x′t0+t+1 − xt0+t+1

= y′t0+t+1 + ηe′t0+t+1 − (yt0+t+1 + ηet0+t+1) (Def. of yt0+t and y′t0+t)
= ηêt0+t+1 + (y′t0+t − yt0+t)

− η
(
(∇f(x′t0+t)−∇f(xt0+t)) + (ζ ′t0+t − ζt0+t) + (ξ′t0+t − ξt0+t)

)
(Upd. equation for yt0+t)

= η(êt+1 − êt0+t) + x̂t0+t − η
(

(δt +H)x̂t0+t + ζ̂t0+t + ξ̂t0+t

)
(Def. of δt0+t and yt0+t)

= η(êt+1 − êt0+t) + (I − ηH)x̂t0+t − η
(
δtx̂t0+t + ζ̂t0+t + ξ̂t0+t

)
= (I − ηH)x̂t0+t − η

(
δtx̂t0+t + (êt0+t − êt0+t+1) + ζ̂t0+t + ξ̂t0+t

)

Using telescoping, we get the required expression. �

Since ŷt0+t = x̂t0+t − ηêt0+t, we have:

x̂t0+t = −(∆t + Et + Zt + Ξt) ⇐⇒ ŷt0+t = −(∆t + (Et + ηêt0+t) + Zt + Ξt),

and we’ll use ‖ŷt0+t‖ in Corollary B.6.

Bounding Accumulated Compression Error

Compared to SGD analysis, an additional term Et + ηêt0+t appears. This term corresponds to
accumulated error arising from compression, and we have to bound it. Motivated by Jin et al. [2021],
we introduce the following quantity:

Definition B.13 Standard deviation of sum of random variables with standard deviations (1 + ηγ)i,
i = 0, . . . , t− 1, is

βt =

√√√√ t−1∑
i=0

(1 + ηγ)2i

Proposition B.14 (Jin et al. [2021], Lemma 29) If ηγ ∈ [0, 1], then for all t: βt ≤ (1+ηγ)t√
2ηγ

,

and for all t ≥ 2
ηγ : βt ≥

(1+ηγ)t√
6ηγ

.

Proposition B.15 For any t ≤ I, where I is defined in Definition B.2:(
t−1∑
i=0

(1 + ηγ)t−1−i

)2

≤ cIβ
2
t

η
√
ρε

Proof : By Cauchy-Schwarz inequality:(
t−1∑
i=0

(1 + ηγ)t−1−i

)2

≤ t
t−1∑
i=0

(1 + ηγ)2(t−1−i) ≤ Iβ2t =
cIβ

2
t

η
√
ρε

�
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Lemma B.16 (Bounding accumulated compression error) Let t0 be an iteration such that
et0 = 0 in Algorithm 1. Under Assumptions A and B, let χ be as in Definition A.1, η and R as
in Definition B.2, Et and êt0+t be as in Definition B.11, and βt be as in Definition B.13 . Let
−γ ≤ −√ρε/2 be the smallest negative eigenvalue of ∇2f(xt0). If Et0

[
‖yt0+t − yt0‖2

]
< R2 for all

t ≤ I and ‖∇f(xt0)‖ ≤ 4LR, then using notation Et [·] from Definition A.4, for t ≤ I we have:

Et0
[
‖Et + ηêt0+t‖2

]
≤ 20cIη

3(1− µ)L2χ2β2t
µ2
√
ρε

Proof : Expanding sum in Et and using that êt0 = 0:

Et = η
t−1∑
i=0

(I − ηH)t−1−i(êt0+i − êt0+i+1) (By Definition B.11)

= η(−êt0+t +

t−1∑
i=1

(I − ηH)t−1−i((I − ηH)− I)êt0+i) (By telescoping)

= −ηêt0+t + η2H
t−1∑
i=1

(I − ηH)t−1−iêt0+i

We will now estimate Et0
[
‖Et + ηê2t0+t‖

]
. Since −γ is the smallest negative eigenvalue of H, we

have ‖I − ηH‖ ≤ (1 + ηγ).

