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Abstract

Robust statistics has traditionally focused on designing estimators tolerant to a minority
of contaminated data. List-decodable learning [CSV17] studies the more challenging regime
where only a minority 1

k fraction of the dataset, k ≥ 2, is drawn from the distribution of
interest, and no assumptions are made on the remaining data. We study the fundamental task
of list-decodable mean estimation in high dimensions. Our main result is a new algorithm
for bounded covariance distributions with optimal sample complexity and near-optimal error
guarantee, running in nearly-PCA time. Assuming the ground truth distribution on Rd has
identity-bounded covariance, our algorithm outputs O(k) candidate means, one of which is
within distance O(

√
k log k) from the truth.

Our algorithm runs in time Õ(ndk)1, where n is the dataset size. This runtime nearly
matches the cost of performing k-PCA on the data, a natural bottleneck of known algorithms
for (very) special cases of our problem, such as clustering well-separated mixtures. Prior to our

work, the fastest runtimes were Õ(n2dk2) [DKK20], and Õ(ndkC) [CMY20] for an unspecified
constant C ≥ 6. Our approach builds on a novel soft downweighting method we term SIFT,
arguably the simplest known polynomial-time mean estimator in the list-decodable setting. To
develop our fast algorithms, we boost the computational cost of SIFT via a careful “win-win-
win” analysis of an approximate Ky Fan matrix multiplicative weights procedure we develop,
which may be of independent interest.

∗University of Wisconsin, Madison, ilias@cs.wisc.edu
†University of California, San Diego, dakane@cs.ucsd.edu
‡University of California, San Diego, dkongsga@ucsd.edu
§Microsoft Research, jerrl@microsoft.com
¶Stanford University, kjtian@stanford.edu. Part of this work was done as an intern at Microsoft Research.
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1 Introduction

Mean estimation has emerged as one of the cornerstone tasks in robust statistics, as the most
basic in a hierarchy of increasingly complex estimation problems. The problem is straightfor-
ward to state: given samples from a “nice” ground-truth distribution D, where an adversary
has (arbitrarily) corrupted a fraction of the data, recover the mean of D as accurately as pos-
sible. Due to its fundamental nature, robust mean estimation has received extensive study in
the statistics, theoretical computer science, and machine learning communities, starting from the
1960s [Ans60, Tuk60, Hub64, Tuk75].

Despite the apparent simplicity of the problem, efficient algorithms that achieved nearly-optimal er-
ror rates were not known in high-dimensional settings until recently [LRV16, DKK+19a, DKK+17].
These works studied mean recovery in the traditional setting where a majority of the data is
“trusted,” i.e. the fraction of corruptions is strictly less than 1

2 . For the standard formulation of
robust mean estimation, this assumption is necessary. Indeed, if only an α ≤ 1

2 fraction of points
can be trusted, then the dataset could consist of O( 1

α) well-separated clusters of “good” points.
Thus, the mean of each individual cluster is an equally valid solution to the robust mean estimation
problem, so asking for a single solution is ill-posed.

In many settings of theoretical and practical interest, asking for a majority of inlier points is too
strong of an assumption. To circumvent the issue of well-posedness in the α ≤ 1

2 regime, [CSV17]
proposed a relaxed notion of learning termed list-decodable learning. Rather than being restricted
to a single hypothesis, the algorithm is allowed to output a list of O( 1

α) hypotheses, with the
guarantee that at least one of them is close to the truth. In the context of robust mean estimation,
this amounts to outputting a list of O( 1

α) candidate means.

A natural problem in its own right, list-decodable mean estimation is also a generalization of a
number of other well-studied problems. A prototypical example is learning well-separated mixture
models, a task which has received extensive treatment in the literature [Das99, VW04, AM05, DS07,
AK05, RV17, HL18, DKS18, KSS18]. In this problem, data is drawn from a uniform mixture2 of
k “nice” distributions D1, . . . ,Dk, whose means are far apart relative to their covariances, and the
goal is to recover clusters which correspond to samples coming from each component. By running
a list-decodable mean estimation procedure with α = 1

k , each true cluster of points is an equally
valid “ground-truth distribution,” so the output list must contain candidate means close to each of
the true means. If the candidates are sufficiently close to the true means, standard techniques allow
for recovery of the true clustering. List-decodable mean estimation robustly extends this clustering
problem to tolerate adversarial noise or non-uniformity, up to constants in the output size.

Moreover, list-decodable mean estimation can be used to model important data science applications
such as crowdsourcing (where a majority of respondents could be unreliable or malicious) [SVC16,
MV18], or semi-random community detection in stochastic block models [CSV17]. This primitive
is particularly useful in the context of semi-verified learning [CSV17, MV18], where a learner can
audit a small amount of trusted data. Even if the trusted dataset is too small to directly learn
from, in conjunction with a list-decodable learning procedure it can pinpoint a candidate hypothesis
consistent with the verified data (indeed, only roughly log 1

α vetted points are required).

The first tractable algorithm for high-dimensional list-decodable mean estimation was due to [CSV17].
Their work considered the setting where D has (unknown) covariance Σ, satisfying Σ � σ2I for
some known σ (i.e. a second moment bound). In this setting, [CSV17] gave an algorithm which is
sample-optimal, runs in polynomial time, and which outputs a list of O( 1

α) candidate means, so

2Some algorithms extend beyond the uniform setting, but we present it this way here for simplicity of exposition.
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that some candidate is within `2 distance O(σ ·
√
α−1 · logα−1) from the mean of D. As was later

demonstrated in [DKS18], this error rate is optimal up to logarithmic factors under a second mo-
ment bound. However, the [CSV17] algorithm heavily relies on black-box semidefinite programming
solvers, and as a result the runtime is prohibitively large in high-dimensional problem instances.

The goal of our work is to develop much faster, truly scalable algorithms for list-decodable mean
estimation which achieve optimal statistical guarantees. This goal fits broadly into a larger line
of work focused on understanding the computational cost of robustness for basic statistical tasks.
In some settings, this line has demonstrated strong evidence that robustness comes at an inherent
computational cost [DKS17, HL19]. In contrast, recent algorithms have been developed that achieve
robustness essentially “for free” in many other settings [CDG19, DHL19, CDGW19, LY20, JLT20].

While list-decodable mean estimation has received a fair amount of attention (cf. Section 1.2),
there have only been a few results achieving improved runtimes. One line of work proposed an
algorithm design framework termed multi-filtering [DKS18, DKK20], based on learning multiple
candidate “weight functions.” In particular, [DKK20] uses this approach to design an algorithm
achieving nearly-optimal error, in time Õ(n2dα−2), where n is the size of the overall dataset. While
this runtime dramatically improves over the runtime in [CSV17], the quadratic dependence on n is
not ideal in very high-dimensional problem settings. Concurrently to [DKK20], the work [CMY20]
proposes a different, descent-based algorithm based on (approximate) positive semidefinite pro-
gramming, achieving optimal error (up to constant factors) in time Õ(ndα−C) for some constant
C ≥ 6. When α = Θ(1), the [CMY20] runtime is nearly-linear in the problem input size. However,
if α−1 scales polynomially with d, e.g. in learning a mixture model with many components in
moderate dimension, then this large dependence on α−1 may also be prohibitively slow.

In contrast to this somewhat murky runtime landscape, the state of affairs for clustering separated
mixture models is relatively clear. The fastest algorithm for clustering a mixture of k well-separated
components is almost twenty years old [VW04], and runs in time Õ(ndk), as a relatively simple and
elegant application of (approximate) k-principal components analysis (k-PCA). Since list-decodable
mean estimation can be thought of as the natural robust analog to clustering mixture models, it is
natural to ask:

Can we perform list-decodable mean estimation as efficiently as learning mixture models?

Concretely, since clustering mixture models corresponds to an instance of list-decodable learning
with α = k−1, the question becomes: can we solve list decodable mean estimation in time Õ(ndα )?
This runtime presents itself as a natural barrier for our problem, since any further runtime im-
provement would also imply faster learning of mixture models.

1.1 Our results

Our main contribution is to answer this question affirmatively for a wide range of problem parame-
ters. Our first result is the following, which states that we can nearly match the runtime of k-PCA
while obtaining optimal statistical guarantees up to constants.

Theorem 1 (informal, cf. Theorem 4). Let α ∈ (0, 1
2). Let D be a distribution with unknown mean

µ∗ ∈ Rd and covariance matrix Σ � σ2I. Let T ⊂ Rd have |T | = n, an α fraction of which is drawn
independently ∼ D. For n = Ω( dα), Algorithm 8 outputs a list of m = O( 1

α) hypotheses {µj}j∈[m]
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so that minj∈[m] ‖µ∗ − µj‖2 = O
(
σ
√

1
α

)
, with high probability. The runtime of the algorithm is

Õ

(
nd

α
+

1

α6

)
.

We make a few remarks regarding this result. It is known that a list size of Ω( 1
α), sample com-

plexity of Ω( dα), and error of Ω
(
σα−0.5

)
are information-theoretically necessary [DKS18]. Further,

without loss of generality d = ω(α−1), as otherwise there is a trivial algorithm for this problem
(cf. Appendix A), so the α−6 additive term in the runtime is only dominant when α−1 = Ω(

√
d).

Notably, even with this additive overhead, our runtime is the best-known in all parameter regimes.

We also present an algorithm with an alternative postprocessing scheme which removes the α−6

dependence in the runtime, at the cost of a
√

logα−1 factor in the final error.

Theorem 2 (informal, cf. Corollary 2). In the same setting as Theorem 1, Algorithm 8 using
Algorithm 9 instead of Algorithm 2 outputs a list of m = O( 1

α) hypotheses {µj}j∈[m] so that

minj∈[m] ‖µ∗ − µj‖2 = O

(
σ

√
logα−1

α

)
, with high probability. The runtime of the algorithm is

Õ

(
nd

α

)
.

Reference Runtime Error guarantee

[CSV17] poly(n, d, α−1) O(σα−
1
2

√
logα−1)

[DKK20] Õ(n2dα−2) O(σα−
1
2 logα−1)

[CMY20] Õ(nd(α−1)≥6) O(σα−
1
2 )

Our work Õ(ndα−1) O(σα−
1
2

√
logα−1)

Our work Õ(ndα−1 + α−6) O(σα−
1
2 )

Table 1: List-decodable mean estimation algorithm runtimes. All algorithms listed return lists
of size O( 1

α) and use sample complexity n = O( dα), which are information-theoretically optimal

[DKS18]. The Õ notation hides polylogarithmic factors in failure probability and dimension.

Our approach is inspired by the way in which fast algorithms for robust mean estimation in the
α → 1 regime were built. At a high level, a “simple” polynomial (but not nearly-linear) time
algorithm — namely, the filter — was first developed [DKK+19a, DKK+17, Ste18]. After the most
basic tractable algorithm for the problem was discovered, it was sped up in subsequent works by
combining it with tools developed by the continuous optimization community [CDG19, DHL19],
specifically based on regret analyses of the matrix multiplicative weights (MMW) updates.

In this paper, we accomplish both of these steps for the α � 1
2 regime. First, we design a simple

“basic” algorithm for the problem, and then we demonstrate how to speed it up using matrix regret
minimization tools. Both of these steps require substantially new ideas from previous work, which
we now briefly discuss, and survey in more detail in Section 1.3.

SIFT: a new, simple algorithm for list-decodable learning. Our first main contribution is
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a novel algorithm for list-decodable mean estimation, which we call SIFT (Subspace Isotropic Fil-

Tering), achieving optimal statistical guarantees (up to constants) in time Õ(n
2d
α ). While by itself,

SIFT does not achieve a nearly-linear runtime, its framework will be vital in designing our more
sophisticated algorithms. Crucially, SIFT is conceptually different from all previous approaches for
list-decodable mean estimation, and it is these differences that allow for our later speedups.

The main advantage of SIFT is its simplicity. All prior algorithms for list-decodable mean estimation
were quite complicated, with rather involved and lengthy analyses, whereas a complete analysis of
SIFT fits within roughly five pages. Because of this, we believe SIFT is of independent interest (both
theoretically and practically), and can find applications in other list-decodable learning settings.