Et0
[
‖Et + ηêt0+t‖2

]
= Et0

[
‖η2H

t−1∑
i=1

(I − ηH)t−1−iêt0+i‖2
]

≤ η4L2Et0

[
(
∑
i

(1 + ηγ)t−1−i‖êt0+i‖)2
]

(By L-smoothness, λmax(H) ≤ L)

≤ 2η4L2(
∑
i

(1 + ηγ)t−1−i)2 max
i

Et0
[
‖êt0+i‖2

]
(Et0 [ab] ≤ max(Et0

[
a2
]
,Et0

[
b2
]
))

≤ 2η4L2t(
∑
i

(1 + ηγ)t−1−i)2 max
i

Et0
[
‖e′t0+i − et0+i‖2

]
(By definition of êt0+i)

≤ 4η4L2t(
∑
i

(1 + ηγ)t−1−i)2 max
i

Et0
[
‖e′t0+i‖

2 + ‖et0+i‖2
]

(By Cauchy-Schwarz)

≤ 8η4L2t(
∑
i

(1 + ηγ)t−1−i)2 max
i

Et0
[
‖et0+i‖2

]
(et0+i and e′t0+i have the same distribution)
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Similarly to Lemma B.7, we can show that Et0
[
‖∇f(xt0+i)‖2

]
≤ 40L2R2. By Lemma A.5:

Et0
[
‖et0+t‖2

]
≤ 4(1− µ)

µ2
(max

i
Et0
[
‖∇f(xt0+i)‖2

]
+ χ2) (By Lemma A.5)

≤ 4(1− µ)

µ2
(40L2R2 + χ2) (By assumption Et0

[
‖∇f(xt0+i)‖2

]
≤ 40L2R2)

≤ 5(1− µ)χ2

µ2
(Selecting sufficiently small cR in the definition of R)

Substituting this result into the inequality for ‖Et + ηêt0+t‖:

Et0
[
‖Et + ηêt0+t‖2

]
≤ 4η4L2t

(∑
i

(1 + ηγ)t−1−i

)2
5(1− µ)χ2

µ2
≤ 20cIη

4(1− µ)L2χ2β2t
µ2η
√
ρε

,

where we bounded the series using Proposition B.15. �

Lemma B.17 (Bounding accumulated compression error for linear compressor) Under
conditions of Lemma B.16, additionally assume that the compressor is linear (Definition 2.2). When
η ≤ ησ, for t ≤ I:

Et0
[
‖Et + ηêt0+t‖2

]
≤ 9cIη

3(1− µ)L2β2t r
2

µ2d
√
ρε

Note that, compared with Lemma B.16, the bound is improved by the factor of d.
Proof :

êt0+t+1 = et0+t+1 − e′t0+t+1

= ∇F (xt0+t, θt0+t) + ξt0+t + et0+t − C(∇F (xt0+t, θt0+t) + ξt0+t + et0+t, θ̃t0+t)

− (∇F (x′t0+t, θt0+t) + ξ′t0+t + e′t0+t − C(∇F (x′t0+t, θt0+t) + ξ′t0+t + e′t0+t, θ̃t0+t))

= (∇F (xt0+t, θt0+t)−∇F (x′t0+t, θt0+t)) + (ξt0+t − ξ′t0+t) + (et0+t − e′t0+t)

− C
(

(∇F (xt0+t, θt0+t)−∇F (x′t0+t, θt0+t)) + (ξt0+t − ξ′t0+t) + (et0+t − e′t0+t), θ̃t0+t

)
= (∇F (xt0+t, θt0+t)−∇F (x′t0+t, θt0+t)) + ξ̂t0+t + êt0+t

− C
(

(∇F (xt0+t, θt0+t)−∇F (x′t0+t, θt0+t)) + ξ̂t0+t + êt0+t, θ̃t0+t

)
We estimating the norm of êt0+t using linearity of C:

Eθ̃t0+t
[
‖êt+1‖2 | xt0+t, et0+t, θt0+t

]
= Eθ̃t0+t

[
‖(∇F (xt0+t, θt0+t)−∇F (x′t0+t, θt0+t)) + ξ̂t0+t + êt0+t

− C
(

(∇F (xt0+t, θt0+t)−∇F (x′t0+t, θt0+t)) + ξ̂t0+t + êt0+t, θ̃t0+t

)
‖2
]

≤ (1− µ)Eθ̃t0+t
[
‖(∇F (xt0+t, θt0+t)−∇F (x′t0+t, θt0+t)) + ξ̂t0+t + êt0+t‖2

]
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Similarly to the proof of Lemma A.5, for any ν we have:

Et0
[
‖êt0+t+1‖2

]
≤ (1− µ)Et0

[
(1 +

1

ν
)‖(∇F (xt0+t, θt0+t)−∇F (x′t0+t, θt0+t)) + ξ̂t0+t‖2 + (1 + ν)‖êt0+t‖2

]
≤ 1

ν

t∑
i=0

((1− µ)(1 + ν))t−i+1 Et0
[
‖(∇F (xt0+t, θt0+t)−∇F (x′t0+t, θt0+t)) + ξ̂t0+t‖2

]
By selecting ν = µ

2(1−µ) and computing the sum of a geometric series, we have:

Et0
[
‖êt0+t+1‖2

]
≤ 2(1− µ)

µ

t∑
i=0

(
1− µ

2

)t−i+1
Et0
[
‖(∇F (xt0+t, θt0+t)−∇F (x′t0+t, θt0+t)) + ξ̂t0+t‖2

]
≤ 2(1− µ)

µ

t∑
i=0

(
1− µ

2

)t−i+1
max
i

Et0
[
‖(∇F (xt0+i, θt0+i)−∇F (x′t0+i, θt0+i)) + ξ̂t0+i‖2

]
≤ 4(1− µ)

µ2
t

max
i=0

Et0
[
‖(∇F (xt0+i, θt0+i)−∇F (x′t0+i, θt0+i)) + ξ̂t0+i‖2

]
≤ 4(1− µ)

µ2
t

max
i=0

Et0
[
‖∇F (xt0+i, θt0+i)−∇F (x′t0+i, θt0+i)‖

2
]

+
r2

d
+ ‖êt0‖2

Substituting this into bound for E + ηêt0+t and bounding the series by Proposition B.15:

Et0
[
‖Et + ηêt0+t‖2

]
≤ 2η4L2

(∑
i

(1 + ηγ)t−1−i

)2
t−1

max
i=0

Et0
[
‖êt0+i‖2

]
≤ 8cIη

4(1− µ)L2β2t
µ2η
√
ρε

(
t−1

max
i=0

Et0
[
‖∇F (xt0+i, θt0+i)−∇F (x′t0+i, θt0+i)‖

2
]

+
r2

d

)
Depending on whether Assumption C holds, we consider the following cases:

When Assumption C holds, we bound Et0
[
‖∇F (xt0+i, θt0+i)−∇F (x′t0+i, θt0+i)‖

2
]
with ˜̀2Et0

[
‖x̂‖2

]
≤

4˜̀2R2. Since R = cR
√

ε
ρ and r = cr

ε√
Lη

, we can select constants cR, cr and cη so that the second
term dominates the first one.

When Assumption C doesn’t hold hold, we use the following bound:

Et0
[
‖∇F (xt0+i, θt0+i)−∇F (x′t0+i, θt0+i)‖

2
]

≤ 3Et0
[
‖∇F (xt0+i, θt0+i)−∇f(xt0+i)‖2 + ‖∇f(xt0+i)−∇f(x′t0+i)‖

2 + ‖∇f(x′t0+i)−∇F (x′t0+i, θt0+i)‖
2
]

≤ 6(σ2 + L2R2)

as c(σ2 +R2). Using that η ≤ ησ ≤ ε2

d , we again can select the constants so that the second term
dominates.

As a result, we achieve the required bound:

Et0
[
‖Et + ηêt0+t‖2

]
≤ 9cIη

3(1− µ)L2β2t r
2

µ2d
√
ρε

�
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Escaping From a Saddle Point

We now show that, if the starting point is a saddle point, we move sufficiently far from it.