Prior list-decodable mean estimation algorithms [DKS18, DKK20, CMY20] sought to directly iden-
tify candidate clusters of points. However, the techniques developed to do so turn out to be quite
complicated. In contrast, SIFT first seeks to solve an intermediate problem: find an O(α−1)-
dimensional subspace, containing (most of) the deviation of the true mean from the empirical
mean. This is motivated by — and can be seen as a robust analog of — the application of k-PCA
for clustering mixture models. After finding this subspace, we can then solve the problem in the
low dimensional subspace via a näıve clustering method, to find all clusters at once.

This approach has a number of conceptual advantages. For one, the aforementioned prior algorithms
often interlace “clustering” steps with “filtering” steps. Loosely speaking, a “clustering” step is
one in which the algorithm identifies a potential cluster of good points, or a union of such clusters,
and a “filtering” step is one in which the algorithm downweights points which are unlikely to be
in any such cluster. The interplay between recursive calls of these two types of steps results in a
variety of complications in speeding up prior algorithms. In contrast, we find all of the candidate
clusters simultaneously, in the very last step of our algorithm.

To solve the intermediate problem of finding a low-dimensional subspace, we need two main techni-
cal innovations: (1) a new outlier-scoring function (for detecting which data points are likely to be
outliers), and (2) a new safety condition (for maintaining an invariant on weights of the good set).
Our scoring function leverages information about the subspace spanned by the top k = Θ(α−1)
eigenvectors of the empirical covariance simultaneously. In contrast, prior scores such as those used
in the multi-filter [DKS18, DKK20] or in the basic filter for the α → 1 regime [DKK+17, Ste18],
only used the top eigenvector. To ensure that no single cluster of points dominates the scores, we
apply a whitening transformation on the subspace of top eigenvectors to make the data isotropic.
We demonstrate that downweighting points based on these scores preserves a strong safety condi-
tion we call saturation. This condition guarantees that the total fraction of weight remaining on
the good points actually increases as the overall total weight decreases, and ensures that we never
lose too much information about the good points, as the process continues.

Finally, we terminate the procedure when the kth largest eigenvalue of the empirical covariance
is small. We show that combining this with the saturation condition allows us to learn the mean
outside of a k-dimensional subspace. By combining with a low-dimensional algorithm to estimate
the mean within the subspace (i.e. näıve clustering), we obtain our overall SIFT algorithm.

FastSIFT: speeding up SIFT via Ky Fan regret minimization. While each iteration of the
SIFT algorithm can be performed in time Õ(ndk), SIFT requires Θ(n) iterations in the worst case.
This is because there are simple hard instances in which each iteration of SIFT removes only one data
point. Consequently, the main challenge is to combine the analysis of SIFT with a downweighting
procedure which guarantees termination in polylogarithmically many iterations.

To achieve this goal, we use tools from semidefinite programming (SDP) to design iterative schemes
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with stronger termination guarantees. This mirrors, and is inspired by, the approach used in the
α → 1 regime, where tools such as packing semidefinite program solvers [CDG19] and matrix
multiplicative weights [DHL19] were used to speed up the basic filter [DKK+17, Ste18] to achieve
nearly-linear runtimes. We note that [CMY20] also uses SDP tools to obtain their runtime im-
provements. However, their use of these tools differs substantially from our work.

As we will explain in more detail in Section 1.3, there are a number of new technical and conceptual
challenges to adapting matrix optimization tools to our setting. The first main difficulty is that
we require MMW-style regret guarantees against Ky Fan k-norms, for k = Θ( 1

α), rather than the
standard spectral norm. However, to our knowledge the only prior analysis of such a procedure was
due to [CMY20], which lost multiple factors of k in their regret guarantees. To circumvent this, we
provide a novel analysis of a “lazy mirror descent” procedure adapted to a Ky Fan constraint set,
and prove that it achieves the same sorts of “local norm” bounds as [ZLO15] achieved for spectral
norm procedures. Proving these guarantees requires a great deal of technical care (particularly
under approximate k-PCA operations), and we believe it may be of independent interest.

Even with this powerful primitive, it is still not clear how to plug in the faster Ky Fan solver we
develop to speed up SIFT. This is because several of the operations in SIFT appear to not be
compatible with the requirements of regret minimization procedures. To get around this difficulty,
we introduce a number of “exit conditions” for our multiplicative weights updates that, if violated,
guarantee a great deal of progress on a different potential. If these exit conditions are not violated,
then the iterative updates are sufficiently stable, ensuring progress on the original SIFT objective.

1.2 Related work

Robust statistics in its current form was first proposed in a series of papers by statisticians in
the 1960s and 1970s [Ans60, Tuk60, Hub64, Tuk75]. Since then, there has been a tremendous
amount of work in the area from the statistics community, see e.g. [Hub04]. Despite this, efficient
algorithms for fundamental high dimensional problems in this field were not known until quite
recently [DKK+19a, LRV16, DKK+17]. These algorithms and the techniques developed therein
have been used to give robust estimators for a range of more complex problems, including covari-
ance estimation [DKK+19a], sparse estimation tasks [BDLS17, DKK+19c], learning graphical mod-
els [CDKS18], linear regression [KKM18, DKS19], stochastic optimization [PSBR18, DKK+19b],
and defending backdoor attacks against neural networks [TLM18], to name a few. The reader is
referred to [DK19, Ste18, Li18] for more comprehensive overviews of these advances.

The aforementioned papers study robust statistics in the setting where α → 1. List-decodable
learning as studied in this paper was first considered in [CSV17]; a similar learning model was
introduced in [BBV08], albeit in a different setting. Subsequent research on list-decodable learning
can broadly be split into two lines of work, which we now describe.

The first sequence focuses on obtaining better error bounds when the distribution is assumed to have
additional structure, typically in the form of some control over the higher moments [HL18, KSS18,
DKS18]. While these algorithms are able to achieve better error when the unknown distribution
is (say) Gaussian, these algorithms require estimating higher order moments and also often use
heavy-duty tools such as the sum-of-squares hierarchy. As a result, they all require significantly
more samples and expensive computation than is required in the setting we study (i.e. under a
minimal second moment bound assumption). These techniques have also been extended to settings
such as list-decodable regression [RY20, KKK19] and subspace recovery [RY20, BK20].

The second line of work — and the one we extend — is one focusing on developing more efficient
algorithms for list-decodable mean estimation. Prior to our work, two different approaches have
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been proposed for this problem. One, developed in [DKS18, DKK20], presents a method termed a
multi-filter. The multi-filter recursively uses univariate projections of the data to either filter out
a small fraction of clear outliers, or divide the data into overlapping clusters. Using this frame-
work, [DKK20] achieve a runtime of Õ(n2dk2), and an error guarantee of O

(
σ · α−0.5 log(1/α)

)
.The

second approach, and arguably the closest to ours, is the one introduced in [CMY20], which achieves
a runtime of Õ(ndα−C) for some C ≥ 6. Their algorithm also uses O(α−1)-dimensional information
and tools from fast matrix optimization, specifically, generalizations of packing SDPs for the Ky
Fan norm (an approach which builds on [CDG19], which handled the α→ 1 regime).

We emphasize that we use these tools in fundamentally different ways than [CMY20]. In particular,
the algorithm in [CMY20] uses a primal-dual approach reminiscient of [CDG19] to directly find
one candidate cluster at a time. They then remove this cluster, and repeat the process. This
approach requires rather sophisticated scoring techniques, and as a result their algorithm requires
solving generalizations of packing SDPs in Ky Fan norms, similar to how [CDG19] require black-box
packing SDP solvers. However, these solvers lose several O(α−1) factors in their runtime bounds.
Moreover, even in the mixture model case, any process which sequentially removes one cluster at
a time, and performs operations in O(α−1) dimensions, must pay a quadratic overhead in O(α−1)
in the runtime. To obtain a linear dependence on α−1 requires an algorithmic approach beyond
iterative cluster removal (and also requires SDP solvers with faster rates).

In sharp contrast, the algorithms we develop do not require such heavy-duty SDP solvers, but
rather only need a refined regret guarantee against the k-Fantope, which drives our weight removal
process. Rather than directly trying to find candidate clusters, we achieve our runtime improvement
by identifying a low-dimensional subspace, such that outside the subspace the problem is trivial. We
can then find all the clusters simultaneously, allowing us to avoid the quadratic overhead inherent
in the [CMY20] approach, and the reliance on Ky Fan norm packing SDPs.

1.3 Technical overview

We now highlight the main technical ideas behind our algorithms. We begin by developing our basic
algorithm, SIFT (cf. Theorem 3 in Section 3), focusing on how we overcome challenges which arise
in modifying prior work from the “large-α” regime [DKK+17, Li18, Ste18, DHL19] to the setting
where most of the points are outliers. We then show how to leverage the tools built in developing
SIFT to be combined with a weight removal scheme based on a Ky Fan-norm variant of the MMW
regret minimization framework, to develop our final algorithm (cf. Theorem 4 in Section 5).

Throughout this overview, we define integer k = Θ( 1
α) to represent some dimensionality of a linear

subspace; particular constants will be specified in relevant algorithms.

New safety condition for weight removal. A powerful meta-technique which has emerged
in the design of robust estimation algorithms is soft downweighting, or “filtering”. Consider for
simplicity first a corrupted dataset where an 1− ε fraction of the points are drawn from a “ground-
truth” distribution, for ε� 1

2 . The strategy of filtering then consists of the following steps.

1. Initialize a set of uniform weights w. We will try to non-uniformly decrease these to (relatively)
downweight the corrupted subset B.

2. Iteratively identify a “certificate” of corruption, whose presence indicates outliers (e.g. an
eigenvalue which is too large, and could only have been caused by an adversary). Ideally, in
the absence of a certificate, the algorithm can successfully terminate with a good estimate.

3. Use the certificate to define scores {τi}, such that the weighted average score in B is larger
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than the weighted average in the good subset S. Concretely, the following “safety condition,”∑
i∈S

wiτi ≤
∑
i∈B

wiτi, (1)

is used. The guarantee (1) is referred to as a safety condition because it allows us to conclude
that

∑
i∈S wi − w′i ≤

∑
i∈B wi − w′i, where

w′i ←
(

1− τi
maxi′ τi′

)
wi, ∀i. (2)

Ergo, downweighting points proportionally to their score removes less good weight than bad.

Eventually, the goal is to argue that enough weight must have been removed so there are no more
bad points remaining. This clearly is too weak a goal in the small-α regime, since even removing
e.g. twice as much bad weight as good weight can quickly lead to a situation where there are no
good points remaining, and yet only a 3α fraction of the original total weight has been removed.
To drive our filtering approach in this work, we use a different notion of safety. We propose a
normalized variant of (1), e.g. ∑

i∈S

wi
‖wS‖1

τi ≤
1

2

∑
i∈T

wi
‖w‖1

τi, (3)

to be our safety condition. Here, T = S ∪ B is the whole dataset. This specific choice of safety
condition is due to the fact that iteratively decreasing weights via (2), using scores which satisfy
(3), maintains the invariant

‖wS‖1 ≥ α
√
‖w‖1. (4)

We call such a set of weights saturated ; this is made formal in Lemma 1. In other words, the total
weight of the good set becomes more saturated as the algorithm progresses, to combat the fact that
there are less good points to work with. By carefully balancing this saturation invariant with a
choice of termination condition, we show that no matter how much weight we have removed when
the algorithm ends, (4) suffices to guarantee we attain the minimax estimation error.

Learning the mean in all but k dimensions: SIFT. We now sketch how to use the invariant
(4) for mean estimation. Our first observation is that in the regime where the ambient dimension
d = Θ(k), it is straightforward (up to logarithmic factors) to attain estimation error

√
k just by

randomly sampling points, since a typical point from S is at this distance. This observation breaks
the learning problem into two pieces: it suffices to learn the mean in any d−k-dimensional subspace
up to Euclidean error

√
k, and then randomly sample in the remaining k dimensions.