Lemma B.18 (Non-localization) Let t0 be an iteration such that et0 = 0 in Algorithm 1. Under
Assumptions A and B, let η and r be as in Definition B.2 and βt be as in Definition B.13. Let
γ = −λmin(∇2f(xt0)) >

√
ρε
2 and Et0

[
‖y′t0+t − yt0‖2

]
< R2 for all t ≤ I. Then for all t ≤ I, for

some constant c:

Et0
[
‖ŷt0+t‖2

]
≥ cβ

2
t η

2r2

d
,

where ŷt0+t = y′t0+t − yt0+t as in Definition B.10.

Proof : To simplify the presentation, we use c to denote constants, and it may change its meaning
from line to line.

Et0
[
‖ŷt0+t‖2

]
≥ (max(0,Et0 [‖Ξt‖ − ‖∆t‖ − ‖Et + ηêt0+t‖ − ‖Zt‖]))2

We show that Et0 [Ξt] = Ω
(
βtηr√
d

)
, and terms aside from Ξt are negligible, namely that in

expectation Et0 [‖∆t‖] ,Et0 [‖Et + ηêt0+t‖] ,Et0 [‖Zt‖] ≤ 1
10Et0 [‖Ξt‖].5 We prove the inequality by

induction. The inequality holds for t = 0 since all terms are 0.

Estimating Ξt. Since Ξt is a sum of independent Gaussians with variances 4(1 + ηγ)2(t−i−1) η
2r2

d ,
its total variance is

Et0
[
‖Ξt‖2

]
= 4

η2r2

d

t−1∑
i=0

(1 + ηγ)2i = 4
η2r2

d
β2t ,

And since Ξt is a zero-mean Guassian random variable, we know Et0 [‖Ξt‖]2 = 2
πEt0

[
‖Ξt‖2

]
. Note

that from the induction hypothesis it follows that Et0
[
‖ŷt0+t‖2

]
≤ 2Et0

[
‖Ξt‖2

]
≤ 8

η2r2β2
t

d .

Bounding ∆i. By the Hessian Lipschitz property, Et0
[
‖δi‖2

]
≤ 4ρ2R2.Then for i ≤ t and for η

selected as in Definition B.2 (see proofs of Lemmas B.16 and B.17), by the induction hypothesis:

Et0
[
‖x̂t0+i‖2

]
≤ 2Et0

[
‖ŷt0+i‖2

]
+ 2η2Et0

[
‖êt0+i‖2

]
≤ cη

2r2β2i
d

5Most of the proof can go through if we consider Et0
[
‖ · ‖2

]
instead of Et0 [‖ · ‖]. There is only one place in the

estimation of ‖∆t‖ which requires the first momentum.
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Therefore:

Et0 [‖∆t‖]

= Et0

[
‖η

t−1∑
i=0

(I − ηH)t−i−1δix̂t0+i‖

]
(Definition B.11)

≤ ηEt0

[
t−1∑
i=0

‖I − ηH‖t−i−1 · ‖δi‖ · ‖x̂t0+i‖

]

≤ η
t−1∑
i=0

(1 + ηγ)t−i−1
√
Et0 [‖δi‖2] · Et0 [‖x̂t0+i‖2] (Cauchy-Schwarz)

≤ cηρR ηr√
d
Et0

[
t−1∑
i=0

(1 + ηγ)t−i−1βi

]
(Et0

[
‖δi‖2

]
≤ 4ρ2R2 and Et0

[
‖x̂t0+i‖2

]
≤ cη

2r2β2t
d

)

≤ cηρR ηr√
d
Et0

[
t−1∑
i=0

(1 + ηγ)t−1
√
ηγ

]
(Proposition B.14)

≤ cηρR ηr√
d
Iβt (Proposition B.14, another direction)

≤ cηrβt√
d

(ηρcR

√
ε

ρ
· cI
η
√
ρε

) (R = cR

√
ε

ρ
and I =

cI
η
√
ρε

)

≤ ccRcI
ηrβt√
d
,

and it suffices to choose ccRcI ≤ 1
40 so that Et0 [‖∆t‖] ≤ 1

10Et0 [‖Ξt‖].