It is thus natural to use the kth largest eigenvalue of the covariance matrix as a termination
criterion. This idea of “learning in all but k dimensions” is suggested by the special case of
learning uniform, well-separated mixture models where the dataset is composed of k pieces, each
drawn from a different bounded-covariance distribution. In this case, the empirical covariance will
have k large eigenvectors (caused by different cluster means), and the remaining directions will be
concentrated. More generally, in the robust setting, any set of points with a large enough effect to
fool the algorithm will intuitively simulate one of these clusters, and create a large eigendirection.
It remains to show how to use the presence of k large eigenvalues to create scores satisfying (3).
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Letting λk(·) denote the kth largest eigenvalue, we choose our termination criterion as

λk(Covw(T )) = O

(
1√
‖w‖1

)
. (5)

Here, Covw(T ) is the empirical covariance under given weights w. To use (5), we prove (cf. Lemma 2)
that if weights w are saturated (i.e. they satisfy (4)), then the weighted empirical mean satisfies

‖µw(T )− µ∗‖2 = O

(√
‖Covw(T )‖op

‖w‖1
‖wS‖1

)
.

Plugging in (5) to the above bound, and using the definition of saturation (4), the mean distance
bound above restricted to the space orthogonal to the top k eigenvectors indeed is O(α−0.5) =
O(
√
k). So, it suffices to show that the converse of (5) certifies scores satisfying (3).

A first natural attempt is to simply define scores of points via the length of their projection into
the top-k eigenspace of the covariance matrix, Vk ∈ Rd×k:

τi :=
∥∥∥V>k (Xi − µw(T ))

∥∥∥2

2
.

Intuitively, if the weighted sum of these scores, i.e. the Ky Fan-k norm of the covariance, is large
(certified by (5) not holding), it must be because many clusters of far-out points are creating large
eigenvalues. However, even then it is not clear that (3) holds, since the k large directions may
not be of equal magnitude (or worse, the “true” cluster may be the largest eigendirection). Our
solution to this is simple: we “whiten” the top k eigendirections to all have roughly equal energy,
by renormalizing the top eigenspace to be the identity. In particular, we choose the scores

τi :=

∥∥∥∥Σ− 1
2

k V>k (Xi − µw(T ))

∥∥∥∥2

2

, where Σk := V>k Covw(T )Vk.

It is not difficult to show that the above scores satisfy the safety condition (3), whenever the
termination condition (5) does not hold. By using this weight removal framework and iteratively
maintaining the invariant (3), we show that whenever we have removed too much weight, the
algorithm must terminate. Because every iteration of (2) removes at least one point, the algorithm
runs in at most n iterations. The bottleneck computation of each iteration is one top-k eigenspace
computation, i.e. k-PCA. These runtime and error guarantees are summarized in Theorem 3.

Scoring via Ky Fan matrix multiplicative weights. To obtain the main result of this paper,
it remains to show how we can improve the number of iterations of our algorithm to polyloga-
rithmic. For this, we turn to a strategy originating in [DHL19] in the large-α regime, which is to
use the matrix multiplicative weights regret minimization framework to define weights for stronger
performance guarantees. The intuition is that by using scores defined by more than the top eigen-
vector of the current covariance matrix (or in this paper, the top k eigenvectors), we can capture
more than one bad point at a time and obtain better worst-case iteration bounds. The main regret
guarantee of MMW makes this formal. Roughly speaking, it says that if in each iteration we can
downweight the current covariance so that its inner product with a certain matrix given by the
MMW framework is small, then in logarithmically many iterations we can halve the operator norm.

A key technical contribution of this paper is to give a Ky Fan k-norm (sum of k largest eigenvalues)
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generalization of MMW, which typically gives operator norm guarantees. We analyze our algorithm
and show that it is tolerant to the error guarantees of approximate k-PCA procedures such as
simultaneous power iteration [MM15]. Crucial to our tightest runtime bounds are strengthenings
of the analysis of a similar procedure found in [CMY20] in several places, which save multiple k
factors in our guarantees and may be of independent interest; we now highlight a few here.3

The main idea of our Ky Fan MMW regret guarantee is to bound the cost of actions {Yt}t≥0

against a sequence of positive semidefinite “gain matrices” {Gt}t≥0 as measured by inner products.
The actions {Yt}t≥0 are given by the algorithm (depending on the gain matrices), and live in

Y := {Y ∈ Rd×d | 0 � Y � I,Tr(Y) = k}.

The reason for this choice of action set, the “k-Fantope,” is because it satisfies

sup
U∈Y
〈U,G〉 = ‖G‖k ,

where ‖·‖k is the Ky Fan k-norm, so the best action in hindsight captures this norm. Ultimately,
our filtering scheme requires matrix-vector query access to each Yt, which are defined by Bregman
projections onto the set Y. It was shown in [CMY20] that the natural choice of projection, induced
by a regularizer r(Y) chosen to be matrix entropy, is a truncated exponential, where truncation
occurs on the top-k eigenspace. The bottleneck cost of iterations is computing this space.

To this end, we show new guarantees on the performance of approximate k-PCA, which allow
for their use in this process. One example is that we show roughly 1

ε iterations of simultaneous
power iteration on a positive semidefinite matrix S ∈ Rd×d, resulting in approximate eigenvectors
V ∈ Rd×k, are enough to guarantee (cf. Proposition 7)

(1− ε)S � PSP + (I−P) S (I−P) � (1 + ε)S, where P := VV>.

This improves a similar analysis in [CMY20], which showed an approximation factor of 1± kε.
The main other technical piece required by our MMW algorithm is a refined divergence bound of
the form (cf. Lemma 13 for a formal statement)

V r∗
S (S + ηG) ≤ ‖ηG‖op 〈ηG,Y〉 , where Y := ∇r∗(S) ∈ Y,

a strengthening of V r∗
S (S + ηG) ≤ k ‖ηG‖2op .

Here, V r∗ is the Bregman divergence in the convex conjugate of r. The latter bound follows easily
from strong convexity of r (and hence smoothness of its dual); we require the former strengthening
so that we can use the action matrices {Yt}t≥0 to define scores, to decrease inner products.4 In
particular, the weaker bound above has no dependence on Y, so without the stronger bound it is
unclear how to use the MMW update structure to downweight.

We prove our refined divergence bound by adapting arguments from previous literature [CDST19,
JLL+20] on using Hessian formulae of spectral functions to prove divergence bounds, whenever
the conjugate r∗ is twice-differentiable, and applying the Alexandrov theorem. Finally, up to (non-
dominant) approximation error terms, our Ky Fan MMW procedure’s main guarantee can be stated
as: given a sequence of positive semidefinite matrices {Gt}t≥0, let step size η > 0 satisfy ηGt � I

3We believe that similar wins following from our tighter analysis apply to the algorithm of [CMY20], and brings

their overall runtime down to roughly Õ(ndk4). We give a discussion of this dependence on k in Appendix B.
4It is a strengthening since ∇r∗(S) ∈ Y, so we can apply a matrix Hölder’s inequality and use Tr(Y) = k, ∀Y ∈ Y.
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for all t. The procedure plays a sequence {Yt}t≥0 ∈ Y, so that for any T ∈ N,∥∥∥∥∥ 1

T

T−1∑
t=0

Gt

∥∥∥∥∥
k

≤ 2

T

T−1∑
t=0

〈Gt,Yt〉+
k log d

ηT
. (6)

Win-win-win analysis of MMW: FastSIFT. We now describe how to use the regret guarantee
(6) to obtain a faster algorithm. In particular, when the sequence {Gt}t≥0 is monotonically non-
increasing, we can choose η = ‖G0‖−1

op to meet all the boundedness conditions ηGt � I. If we can

guarantee that every 〈Gt,Yt〉 is bounded by, say, 1
5 ‖G0‖k, and k ‖G0‖op ≤ 2 ‖G0‖k (i.e. the top k

eigenvalues of G0 are roughly uniform), the above regret guarantee becomes

‖GT ‖k ≤

∥∥∥∥∥ 1

T

T−1∑
t=0

Gt

∥∥∥∥∥
k

≤ 2

5
‖G0‖k +

2 ‖G0‖k log d

T
.

Now, T = O(log d) iterations suffice to halve the Ky Fan-k norm. Our strategy, following [DHL19],
is to let Gt be the empirical covariance matrix with respect to wt, for monotonically decreasing
weight sequence {wt}t≥0 formed by safe weight removals (3). At this point, a few questions remain.

1. How do we define the sequence {Gt}t≥0 so that it is monotonically decreasing? For instance,
our safety condition (3) is defined with respect to normalized scores, but normalizing the
covariance matrices makes them no longer necessarily monotone.

2. How do we whiten the scores so that the effect of any of the top k eigenvalues does not
dominate? This requirement arises in several places in the analysis (akin to in the analysis of
SIFT), for example in our earlier assumption that k ‖G0‖op ≤ 2 ‖G0‖k. We note that using a
trick similar to normalizing the top-k eigenspace to be the identity, as in SIFT, is not effective
here as these spaces may be incompatible, and thus break monotonicity of gain matrices.

3. How do we safely downweight the covariances to make them satisfy 〈Gt,Yt〉 ≤ 1
5 ‖G0‖k?

We show that a careful analysis of each failure case leads to a different “win condition” in the
algorithm, which lets us certify progress in a different way.

1. We restart the algorithm in phases where the `1 norm of the weights halves, so that in each
phase the normalizing constant is stable. There can only be logarithmically many phases.

2. We restart the algorithm whenever the kth largest eigenvalue of the covariance matrix is smaller
than half the largest, setting aside the k eigendirections. The remainder of the algorithm works
in the space orthogonal to these directions. Since each time we set aside k directions we halve
the operator norm on the remaining subspace, this only occurs logarithmically many times.

3. Whenever Θ(log d) iterations pass without meeting either of the above “exit criteria,” we use
binary searches to safely remove as much weight as possible so that the next covariance matrix
Gt meets the inner product criteria through Yt to progress. This argument follows the safety
analysis of SIFT closely, crucially using that the top k eigenvalues are roughly uniform.

By carefully reasoning about when each of the above three cases occurs, we eventually conclude
that we are able to return in polylogarithmically many iterations a pair (B, w) such that B is an
orthonormal basis of a subspace of dimension roughly k log d, and w is some weight vector whose
empirical covariance’s projection into B⊥ has bounded operator norm. At this point, we can use
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the empirical mean in B⊥ to learn the mean in all but k log d dimensions. To learn the mean in B,
we run SIFT with a reduced sample size, resulting in a poly(k) additive overhead in the runtime.

Putting it all together: ListDecodableMeanEstimation. Implicitly, the above argument assumed
that we had a polynomially bounded dataset diameter; we show a simple equivalence class parti-
tioning, PreProcess, based on one-dimensional projections efficiently yields clusters which achieve
polynomially bounded diameter, so that the entire good dataset lies in the same partition (with
high probability). We also give a greedy clustering step PostProcess in a low-dimensional subspace
which reduces the size of the randomly sampled list to the optimal O(k). Applying PreProcess,
FastSIFT, and PostProcess sequentially yields our final “fast” algorithm, whose guarantees are given
in Theorem 4. We also give an alternative random sampling-based procedure in Corollary 2, which
trades off accuracy by roughly a

√
log k factor to remove the additive poly(k) term in our runtime.

2 Preliminaries

We give notation used in this paper in Section 2.1 and commonly-used facts in Section 2.2. We set
up the list-decodable mean estimation problem and preliminary assumptions in Section 2.3.

2.1 Notation

General notation. We let N (µ,Σ) denote the multivariate Gaussian distribution with specified
mean and covariance, and [d] denote the set of natural numbers 1 ≤ j ≤ d. Norms and inner
products are denoted by ‖·‖ and 〈·, ·〉; when applied to a vector argument, ‖·‖p is the `p norm. The
nonnegative reals are denoted R≥0; we also denote the (solid) probability simplex in n dimensions
by ∆n = {w ∈ Rn≥0 | ‖w‖1 ≤ 1}. The all-ones vector in appropriate dimension is 1. Finally,
unless otherwise specified all notions of approximation throughout will be multiplicative; that is, a
(1 + ε)-approximation to a quantity α lies in the range [(1− ε)α, (1 + ε)α].

Matrices. Matrices will be denoted in boldface throughout; the zero and identity matrices in
appropriate dimension are 0 and I. The set of symmetric matrices in Rd×d is Sd, and the positive
semidefinite subset is Sd≥0. The Loewner order on Sd is denoted by �, and λmax(·), λmin(·), and Tr(·)
are operations on Sd which return the largest eigenvalue, smallest eigenvalue, and trace respectively;
for k ∈ [d], the operation λk(·) returns the kth largest eigenvalue of a symmetric matrix. In this
paper, when applied to a matrix in Sd≥0, ‖·‖k for k ∈ [d] is the Ky Fan norm, i.e. sum of the top k
eigenvalues. We also specially define ‖·‖op and ‖·‖tr to be the Ky Fan 1 and d norms respectively.
The inner product between symmetric matrices A, B is 〈A,B〉 = Tr (AB). We define the matrix
exponential (on Sd) and matrix logarithm (on Sd≥0) in the usual way, i.e. exp and log applied
entrywise on the eigenvalues of the matrix in the appropriate basis.

Convex analysis. We say that twice-differentiable function f : X → R, for X ⊆ Rd, is µ-strongly
convex with respect to some norm ‖·‖ if for all x ∈ X and v ∈ Rd, v>∇2f(x)v � µ ‖v‖2. We say
that it is L-smooth in ‖·‖ if its gradient is Lipschitz in the dual norm, e.g. ‖∇f(x)−∇f(x′)‖∗ ≤
L ‖x− x′‖ for all x, x′ ∈ X . Finally, we define the Bregman divergence, a non-Euclidean notion of
distance, with respect to a convex distance-generating function f :

V f
x (x′) := f(x′)− f(x)−

〈
∇f(x), x′ − x

〉
.

The Bregman divergence satisfies several properties which make it useful for analysis of mirror
descent algorithms and their variants. In particular, it is nonnegative, convex in its argument, and
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satisfies the following well-known “three-point equality”:

〈y − x,∇f(u)−∇f(x)〉 = V f
u (x)− V f

u (y) + V f
x (y). (7)

Distributions. Let T be a set of points in Rd with |T | = n, and let w ∈ ∆n. For any T ′ ⊆ T ,
wT ′ ∈ ∆n is the vector which equals w on coordinates in T ′, and is zero elsewhere. We refer to the
empirical mean and covariance, parameterized by weights w and subset T ′ ⊆ T , by

µw(T ′) :=
∑
i∈T ′

wi
‖wT ′‖1

Xi, Covw(T ′) :=
∑
i∈T ′

wi
‖wT ′‖1

(
Xi − µw(T ′)

) (
Xi − µw(T ′)

)>
.

Finally, we will also define the “unnormalized” covariance matrix by

C̃ovw(T ′) :=
∑
i∈T ′

wi
(
Xi − µw(T ′)

) (
Xi − µw(T ′)

)>
.

2.2 Useful facts

We will frequently use the following well-known facts throughout the paper. In both, w ∈ ∆n is a
weight vector corresponding to a set of points T ⊆ Rd.

Fact 1. We have that

0 �
∑
i∈T

wi(Xi − µw(T ))(Xi − µw(T ))> =⇒ µw(T )µw(T )> �
∑
i∈T

wi
‖w‖1

XiX
>
i .

Thus, for any vector v ∈ Rd,

(µw(T )− v)(µw(T )− v)> �
∑
i∈T

wi
‖w‖1

(Xi − v)(Xi − v)>.

Fact 2. For any vector v ∈ Rd,∑
i∈[n]

wi(Xi − v)(Xi − v)> =
∑
i∈[n]

wi(Xi − µw(T ))(Xi − µw(T ))> + ‖w‖1 (µw(T )− v)(µw(T )− v)>

�
∑
i∈[n]

wi(Xi − µw(T ))(Xi − µw(T ))>.

2.3 List-decodable mean estimation

In the list-decodable mean estimation problem, we are given a set T of n points {Xi}i∈T in Rd.5 For
some known α ∈ (0, 1

2 ], there is a subset S ⊆ T of size αn such that all {Xi}i∈S are independent
draws from distribution D with mean µ∗, where the covariance of D is identity-bounded:

Ex∼D
[
(x− µ∗) (x− µ∗)>

]
� I.

It is clear that by scaling the space, this assumption appropriately generalizes to the case when
the covariance bound is σ2I. The goal of list-decodable mean estimation is to output a list L, such

5In an abuse of notation, we will both let T denote the set of points itself, as well as an index set for the points.
Correspondingly, we will interchangeably use Xi ∈ T and i ∈ T .

12



that one of the elements of the list is close to the “true mean” µ∗. Our aim will be to output a
list of size |L| = O( 1

α), which is necessary simply by identifiability of the subset S; it was shown as
Proposition 5.4(ii) of [DKS18] that for such a list size, the minimax optimal error for the problem
scales as

min
µ∈L
‖µ− µ∗‖2 = Θ

(
1√
α

)
. (8)

Regarding the sample size n, we additionally recall the following (note in Assumption 1 that the
matrix of interest is not the covariance of S, as it is centered at the true mean µ∗).

Proposition 1 (Proposition B.1, [CSV17]). For any constant ε ∈ (0, 1), there are constants c, C >
0 such that with probability at least 1 − exp(−Ω(n)), for n = Cd

α , if an (1 + ε)α fraction of points
in {Xi}i∈T ⊆ Rd is drawn from D with covariance bounded by cI, then Assumption 1 holds.

Assumption 1. There is a subset S ⊆ {Xi}i∈T ⊆ Rd of size αn = Θ(d) satisfying

1

|S|
∑
i∈S

(Xi − µ∗) (Xi − µ∗)> � I.

In the remainder of the paper, we will operate under Assumption 1. We will also explicitly assume
that 1

α = o(d), and d ≤ n = Θ( dα), for simplicity. The latter assumption is without loss of generality
for any failure probability larger than exp(−Ω(d)); for any smaller failure probability, Proposition 1
implies that the assumption still holds by adjusting the sample size by a logarithmic factor. It is
also fairly straightforward to see that the former assumption is also without loss of generality,
since in the case 1

α � d, it suffices to sample O( 1
α log 1

δ ) random points and apply a variant of the
post-processing procedure of Section 5.1 to obtain the correct list size and error guarantee; we give
a formal treatment of this case in Appendix A.

Finally, throughout the variable k will be reserved for values which are Θ( 1
α) for explicitly stated

constants. In particular, many of our algorithms will rely on performing operations such as principal
components analysis in Θ( 1

α) dimensions. As discussed earlier, this is because a substantial portion
of the challenge in the estimation problem is reducing to the problem of learning the mean in Θ( 1

α)
dimensions, at which point näıve random sampling solves the problem up to logarithmic factors.

3 Filtering in k dimensions: SIFT

In this section, we develop a simple, polynomial-time algorithm for solving the list-decodable mean
estimation problem based on a “soft downweighting” approach. We outline some preliminary
notions and bounds used in our algorithms and analysis in Section 3.1, which will also be used in
Sections 4 and 5. We then use these tools to analyze our “slow” algorithm, SIFT, in Section 3.2.

3.1 Filtering preliminaries

We define two concepts which will be useful in stating guarantees of our downweighting methods.

Definition 1 (Saturated weights). We call weights w ∈ ∆n “saturated” if w ≤ 1
n1 entrywise, and

‖wS‖1 ≥ α
√
‖w‖1.

Definition 2 (Safe scores). We call scores {τi}i∈T ∈ Rn≥0 “safe with respect to w ∈ ∆n” if

∑
i∈S

wi
‖wS‖1

τi ≤
1

2

∑
i∈T

wi
‖w‖1

τi.
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KFMMW ApproxProject

Power ApproxKFMMW

DecreaseKFNorm

BicriteriaFilter

SIFT FastSIFT ProduceGoodTuple

PreProcess ListDecodableMeanEstimation PostProcess

FasterSIFT

SamplePostProcess

Section 6

Section 3
Section 4

Section 5

Appendix A

Figure 1: A picture of the dependencies of the different algorithms of this paper together
with which section the algorithms are described in. Note that we have a dashed arrow
from FasterSIFT to ListDecodableMeanEstimation since we present two different versions of
ListDecodableMeanEstimation, where only the second (alternative) version uses FasterSIFT.

When the weights w are clear from context, we will simply call the scores τ “safe”.

In algorithms based on soft filtering in the presence of a small amount of adversarial noise (see e.g.
[DKK+17, Li18, Ste18]), a typical goal is to remove more “good weight” than “bad weight” from an
iteratively updated weight vector. However, when the overwhelming majority of the initial weight is
bad, clearly this is too strong of a goal. The intuition for Definition 1 is that a weaker goal suffices
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for the guarantees of our methods; while the amount of good weight is decreasing throughout,
Definition 1 requires that the good weight becomes more saturated in the weight vector when more
weight is removed. We now make the connection between these definitions formal.

Lemma 1. Consider a set of saturated (cf. Definition 1) weights w(0), and updates of the form:

1. For 0 ≤ t < N :

(a) Let
{
τ

(t)
i

}
i∈T

be safe (cf. Definition 2) with respect to w(t).

(b) Update for all i ∈ T :

w
(t+1)
i ←

(
1−

τ
(t)
i

τ
(t)
max

)
w

(t)
i , where τ (t)

max := max
i∈T |w(t)

i 6=0

τ
(t)
i . (9)

Then, the result of the updates w(N) is also saturated.

Proof. First, fix some iteration t, and let w := w(t), τ := τ (t), and w′ := w(t+1). Define

δS :=
∑
i∈S

wi − w′i
‖wS‖1

, δT :=
∑
i∈T

wi − w′i
‖w‖1

.

Note that by the assumption that τ is safe and the iteration (9),

δS =
1

τmax

∑
i∈S

wi
‖wS‖1

τi ≤
1

2τmax

∑
i∈T

wi
‖w‖1

τi =
1

2
δT .

Hence, using 1− 1
2δT ≥

√
1− δT for all δT ∈ [0, 1], we have∥∥∥w(t+1)

S

∥∥∥
1∥∥∥w(t)

S

∥∥∥
1

= 1− δS ≥
√

1− δT =

√√√√√
∥∥∥w(t+1)

T

∥∥∥
1∥∥∥w(t)

T

∥∥∥
1

. (10)

Inductively telescoping (10), using that w(0) was assumed to be saturated, and finally comparing
with Definition 1, yields the desired conclusion that w(N) is saturated.

We next give three helper lemmas which help reason about how the quality of empirical estimates
based on S deteriorate, as the amount of weight allocated to S is reduced. The first shows how the
quality of the empirical mean is related to the empirical covariance and proportion of weight in S
(and is essentially a rephrasing of Fact A.3 in [CMY20]).

Lemma 2. Let w ∈ ∆n have w ≤ 1
n1 entrywise. Then,

‖µw(T )− µ∗‖2 ≤

√
2 ‖Covw(T )‖op

‖w‖1
‖wS‖1

+
2α

‖w‖1
.

Proof. Let w∗ ∈ ∆n be the weight vector which is 1
|S| on coordinates in S, and zero elsewhere. Note
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that by definition 〈w,w∗〉 =
‖wS‖1
αn . Next,

‖µw(T )− µ∗‖22 = max
‖u‖2=1

〈(∑
i∈T

wiw
∗
i

〈w,w∗〉
(Xi − µw(T ))

)
−

(∑
i∈T

wiw
∗
i

〈w,w∗〉
(Xi − µ∗)

)
, u

〉2

≤ 2 max
‖u‖2=1

〈∑
i∈T

wiw
∗
i

〈w,w∗〉
(Xi − µw(T )), u

〉2

+ 2 max
‖u‖2=1

〈∑
i∈T

wiw
∗
i

〈w,w∗〉
(Xi − µ∗), u

〉2

.