Bounding ‖Et + ηêt0+t‖. For a general compressor, by Lemma B.16 we know that

Et0
[
‖Et + ηêt0+t‖2

]
≤ ccIη

3(1− µ)L2χ2β2t
µ2
√
ρε

Using χ ≤ 2r, to show that Et0 [‖Et + ηêt0+t‖]
2 ≤ Et0

[
‖Et + ηêt0+t‖2

]
≤ 1

100Et0 [‖Ξt‖]2, it suffices
to guarantee that

cIη
3(1− µ)L2χ2β2t
µ2
√
ρε

≤ cβ
2
t η

2r2

d
⇐⇒ η ≤ c

µ2
√
ρεr2

cId(1− µ)χ2L2

Using that χ2 ≤ 2r2 for sufficiently large cr, we have:

η ≤ c
µ2
√
ρε

cId(1− µ)L2

For a linear compressor, By Lemma B.17 we have:

cIη
3(1− µ)L2β2t r

2

µ2d
√
ρε

≤ cβ
2
t η

2r2

d
⇐⇒ η ≤ c

µ2
√
ρε

cI(1− µ)L2
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Bounding ‖Zt‖. First, we consider the case when Assumption C doesn’t hold (i.e. ˜̀ = +∞).
Since Zt is the sum of independent random variables:

Et0
[
‖Zt‖2

]
≤ η2

t−1∑
i=0

(1 + ηγ)2(t−i−1)2η2σ2 ≤ 2η4β2t σ
2

To prove that Et0 [‖Zt‖]2 ≤ Et0
[
‖Zt‖2

]
< 1

100Et0 [‖Ξt‖]2, it suffices to show that

η4β2t σ
2 ≤ cβ

2
t η

2r2

d
⇐⇒ σ

√
d ≤ cr ⇐⇒ σ2d ≤ cc2r

ε2

Lη
⇐⇒ η ≤ c c

2
rε

2

σ2Ld
,

which holds when cη ≤ cc2r , by Definition B.2.
Finally, we consider the case when Assumption C holds (i.e. ˜̀< +∞). Since stochastic gradient

is Lipschitz, we have ‖ζ̂i‖ ≤ 2˜̀‖x̂i‖ and:

Et0
[
‖Zt‖2

]
= Et0

[
‖η

t−1∑
i=0

(I − ηH)t−i−1ζ̂i‖2
]

(Definition B.11)

≤ η2
t−1∑
i=0

Et0
[
‖(I − ηH)t−i−1ζ̂i‖2

]
(Noises are independent)

≤ η2
t−1∑
i=0

‖(1 + ηγ)t−i−1‖2 · Et0
[
‖ζ̂i‖2

]
(Since γ is the smallest negative eigenvalue of H)

≤ η2
t−1∑
i=0

‖(1 + ηγ)t−i−1‖2 · ˜̀2Et0
[
‖x̂t0+i‖2

]
(Assumption C)

≤ cη2I η
2r2β2t
d

(See derivation for ‖∆t‖ above)

Therefore Et0 [‖Zt‖] ≤ cη ˜̀
√
I βtηr√

d
. To guarantee that Et0 [‖Zt‖] ≤ 1

10Et0 [‖Ξt‖], it suffices to
show that

η ˜̀
√
I βtηr√

d
≤ cηrβt√

d
⇐⇒ η ˜̀

√
I ≤ c ⇐⇒

c2Iη
˜̀2

√
ρε
≤ c ⇐⇒ η ≤ c

√
ρε

c2I
˜̀2
,

which holds when c2Icη ≤ c. �

Theorem B.19 Under Assumptions A and B, for η as in Definition B.2, after T = Õ
(
fmax

ηε2

)
iterations of Algorithm 1 at least half of points x0, . . . ,xT are ε-SOSP w.h.p. The condition in Line 5
is triggered at most Õ(fmax

F ) = Õ(TI ) = Õ(ε−3/2) times.

Note that the fraction of ε-SOSP can be made arbitrary close to 1: to achieve 1− δ fraction, we
show that at most δ/2 fraction has large gradients and δ/2 fraction has Hessian with a large negative
eigenvalue. For simplicity, in the theorem we consider δ = 1/2.
Proof : As in the previous Lemma, c is used to denote constants and may change its meaning
from line to line. On the high level, the proof is the following: to show that at least half of points are
ε-SOSP, it suffices to show that at most quarter of the points have large gradient, i.e. ‖∇f(xt0)‖ ≥ ε,
and we show that at most quarter of the points have escape directions, i.e. λmin(∇2f(xt0)) < −√ρε.
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By Corollary A.8, by Markov inequality, when at least quarter of points have ‖∇f(xt)‖ ≥ ε, then
f(x0)− f(xT ) ≥ fmax with constant probability, which is impossible (setting the error to 0 can only
decrease E

[
‖et‖2

]
and E [f(xt)], and therefore the Corollary holds).