We bound these two terms separately. First, by applying a quadratic form in u to Fact 1,

max
‖u‖2=1

〈∑
i∈T

wiw
∗
i

〈w,w∗〉
(Xi − µw(T )), u

〉2

≤ max
‖u‖2=1

∑
i∈T

wiw
∗
i

〈w,w∗〉
〈Xi − µw(T ), u〉2

=
‖w‖1

αn 〈w,w∗〉
max
‖u‖2=1

∑
i∈T

wi
‖w‖1

〈Xi − µw(T ), u〉2

= ‖Covw(T )‖op

‖w‖1
‖wS‖1

.

Next, by again applying Fact 1, and recalling Assumption 1,

max
‖u‖2=1

〈∑
i∈T

wiw
∗
i

〈w,w∗〉
(Xi − µ∗), u

〉2

≤ max
‖u‖2=1

∑
i∈T

wiw
∗
i

〈w,w∗〉
〈Xi − µ∗, u〉2

≤
‖w‖∞
〈w,w∗〉

max
‖u‖2=1

∑
i∈T

w∗i 〈Xi − µ∗, u〉2 ≤
αn ‖w‖∞
‖w‖1

.

The second shows how the empirical covariance of S grows relative to how much of S is kept.

Lemma 3. Let w ∈ ∆n have w ≤ 1
n1 entrywise. Then Covw(S) � α

‖wS‖1
I.

Proof. For any vector u with ‖u‖2 = 1,

u>Covw(S)u =
∑
i∈S

wi
‖wS‖1

〈u,Xi − µw(S)〉2

≤
∑
i∈S

αw∗i
‖wS‖1

〈u,Xi − µ∗〉2 ≤
α

‖wS‖1

∥∥∥∥∥∑
i∈S

w∗i (Xi − µ∗)(Xi − µ∗)>
∥∥∥∥∥

op

.

In the second line we used Fact 2. Using Assumption 1 yields the conclusion.

The third shows how a bound on the saturation of S in a weight vector can be used to bound the
distance between empirical means in S and T via the empirical covariance matrix.

Lemma 4. We have that

(µw(S)− µw(T ))(µw(S)− µw(T ))> �
‖w‖1
‖wS‖1

Covw(T ).
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Proof. This follows from the following observations (via Fact 1)

(µw(S)− µw(T ))(µw(S)− µw(T ))> �
∑
i∈S

wi
‖wS‖1

(Xi − µw(T ))(Xi − µw(T ))>

�
‖w‖1
‖wS‖1

∑
i∈T

wi
‖w‖1

(Xi − µw(T ))(Xi − µw(T ))>

=
‖w‖1
‖wS‖1

Covw(T ).

3.2 Analysis of SIFT

We now present SIFT as Algorithm 1. It requires calls to an approximate k-PCA subroutine Power,
the classical simultaneous power iteration method, which is stated as Algorithm 11 in Section 6.3,
where we present an improved analysis of its guarantees. However, for analysis in this section it
suffices to use the following guarantee. For simplicity in this section we drop the arguments λmax

and λmin as inputs to Power, which do not play a role in Proposition 2.

Proposition 2 (Theorem 1, [MM15]). For any δ ∈ (0, 1) and k ∈ [d], there is an algorithm, Power,
which takes as input k, δ, A ∈ Sd≥0 and ε ∈ (0, 1), and returns with probability 1 − δ a set of

orthonormal vectors V ∈ Rd×k such that if V:i is column i of V,

〈V:i,AV:i〉 ∈ [1− ε, 1 + ε]λi (A) for all i ∈ [k],

and
∥∥∥(I−VV>

)
A
(
I−VV>

)∥∥∥
op
≤ (1 + ε)λk+1 (A) .

When A is given in the form M>M for some M ∈ Rn×d, the runtime of Power is

O

(
ndk

ε
log

(
d

δε

))
.

Note that Lines 6 through 10 of Algorithm 1 exactly constitute a weight removal method of the
form given in Lemma 1. Consequently, to use Lemma 1 it suffices to prove that the weights τi used
in each iteration are safe with respect to the current set of weights, which we now demonstrate.

Lemma 5. In each iteration t of Algorithm 1 until termination, τ (t) is safe with respect to w(t).

Proof. Throughout this proof, let w := w(t) and τ := τ (t). Furthermore, let V, Σ, and β correspond
to the weights w at the iteration’s start. We will inductively prove that τ is safe with respect to w,
which by applying Lemma 1 implies that at the start of the iteration, w is saturated (since clearly
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Algorithm 1 SIFT(T, δ)

1: Input: T ⊂ Rd with |T | = n satisfying Assumption 1, δ ∈ (0, 1)
2: w(0) ← 1

n1T , t← 0, β ← 1, k ← d 4
αe

3: V← Power(Covw(t)(T ), k, 0.2, δ
2n)

4: Σ← V>Covw(t)(T )V
5: while λk(Σ) ≥ 4√

β
do

6: τ
(t)
i ←

∥∥∥Σ− 1
2 V> (Xi − µw(T ))

∥∥∥2

2
for all i ∈ T

7: w
(t+1)
i ←

(
1− τ

(t)
i

τ
(t)
max

)
w

(t)
i for all i ∈ T , where τ

(t)
max := max

i∈T |w(t)
i 6=0

τ
(t)
i

8: t← t+ 1, β ←
∥∥w(t)

∥∥
1

9: V← Power(Covw(t)(T ), k, 0.2, δ
2n)

10: Σ← V>Covw(t)(T )V
11: end while
12: return L := {VV>Xi +

(
I−VV>

)
µw(t)(T ) where i ∈ T is sampled uniformly at random},

with list size |L| = d 2
α log 2

δ e

w(0) is saturated). We first compute the average score in S:∑
i∈S

wi
‖wS‖1

τi =
∑
i∈S

wi
‖wS‖1

∥∥∥Σ− 1
2 V> (Xi − µw(T ))

∥∥∥2

2

=
∑
i∈S

wi
‖wS‖1

(∥∥∥Σ− 1
2 V> (Xi − µw(S))

∥∥∥2

2
+
∥∥∥Σ− 1

2 V> (µw(S)− µw(T ))
∥∥∥2

2

)
=
〈
Σ−1,V>Covw(S)V

〉
+
∥∥∥Σ− 1

2 V> (µw(S)− µw(T ))
∥∥∥2

2

≤
〈

Σ−1,
α

‖wS‖1
I

〉
+
‖w‖1
‖wS‖1

≤ 1

4

〈√
βI,

1√
β

I

〉
+

√
β

α
≤ k

2
.

The first three equalities follow by expanding definitions; the first inequality is by Lemmas 3 and 4,
as well as the definition of Σ. The second inequality is by using the definition of saturated weights
(Definition 1) twice, which implies that ‖wS‖1 ≥ α

√
β, as well as the exit condition in Line 5. The

third inequality follows from the definition of k. Finally, we conclude that τ is indeed safe, since
the average score in T is exactly k by design:∑

i∈T

wi
‖w‖1

τi =
∑
i∈T

wi
‖w‖1

∥∥∥Σ− 1
2 V> (Xi − µw(T ))

∥∥∥2

2

=

〈
Σ−1,V>

(∑
i∈T

wi
‖w‖1

(Xi − µw(T )) (Xi − µw(T ))>
)

V

〉
=
〈
Σ−1,Σ

〉
= k.

Finally, we prove a runtime and correctness guarantee on Algorithm 1.
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Theorem 3. Under Assumption 1, with probability 1− δ, the output of Algorithm 1 satisfies

min
µ∈L
‖µ− µ∗‖22 ≤

22

α
.

The overall runtime of Algorithm 1 is

O

(
n2dk log

(
d

δ

))
.

Proof. We will show correctness and complexity of Algorithm 1 separately.

Complexity guarantee. It is clear that there are at most n iterations in Algorithm 1, since at least
one weight is zeroed out in Line 7 each iteration. Further, the bottleneck operation in each iteration
is clearly the complexity of Power, since an eigendecomposition of Σ takes time O(k3) = O(ndk).
Since ε is a constant in Proposition 2 and n = O(d2), this yields the complexity bound. Using a
union bound, with probability 1− δ

2 , the conclusion of Proposition 2 applies in every iteration; we
will condition on this event for the remainder of the proof.

We finally note that the algorithm must terminate the while loop before removing all the weight.
This is because throughout the algorithm since w is saturated (by Lemmas 1 and 5), ‖w‖1 ≥ α2

holds directly by using Definition 1 and ‖w‖1 ≥ ‖wS‖1.

Correctness guarantee. As in Lemma 5, we let w denote the weights on the last iteration of the
algorithm (after exiting on Line 12). Denote P := VV> and Yi := PXi for all i ∈ T . Since

∑
i∈S

1

αn
(Yi −Pµ∗) (Yi −Pµ∗)> = P

(∑
i∈S

1

αn
(Xi − µ∗) (Xi − µ∗)>

)
P � P,

by Assumption 1, the expectation of ‖Yi −Pµ∗‖22 for a uniformly random sample i ∈ S is 4
α by

linearity of trace. Hence, by Markov with probability at least 1
2 a sample from S has ‖Yi −Pµ∗‖22 ≤

8
α , so with probability at least 1 − δ

2 , one of the random samples in L will have an Xi with

‖Yi −Pµ∗‖22 ≤
8
α . For this value of i, we expand via the Pythagorean theorem

‖(PXi + (I−P)µw(T ))− µ∗‖22 = ‖Yi −Pµ∗‖22 + ‖(I−P) (µw(T )− µ∗)‖22

≤ 8

α
+ ‖(I−P) (µw(T )− µ∗)‖22 .

To bound this second term, we apply Lemma 2 on the set of points {(I−P)Xi}i∈T . This implies

‖(I−P) (µw(T )− µ∗)‖22 ≤
2β

‖wS‖1
‖(I−P)Covw(T )(I−P)‖op +

2α

β

≤ 12
√
β

‖wS‖1
+

2α

β
≤ 14

α
.

Here, the last inequality used the definition of saturation, which also implies that β ≥ α2. The
second inequality used that the guarantees of Power and the termination condition imply that

‖(I−P) Covw(T ) (I−P)‖op ≤ 1.2λk(Covw(T )) ≤ 1.5λk(Σ) ≤ 6√
β
.
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Here, we use that the eigenvalues of Σ are the same as those of VV>Covw(T )VV>; this calculation
is given in the correctness proof of Proposition 8. Combining the above bounds yields the conclusion.

While Theorem 3 achieves the desired error guarantee (8), it unfortunately has a quadratic de-
pendence on the sample complexity n, as well as a suboptimal list size by a factor of O(log 1

δ ).
We address the latter issue with a post-processing step in Section 5.1; regarding the former issue,
Algorithm 1 will play a role in our final “fast” algorithm in the following Section 4, which obtains
a runtime with a linear dependence on n via more sophisticated weight removal.

4 Fast filtering in k dimensions under a diameter bound

We now give an algorithm, FastSIFT, with an improved dependence on the sample size n compared
to the method SIFT developed in Section 3. We use the following assumption in this section.

Assumption 2. All data points in T lie in a Euclidean ball of radius R.

We eventually show how to reduce the more general mean estimation problem to mean estimation
on datasets satisfying Assumption 2 in Section 5.2 to obtain our final algorithm. The primary goal
of this section is to develop a method for quickly finding a “good” tuple (B, w), defined as follows.

Definition 3 (Good tuple). We call (B, w) “good” if it obeys the following conditions.

1. B ∈ Rd×k′ has orthogonal columns, for some k′ = O( logR
α ), and w ∈ ∆n is saturated.

2. Let PB := BB>. The restriction of Covw(T ) to the complement of PB, denoted by

Cov
P⊥B
w (T ) := (I−PB) Covw(T ) (I−PB)

satisfies for a universal constant c,∥∥∥Cov
P⊥B
w (T )

∥∥∥
op
≤ c√

‖w‖1
.

Intuitively, a good tuple signifies that in all but O( logR
α ) dimensions, we have learned the mean via

the guarantee of Lemma 2. However, in the remaining dimensions we can simply run the algorithm
of Section 3, which obtains an additive poly(k) runtime dependence. We now make this rigorous.

Algorithm 2 FastSIFT(T, δ,ProduceGoodTuple)

1: Input: T = Tfast∪Tslow ⊂ Rd with |Tfast| = n satisfying Assumptions 1 and 2, |Tslow| = O( logR
α2 )

satisfying Assumption 1 for a fixed O( logR
α )-dimensional subspace, δ ∈ (0, 1), subroutine

ProduceGoodTuple which returns a good tuple with specified failure probability
2: (B, w)← ProduceGoodTuple(Tfast,

δ
2)

3: µfast ← (I−BB>)µw(T )
4: Lslow ← SIFT({BB>Xi | Xi ∈ Tslow}, δ2)
5: return L← {µslow + µfast | µslow ∈ Lslow}

Lemma 6. With probability 1− δ, some µ̂ ∈ L outputted by Algorithm 2 satisfies

‖µ̂− µ∗‖22 ≤
48 + 4c

α
.
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The overall runtime of Algorithm 2 is the cost of running ProduceGoodTuple(Tfast,
δ
2) plus

O

(
d

α3
log(R) log

(
dR

δ

)
+

1

α6
log3(R) log

(
d

δ

))
additional runtime overhead.

Proof. By the proof of Theorem 3 and the second part of Definition 3, it is immediate that

‖(I−PB)(µw(T )− µ∗)‖22 ≤
2c+ 2

α
.

Moreover, since the size of Tslow is large enough for Proposition 1 to apply, it satisfies Assumption 1
on the k′-dimensional subspace whose projection matrix is PB = BB>. Thus, Theorem 3 shows

‖µslow −PBµ
∗‖22 ≤

22

α
for some µslow ∈ Lslow.

Combining these two bounds and the Pythagorean theorem yields the correctness guarantee. For
the runtime overhead guarantee, it is clear the bottleneck operation is Line 4 since Line 3 can be
implemented in time O( dα logR). For Line 4, we run Algorithm 1 entirely in the coordinate system

of the columns of B, which is isomorphic to Rk′ , and then left-multiply the resulting list by B.
Forming the input set {B>Xi | Xi ∈ Tslow} takes time O(|Tslow|k′d) = O( d

α3 log2R); multiplying
the resulting output list by B cannot be the dominant cost by more than a log 1

δ factor.

Here, we note that because we take n = Ω(dα−1) = Ω(α−2) in accordance with Proposition 1, the
cost of O(dα−3 logR log dR

δ ) incurred by Lemma 6 is no more than the cost of logarithmically many
k-PCAs on the original dataset. Regarding the separation of the original dataset into Tfast and
Tslow, which appropriately satisfy Assumption 1, we make the following comment.

Remark 1. We can form a partitioned dataset T = Tfast∪Tslow of the form required by Algorithm 2
by independently drawing n samples to form Tfast, O( logR

α2 ) samples to form Tslow, and applying
Assumption 1 to Tfast and the projection of Tslow into a k′-dimensional subspace. Up to a log 1

δ
factor in the sample complexity (for error probabilities which are smaller than exp(−Ω(α−1))), these
are valid applications of Assumption 1 because of independence; in particular, the draws Tslow are
independent of the k′-dimensional subspace learned by running ProduceGoodTuple on Tfast, which
only depends on randomness used in Step 2 of FastSIFT.

We now state our strategy for the implementation of ProduceGoodTuple. Roughly speaking,
ProduceGoodTuple is a composition of three subroutines at different levels, named BicriteriaFilter,
DecreaseKFNorm, and KFMMW. Each subroutine is associated with one or more potential functions
which show that the subroutine “one level down” is called O(log d) times.

1. ProduceGoodTuple iteratively calls BicriteriaFilter, an algorithm which takes as input saturated
weights w and either produces saturated weights ‖w′‖1 ≤

1
2 ‖w‖1, or a good tuple.

2. BicriteriaFilter iteratively calls DecreaseKFNorm, an algorithm which takes as input saturated
weights w and maintains an updated set of orthogonal vectors B. Each call to DecreaseKFNorm
either (1) halves the `1 norm of w, (2) halves the Ky Fan k norm of the covariance matrix,
or (3) decreases the operator norm of the covariance matrix by a constant factor and adds k
vectors to B, for some k = Θ( 1

α).

3. DecreaseKFNorm is based on a “win-win-win” analysis of the fine-grained guarantees of a Ky
Fan norm matrix multiplicative weights procedure, developed in Section 6. We will show that
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in O(log d) iterations of KFMMW, either the Ky Fan k norm has halved, or one of the other
two “exit conditions” required by DecreaseKFNorm has been certifiably met.

Given the guarantees of DecreaseKFNorm, correctness of ProduceGoodTuple and BicriteriaFilter
follow straightforwardly. Thus, in Section 4.1, we state and prove a performance guarantee on
DecreaseKFNorm, which we use to give a simple analysis of ProduceGoodTuple in Section 4.2. Com-
bining our analysis of ProduceGoodTuple with Lemma 6 gives the main export from this section.
Finally, we note that in the following development of ProduceGoodTuple and its subroutines, we will
overload the input set T to be Tfast in Algorithm 2, because it is the input to ProduceGoodTuple.

4.1 Analysis of DecreaseKFNorm

We first state a guarantee for ApproxKFMMW as Proposition 3, which is a computationally efficient
variant of KFMMW (these methods are both given and analyzed in Section 6). Proposition 3 is a
restatement of Corollary 4 and Lemma 20 with ∆ = 1

200 , which are proven in Section 6.4.

Proposition 3. There is an algorithm, ApproxKFMMW (Algorithm 13), which takes as input a
sequence of matrices {Gt}t≥0 ⊂ Sd≥0 each in the form M>

t Mt for Mt ∈ Rn×d for explicitly given
Mt, and k ∈ [d]. Suppose that the matrices {Gt}t≥0 are weakly decreasing in Loewner order, and
let η ≤ 1

2‖G0‖op
. For any N ≥ 1, with probability 1 − δ′, ApproxKFMMW defines a sequence of

matrices {Ŷt}0≤t<N , where Ŷt only depends on {Gs}0≤s<t, such that

‖GN‖k ≤
2

T

N−1∑
t=0

〈
Gt, Ŷt

〉
+
k log d

ηN
+

k

200η
.

Each Ŷt satisfies
∥∥∥Ŷt

∥∥∥
op
≤ 1.01 and

∥∥∥Ŷt

∥∥∥
tr
≤ 1.01k. The cost of the algorithm is

O

(
ndkN2 log2

(
dN

δ′

))
.

Furthermore, for any set of n fixed vectors {vi}i∈[n] ⊂ Rd and any iteration t, 1.05-approximations

to all v>i Ŷtvi can be computed in time

O

(
ndN log

(
nd

δ′

))
with probability at least 1− δ′.

We are now ready to state the algorithm DecreaseKFNorm as Algorithm 3. At a high level, the
goal of DecreaseKFNorm is to implement Proposition 3 in a way so that each of the inner products〈
Gt, Ŷt

〉
is sufficiently small, via decreasing weights defined in terms of the matrix Ŷt. We will

be able to successfully do this as long as the `1 norm of the weight remains stable, and the top
eigenvalue of the covariance matrix is not too much larger than the kth largest. When either of
these conditions fail, we will exit the algorithm via a different termination condition.

The first step in the analysis of Algorithm 3 is to guarantee that any time a weight removal
procedure is performed, it is with respect to safe scores, and hence the weights remain saturated
throughout the course of the algorithm. We give this proof of safe weight removal as Lemma 7,
and then an overall correctness and runtime guarantee in Proposition 4.

Lemma 7. Throughout the course of Algorithm 3, any time weight removal is performed in Line
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Algorithm 3 DecreaseKFNorm(T,w, γ, δ)

1: Input: T ⊂ Rd with |T | = n satisfying Assumptions 1 and 2, saturated w, γ ← 1.05-
approximation to ‖Covw(T )‖k with probability at least 1 − δ

3(N+1) for k := d612
α e satisfying

γ ≥ 110k√
‖w‖1

, δ ∈ (0, 1)

2: Output: Saturated w′, satisfying one of the following possibilities with probability ≥ 1− δ:

1. w′ has ‖w′‖1 ≤
1
2 ‖w‖1 (marked “Case 1”)

2. V ∈ Rd×k is also outputted, and
∥∥∥Cov

P⊥V
w′ (T )

∥∥∥
op
≤ 2

3 ‖Covw(T )‖op (marked “Case 2”)

3. w′ has ‖Covw′(T )‖k ≤
1
2 ‖Covw(T )‖k (marked “Case 3”)

3: N ← d425 log de, w(0) ← w, β̄ ←
∥∥w(0)

∥∥
1
, η ← 1

2.1ρ , where ρ is a 1.05-approximation of∥∥∥C̃ovw(0)(T )
∥∥∥

op
with probability at least 1− δ

3(N+1)

4: for 0 ≤ t < N do
5: V← Power(Covw(t)(T ), k, 0.05, δ

3(N+1))

6: λ̃1 ← 〈V:1,Covw(t)(T )V:1〉, λ̃k ← 〈V:k,Covw(t)(T )V:k〉
7: if λ̃1 ≥ 3.5λ̃k then
8: return (w(t),V, “Case 2”)
9: end if

10: τ
(t)
i ← 1.05-approximation to

〈
(Xi − µw(t)(T )), Ŷt(Xi − µw(t)(T ))

〉
for all i ∈ T , with prob-

ability at least 1− δ
3(N+1)

11: if
∑

i∈T w
(t)
i τ

(t)
i > γβ̄

12 then

12: w(t+1) ← w(t,K), where K ← smallest natural number such that

either
∥∥∥w(t,K)

∥∥∥
1
≤ β̄

2
, or

∑
i∈T

w
(t,K)
i τ

(t)
i ≤

γβ̄

12
,

where w
(t,K)
i :=

(
1−

τ
(t)
i

τ
(t)
max

)K
w

(t)
i , and τ (t)

max := max
i∈T |w(t)

i 6=0

τ
(t)
i

(11)

13: if
∥∥w(t+1)

∥∥
1
≤ β̄

2 then

14: return (w(t+1), “Case 1”)
15: end if
16: else
17: w(t+1) ← w(t)

18: end if
19: Feed Gt ← C̃ovw(t+1)(T ) into the routine ApproxKFMMW with step size η and δ′ ← δ

3
20: end for
21: return (w(N), “Case 3”)

12, it is with respect to safe scores, and thus w(t) is saturated for all 0 ≤ t < N .

Proof. With probability 1− δ, all executions of Lines 5 and 10 throughout the algorithm succeed,
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so we will condition on this event for the remainder of this proof. We also note that in any iteration
t where Line 12 is reached, Line 7 did not pass, and thus

λ1 (Covw(t)(T )) ≤ 1.05λ̃1 < 3.675λ̃k ≤ 4λk (Covw(t)(T )) =⇒ ‖Covw(t)(T )‖k ≥
k

4
‖Covw(t)(T )‖op

(12)
by the guarantees of Power in Proposition 2. Consider now a single iteration 0 ≤ t < N , and
suppose inductively that w(t) is saturated before Line 12 is executed. In every round of weight
removal 0 ≤ ` < K, assuming that the `1 norm has not halved, we can lower bound the average
score in T by the definition of K:

∑
i∈T

w
(t,`)
i∥∥w(t,`)
∥∥

1

τ
(t)
i ≥

1

β̄

∑
i∈T

w
(t,`)
i τ

(t)
i ≥

γ

12
.