It remains to show that there is at most quarter of points such that λmin(∇2(f(xt))) ≤ −
√
ρε.

By Line 5 of Algorithm 1, and Proposition B.3, for any t′ there exists t0 ∈ [t′ − I, t′] such that
λmin(∇2f(xt0)) < −√ρε/2 and et0 = 0. We show that when compressed SGD starts from xt0 , the
objective improves.

Proposition B.20 If λmin(∇2f(xt0)) < −
√
ρε
2 , then for some t ≤ I:

f(yt0)− Et0 [f(yt0+t)] ≥ F

Proof : By Lemma B.18, we bound ŷt0+t = y′t0+t − yt0+t (Definition B.10):

Et0
[
‖ŷt0+t‖2

]
≥ cβ

2
t η

2r2

d
≥ c(1 + ηγ)2tη2

dηγ
· ε

2

Lη
≥ c(1 + ηγ)2tε2

dγL

For t = I, we have (1 + ηγ)I ≥ (1 + η
√
ρε)cI/η

√
ρε ≥ ecI . By selecting cI ≥ c log dLρ2R2

σε for some c,
we have Et0

[
‖ŷt0+t‖2

]
≥ 2R2, and therefore:

Et0
[
‖yt0 − yI‖2

]
= max(Et0

[
‖yt0 − yI‖2

]
,Et0

[
‖yt0 − y′I‖

]2
) ≥ 1

2
Et0
[
‖y′I − yI‖2

]
≥ R2

Since by Proposition B.9 yt0+t and y′t0+t have the same distribution, Et0 [‖yt0 − yI‖] = Et0 [‖yt0 − y′I‖],
and therefore

Et0
[
‖yt0 − yI‖2

]
≥ R2,

and by Corollary B.6:
f(yt0)− Et0 [f(yt0+I)] ≥ F .

�

(Proof of Theorem B.19 continued) Let t1, . . . , tk be the iterations where the condition at Line 5
of Algorithm 1 is triggered, and let t0 = 0 and tk+1 = T . Consider iterations i such that there
exists t′ ∈ [ti, ti+1) with ∇2f(xt′) < −

√
ρε/2 and ‖∇f(xt′)‖ ≤ ε. Therefore, by smoothness, for any

t ∈ [ti, ti+1) we have ‖∇f(xt)‖ ≤ ‖∇f(xt′)‖ + ‖∇f(xt′) − ∇f(xt)‖ ≤ ε + 2LR. Moreover, since
xti+1−1 ∈ B(xti ,R), ‖∇f(xti+1−1)‖ ≤ ε+ 2LR and by our choice of η, we have xti+1 ∈ B(xti , 2R).

By Line 6 of Algorithm 1, f(ti+1) ≤ f(ti) for any i. On the other hand, by smoothness:

f(xti+1) ≥ f(xti) + 〈∇f(xti+1),xti+1 − xti〉 −
L

2
‖xti+1 − xti‖2

≥ f(xti)− 2(ε+ 2LR)(3R)− L

2
9R2

≥ f(xti)− 10LR2

= f(xti)− Õ(ε)

Therefore, the objective decreases by at most Õ(ε), and since f(xti+1) < f(xti), the variance of
Eti
[
f(xti)− f(xti+1)

]
is at most Õ(ε).

Using the proposition above, we have:

E [f(y0)− f(yT )] ≥
∑
i

E
[
f(yti)− Et0

[
f(yti+1)

]]
,

35



with total variance kÕ(ε2). Therefore, by Chebyshev inequality, with constant probability we have

f(y0)− f(yT ) ≥ 1

4

T

I
F ≥ c

4

fmaxη
√
ρε

ηε2

√
ε3

ρ
≥ c

4
fmax,

which is impossible by selecting a sufficiently large constant in the choice of T .
�
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