Hence, to prove that the scores are safe in iteration `, it suffices to show that the average score in

S is at most γ
24 . Because the weights w(t,`) are monotone in `, and the `1 norm of w

(t,`)
S inductively

does not change by more than a factor of
√

2 by the following Lemma 7, it suffices to show that

∑
i∈S

w
(t,0)
i∥∥∥w(t,0)
S

∥∥∥
1

τ
(t)
i ≤

γ

34
=⇒

∑
i∈S

w
(t,`)
i∥∥∥w(t,`)
S

∥∥∥
1

τ
(t)
i ≤

γ
√

2

34
<

γ

24
.

We now prove this bound on the average score in S with respect to w(t,0) = w(t), which will conclude
the proof. To see this bound, we have

∑
i∈S

w
(t)
i∥∥∥w(t)
S

∥∥∥
1

τ
(t)
i ≤ 1.05

〈
Ŷt,

∑
i∈S

w
(t)
i∥∥∥w(t)
S

∥∥∥
1

(Xi − µw(t)(T )) (Xi − µw(t)(T ))>
〉

= 1.05
〈
Ŷt,Covw(t)(S)

〉
+ 1.05

〈
Ŷt, (µw(t)(S)− µw(t)(T )) (µw(t)(S)− µw(t)(T ))>

〉
≤ 1.07k ‖Covw(t)(S)‖op + 1.07

∥∥∥(µw(t)(S)− µw(t)(T )) (µw(t)(S)− µw(t)(T ))>
∥∥∥

op

≤ 1.07kα∥∥∥w(t)
S

∥∥∥
1

+
9γ

kα
≤ 1.6k√

β̄
+

9γ

kα
≤ γ

34
.

Here, the first inequality is by the approximation guarantees on the scores τ
(t)
i . The second inequal-

ity used matrix Hölder twice, as well as trace and operator norm bounds on Ŷt due to Proposition 3,
and finally the fact that the trace and operator norm agree for any rank-1 matrix. The fourth in-
equality is by the helper Lemma 7 and saturation of w(0), and the fifth is by our choices of k and
lower bound on γ ≥ 110k√

β̄
. The third inequality used Lemmas 3 and 4, the latter of which implies

∥∥∥(µw(t)(S)− µw(t)(T )) (µw(t)(S)− µw(t)(T ))>
∥∥∥

op
≤
∥∥w(t)

∥∥
1∥∥∥w(t)

S

∥∥∥
1

‖Covw(t)(T )‖op

≤ 1

α
· 4

k
‖Covw(t)(T )‖k ≤

8.4γ

kα
.

The second inequality used our assumption (12), and the last used that C̃ovw(t)(T ) is monotonically
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decreasing in the Loewner order, and thus since until termination, the normalization factor
∥∥w(t)

∥∥
1

does not change by more than a factor of two, and γ is a 1.05-approximation to ‖Covw(0)(T )‖k,

‖Covw(t)(T )‖k =
1∥∥w(t)
∥∥

1

∥∥∥C̃ovw(t)(T )
∥∥∥
k
≤ 2

β̄

∥∥∥C̃ovw(0)(T )
∥∥∥
k
≤ 2.1γ.

In proving Lemma 7, we used the following helper lemma.

Lemma 8. Consider any algorithm of the form in Lemma 1. Suppose in some iteration t,
∥∥w(t)

∥∥
1
≥

1
2

∥∥w(0)
∥∥

1
. Then,

∥∥∥w(t)
S

∥∥∥
1
≥ 1√

2

∥∥∥w(0)
S

∥∥∥
1
.

Proof. This is immediate from telescoping (10), which was used in the proof of Lemma 1.

Finally, we prove overall correctness of Algorithm 3.

Proposition 4. Algorithm 3 succeeds with probability at least 1−δ, in the sense that each of Cases
1-3 returns correctly. The overall complexity is bounded by

O

(
ndk log2(d) log2

(
dR

δ

))
.

Proof. We will show correctness and complexity of Algorithm 3 separately.

Correctness guarantee. As argued in the proof of Lemma 7, with probability 1 − δ every weight
removal is safe, so Lemma 7 shows that w(t) is saturated throughout the algorithm. By a union
bound, we also assume that all approximations are correct in the remainder of the proof. It is
obvious that if the algorithm terminates in Line 14, the requirement of Case 1 is met. If the
algorithm terminates in Line 8, the guarantees of Power (Proposition 2) imply that

λ1 (Covw(t)(T )) ≥ 1

1.05
λ̃1 ≥

3.5

1.05
λ̃k ≥

3.5

1.052
λk (Covw(t)(T ))

≥ 3.5

1.053

∥∥∥(I−VV>)Covw(t)(T )(I−VV>)
∥∥∥

op
≥ 3

∥∥∥Cov
P⊥V
w(t)(T )

∥∥∥
op
.

(13)
However, since the algorithm did not terminate on Line 14 in the previous iteration, we also have

λ1 (Covw(t)(T )) =
1∥∥w(t)
∥∥

1

λ1

(
C̃ovw(t)(T )

)
≤ 2

β̄
λ1

(
C̃ovw(0)(T )

)
= 2λ1 (Covw(0)(T )) .

Combining the above two calculations gives the correctness proof for Case 2, as∥∥∥Cov
P⊥V
w(t)(T )

∥∥∥
op
≤ 1

3
λ1 (Covw(t)(T )) ≤ 2

3
λ1 (Covw(0)(T )) .

Finally, we show correctness in Case 3, where N iterations of the algorithm have passed without
terminating on either of Lines 8 (which halves operator norm) or 14 (which halves weight). In
this case, we apply Proposition 3, which is valid since the Gt are monotonically decreasing, and
ηG0 � 1

2I by the approximation guarantee on ρ. Here, we also note that all our matrices Gt are
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covariance matrices with known weights, so they can be expressed in the form M>
t Mt for explicitly

given Mt ∈ Rn×d. Proposition 3 additionally requires a bound on each
〈
Gt, Ŷt

〉
; to this end,〈

Gt, Ŷt

〉
=
∑
i∈T

w
(t+1)
i

〈
(Xi − µw(t+1)(T )) , Ŷt (Xi − µw(t+1)(T ))

〉
≤
∑
i∈T

w
(t+1)
i

〈
(Xi − µw(t)(T )) , Ŷt (Xi − µw(t)(T ))

〉
≤ 1.05

∑
i∈T

w
(t+1)
i τ

(t)
i ≤

1.05γβ̄

12
.

In the first inequality, we used Fact 2; in the second, we used the assumption on the scores τ (t);
and in the third, we used the second guarantee in (11) since we did not terminate on Line 14. Now,
applying this bound in every iteration 0 ≤ t < N in Proposition 3, and defining GN = GN−1,

‖GN‖k ≤
1.05γβ̄

6
+

2.1kρ log d

N
+

2.1kρ

200

≤ 1.05γβ̄

6
+

2.21k
∥∥∥C̃ovw(0)(T )

∥∥∥
op

log d

N
+

2.21k
∥∥∥C̃ovw(0)(T )

∥∥∥
op

200

≤ 1.05γβ̄

6
+

9
∥∥∥C̃ovw(0)(T )

∥∥∥
k

log d

N
+

9
∥∥∥C̃ovw(0)(T )

∥∥∥
k

200

≤
1.052 ‖Covw(0)(T )‖k β̄

6
+

9
∥∥∥C̃ovw(0)(T )

∥∥∥
k

log d

N
+

9
∥∥∥C̃ovw(0)(T )

∥∥∥
k

200
.

The first inequality was by Proposition 3 and the definition of η; the second was by the approxi-
mation guarantee on ρ; the third was by the fact that the first iteration did not terminate on Line
8, so we can apply the bound (12); and the fourth was by the definition of γ. Next, dividing both
sides by β̄ and using that termination on Line 14 has not occurred,

1

2
‖Covw(N)(T )‖k =

1

2
∥∥w(N)

∥∥
1

∥∥∥C̃ovw(N)(T )
∥∥∥
k

≤ 1

β̄
‖GN‖k ≤ ‖Covw(0)(T )‖k

(
1.052

6
+

9 log d

N
+

9

200

)
.

Here, we used that 1
β̄

∥∥∥C̃ovw(0)(T )
∥∥∥
k

= ‖Covw(0)(T )‖k twice, by definition of β̄. Rearranging and

using the definition of N ≥ 425 log d then yields correctness of Case 3.

Complexity guarantee. For N = O(log d), the total cost of running ApproxKFMMW is

O

(
ndk log2(d) log2

(
d

δ

))
,

as given by Proposition 3. It is straightforward to check that the costs of Lines 5 and 10, given by
Propositions 2 and 3, do not dominate this. Finally, since the cost of checking (11) for a value of
K is linear in n, it suffices to provide an upper bound on K and then binary search. For this, we
have ∑

i∈T
w

(t,K)
i τ

(t)
i ≤

∑
i∈T

exp

(
−
Kτ

(t)
i

τ
(t)
max

)
w

(t)
i τ

(t)
i ≤

1

eK

∑
i∈T

w
(t)
i τ (t)

max ≤
τ

(t)
max

eK
.
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Here, the first inequality used the definition of w
(t,K)
i , the second used that x exp(−Cx) ≤ 1

eC for

all nonnegative x, where we chose C = K

τ
(t)
max

, and the third used w(t) ∈ ∆n. Since the definition of

saturated weights implies that
√
β̄ ≥ α, it follows that the threshold in Line 11 satisfies

γβ̄

12
≥ 110kα

12
≥ 5000.

Also, Assumption 2 and
∥∥∥Ŷt

∥∥∥
op
≤ 1.01 imply that all scores are bounded by 1.01R2, so we conclude

K ≤ R2. Thus, the complexity of the binary search is O(n logR) and does not dominate.

4.2 Analysis of ProduceGoodTuple

At this point, the statements and analyses of both BicriteriaFilter and ProduceGoodTuple are
straightforward, as we have done most of the heavy lifting in proving Proposition 4. We state
both here and prove their correctness and a runtime guarantee in Proposition 5.

Proposition 5. Algorithm 5, ProduceGoodTuple, correctly outputs a good tuple with probability at
least 1− δ. Its overall complexity is

O

(
nd

α
log2(d) log2

(
dR

δ

)
log(R) log

(
1

α

))
.

Proof. We will show correctness and complexity of Algorithm 5 separately.

Correctness guarantee. We first claim that if BicriteriaFilter meets its specifications, then so does
ProduceGoodTuple. This is since every time BicriteriaFilter returns in Case 1, the `1 norm of w is
halved, but it can never be smaller than α2 since w is always saturated, so Case 1 occurs ≤ 2 log 1

α
times. Finally, note that Case 2 of BicriteriaFilter indeed constitutes a good tuple, with c = 128.

It remains to prove that BicriteriaFilter meets its specifications. We first claim that the while loop
of Lines 5-23 is not run more than M times. To see this, whenever DecreaseKFNorm returns in Case
1, the loop immediately terminates, so it suffices to bound the number of times DecreaseKFNorm
returns in Case 2 or Case 3 before exiting on Line 13. Observe that every time Case 2 occurs, the
operator norm of Covw(T ) is decreased by 1

3 , but by Assumption 2 it is bounded by R2 initially,
and as soon as it is smaller than 100, then the algorithm will exit on Line 13. Thus, the number of
times Case 2 occurs is at most 3 log( R

2

100); similarly, Case 3 occurs at most 2 log( R
2

100) times since it
halves the Ky Fan norm each time. Combining these yields the claimed bound of M loops.

Thus, the failure probability of BicriteriaFilter is met; it remains to prove that in each case, it
returns correctly. If the algorithm returns on Line 7, this is clear. If the algorithm returns on
Line 16, note that its input w has ‖w‖1 ≤ β̄ by monotonicity of filtering, so it must be that the
output of DecreaseKFNorm has `1 norm at most 1

2 β̄ by Case 1 of DecreaseKFNorm. The only other
place the algorithm can return is in Line 13. However, in this case it is clear that B has at most
k · (3 log( R

2

100) + 1) = O( logR
α ) columns, since every time Line 18 is executed only k columns are

appended, and we earlier bounded the number of times Line 18 can occur. Finally, by combining
the definition of γ, the fact that we always project T into the orthogonal complement of BB>

in Line 9, and the fact that Proposition 2 implies that λk+1(Covw(T )) ≤ (1.05)2 γ
k (see e.g. the

calculation (13)), we see that when (w,B) is returned,∥∥∥Cov
P⊥B
w (T )

∥∥∥
op
≤ (1.05)3γ

k
≤ 128√

‖w‖1
.
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Algorithm 4 BicriteriaFilter(T, δ, w)

1: Input: T ⊂ Rd with |T | = n satisfying Assumptions 1 and 2, δ ∈ (0, 1), saturated w
2: Output: Saturated w′, satisfying one of the following possibilities with probability ≥ 1− δ:

1. w′ has ‖w′‖1 ≤
1
2 ‖w‖1 (marked “Case 1”)

2. B ∈ Rd×k′ is also outputted, for k′ = O( logR
α ), and∥∥∥Cov

P⊥B
w′ (T )

∥∥∥
op
≤ 128√

‖w′‖1
(marked “Case 2”)

3: B← [], k ← d612
α e, β̄ ← ‖w‖1

4: δ′ ← δ
M , for M = 5 log( R

2

100)
5: while true do
6: if ‖w‖1 ≤

1
2 β̄ then

7: return (w, “Case 1”)
8: end if
9: T ← projection of T into orthogonal complement of BB>

10: γ ← 1.05-approximation to ‖Covw(T )‖k with probability ≥ 1− δ′

3(N+1) , for N = d150 log de
11: if γ < 110k√

‖w‖1
then

12: Append the columns of Power(Covw(T ), k, 0.05, δ′

3(N+1)) to B

13: return (w,B, “Case 2”)
14: end if
15: if DecreaseKFNorm(T,w, γ, δ′) returns “Case 1” then
16: return (DecreaseKFNorm(T,w, γ, δ′), “Case 1”)
17: else if DecreaseKFNorm(T,w, γ, δ′) returns “Case 2” then
18: (w,V)← DecreaseKFNorm(T,w, γ, δ′)
19: Append the columns of V to B
20: else
21: w ← DecreaseKFNorm(T,w, γ, δ′)
22: end if
23: end while

Algorithm 5 ProduceGoodTuple(T, δ)

1: Input: T ⊂ Rd with |T | = n satisfying Assumptions 1 and 2, δ ∈ (0, 1)
2: Output: Good tuple (B, w) (cf. Definition 3) with probability ≥ 1− δ
3: w ← 1

n1

4: while true do
5: if BicriteriaFilter

(
T, δ

2 log 1
α

, w
)

returns “Case 1” then

6: w ← BicriteriaFilter
(
T, δ

2 log 1
α

, w
)

7: else
8: return BicriteriaFilter

(
T, δ

2 log 1
α

, w
)

9: end if
10: end while
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In the above equation, we overload T to mean the original dataset (rather than after projection in
Line 9). This proves correctness of BicriteriaFilter in all cases. Finally, we remark that all parts of
DecreaseKFNorm operate correctly after the projection in Line 9. The only place this may cause
difficulty is in dependences on smallest eigenvalues in implementing ApproxKFMMW, because the
gain matrices are not full rank. However, it is straightforward to check that the guarantees of the
subroutines ApproxProject and Power as given in Section 6 will depend on the smallest eigenvalues
of gain matrices restricted to Span(I−BB>), if all operations are performed in this space.

Complexity guarantee. By our earlier analysis, ProduceGoodTuple incurs a multiplicative O(log 1
α)

overhead on the cost of BicriteriaFilter, so it suffices to understand this latter complexity. The
dominant cost is clearly the (at most M) calls to DecreaseKFNorm, and the projection steps in Line
9. Line 9 involves orthogonalizing each of n vectors against O(k logR) vectors in d dimensions, so
its complexity is O(ndk logR ·M), which does not dominate. The overall cost bound follows from
combining Proposition 4 with a multiplicative O(M log 1

α) overhead factor.

By combining Lemma 6 with Proposition 5, we have the following guarantee on FastSIFT.

Corollary 1. With probability 1− δ, some µ̂ ∈ L outputted by Algorithm 2 satisfies

‖µ̂− µ∗‖22 ≤
560

α
.

The overall runtime of Algorithm 2 is

O

(
nd

α
log2(d) log2

(
dR

δ

)
log(R) log

(
1

α

)
+

1

α6
log3(R) log

(
dR

δ

))
.

5 Cleanup

In this section, we give implementations of pre-processing and post-processing procedures on the
dataset which will be used in attaining our final guarantees. In particular, Section 5.1 shows how to
reduce the size of our final output list, and Section 5.2 shows how to näıvely cluster the dataset to
have diameter polynomially bounded in problem parameters. Finally, we put all the pieces together
in giving our final result on list decodable mean estimation in Section 5.3, as well as a variant on
this procedure which obtains a slight runtime-accuracy tradeoff, in Section 5.4.

5.1 Merging candidate means

We give a simple greedy algorithm for taking the output of Algorithm 2 (FastSIFT) and reducing its
size to be O( 1

α), without affecting the guarantee (8) by more than a constant factor. The algorithm
and analysis bear some resemblance to the strategy in [DKK20], but we include it for completeness.
In this section, denote k := d 4

αe as in Algorithm 1. We recall from the description of SIFT that the
output L of FastSIFT has the property that elementwise, all µ̂ ∈ L are of the form

µfixed + VV>BB>Xi = µfixed + PXi, where Xi ∈ Tslow, P := VV>, (14)

since columns of V ∈ Rd×k are contained in Span(B), and µfixed lies in the orthogonal complement
of Span(V).6 To see this, note that all input points to SIFT are of the form BB>Xi (Line 4
of FastSIFT), and because SIFT then works in the coordinate system of B, every element of the

6In the implementation, we will have V ∈ Rk
′×k where k′ is the column dimensionality of B since it is expressed

in the coordinate system of B, but we write it this way for consistency with the whole algorithm.
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output list will have this form. In particular, µfixed is the sum of µfast (Line 3, Algorithm 2) and
the empirical mean in the last iteration of SIFT projected into (I−P) (Line 12, Algorithm 1).

Because the proof of Lemma 6 (with c = 128, cf. Proposition 5) shows that

‖µfixed − (I−P)µ∗‖22 ≤
512 + 28

α
=

540

α
, ‖P(Xi − µ∗)‖22 ≤

8

α
for some µ̂ ∈ L, (15)

it suffices to reduce the number of PXi while maintaining one with squared `2 distance O( 1
α) from

Pµ∗. We now give our post-processing procedure. In the following, define n′ := |Tslow| = O( logR
α2 ).

Algorithm 6 PostProcess(L,α)

1: Input: L, the output of Algorithm 2 (FastSIFT) decomposed as (14), satisfying (15)
2: Output: L̃, a subset of L with |L̃| ≤ 2

α

3: L̃← ∅
4: Let L̃ be a maximal subset of L of points µ̂ = µfixed + PXi, such that ‖P(Xi −Xj)‖22 ≤

32
α for

at least n′α
2 of the Xj ∈ Tslow, and ‖µ̂− µ̂′‖22 ≥

128
α , ∀µ̂′ ∈ L̃

5: return L̃

Lemma 9. The output of Algorithm 6 has |L̃| ≤ 2
α , and at least one µ̂ ∈ L̃ has

‖µ̂− µ∗‖22 ≤
1052

α
.

The overall runtime of the algorithm is

O

(
1

α4
log(R) log

(
1

δ

))
.

Proof. We first prove the bound on the list size. Note that every element µ̂ ∈ L̃ is associated with
at least n′α

2 elements in Tslow; call this the “cluster” of µ̂. By the separation assumption on pairs

in L̃, the clusters of all µ̂, µ̂′ ∈ L̃ are distinct, so there can only be at most 2
α clusters as desired.

We now show the error guarantee. By the decomposition (14), the assumption (15), and the
Pythagorean theorem, it suffices to show that for some µ̂ = PXj + µfixed in the output list,

‖P(Xj − µ∗)‖22 ≤
512

α
. (16)

By assumption, there is a particular µ̂ = PXi + µfixed ∈ L which satisfies the bound (15). We will
designate this µ̂ as µ̂good throughout the proof, and fix the index i to be associated with µ̂good.

Next, we recall that at least n′α
2 of the points Xj ∈ Tslow have

‖P(Xj − µ∗)‖22 ≤
8

α
.

This was shown in the first part of Theorem 3, and is a straightforward application of Markov and
Assumption 1. By triangle inequality to µ∗ and the definition of µ̂good, Xi satisfies

‖P(Xi −Xj)‖22 ≤
32

α
for at least

n′α

2
of the Xj ∈ Tslow.
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Now, assume that (16) does not occur; this clearly also means that µ̂good cannot belong to L̃.

However, this is a contradiction, since triangle inequality implies that if no point in L̃ satisfies (16),
then µ̂good would be added to the list by maximality of the subset.

Finally, we show the complexity guarantee. Throughout, we use the assumption that L has already
been decomposed as (14), and all components in P are expressed in the coordinate system of V,
so all distance comparisons take time O(k). We can first eliminate all points which do not meet
the clustering criteria (e.g. do not have enough points nearby) in one pass, in time O(|L||Tslow|k).
Afterwards, a näıve greedy algorithm suffices for forming a list L̃ in Line 4, e.g. iteratively looping
over L and performing the check against points in |L̃| sequentially until a loop adds no elements to
L̃. This costs O(|L||L̃|2k), which yields the runtime since we argued |L̃| = O(k).

5.2 Bounding dataset diameter

In Section 4, we developed an algorithm for list-decodable mean estimation under Assumption 2.
We now demonstrate how to reduce a general dataset satisfying Assumption 1 to this case. Our
strategy will be to divide the original dataset into multiple portions of bounded diameter, such
that with high probability all of the points in S satisfying Assumption 1 lie in the same set. To
do so, we perform a random one-dimensional projection, which is likely to preserve distances up to
a polynomial factor, and then use an equivalence class partition as our clustering. We state two
simple facts which are helpful in the analysis.

Lemma 10. No two points Xi, Xj ∈ S have ‖Xi −Xj‖2 ≥ 2
√
n.

Proof. It suffices to show that every point in S has distance at most
√
n from µ∗. If this were not

the case, it is clear Assumption 1 cannot hold by virtue of the corresponding rank-one term.

Lemma 11. Let T be a set of n points in Rd, and sample g ∼ N (0, I). With probability at least
1− δ, for every pair of distinct points Xi, Xj ∈ T ,

1

4 log n
δ

(〈g,Xi −Xj〉)2 ≤ ‖Xi −Xj‖22 ≤
n4

δ2
(〈g,Xi −Xj〉)2 . (17)

Proof. Fix a pair Xi, Xj ∈ T ; we show that each of the bounds in (17) holds with probability at
least 1− δ

n2 , and then the conclusion holds by a union bound over both tails and all pairs. Since the

distribution of 〈g,Xi −Xj〉 is N (0, ‖Xi −Xj‖22), the lower bound in (17) is a straightforward appli-
cation of sub-Gaussian concentration. The upper bound comes from the fact that the probability
mass of N (0, 1) in the range [−

√
ε,
√
ε] is bounded by

1√
2π

∫ √ε
−
√
ε
exp

(
−1

2
t2
)
dt ≤

√
ε.

Hence, the probability that Z ∼ N (0, ‖Xi −Xj‖22) has Z2 ≤ δ2

n4 is bounded by δ
n2 .

At this point, we are ready to give our pre-processing procedure.

Lemma 12. PreProcess meets its output specifications. The overall runtime is

O (nd+ n log n) .
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Algorithm 7 PreProcess(T, δ)

1: Input: T ⊂ Rd with |T | = n satisfying Assumption 1, δ ∈ (0, 1)
2: Output: Partition of T into disjoint clusters {Tj}j∈[m], such that all of S is contained in a

single cluster, and every cluster has radius ≤ 4n4

δ2
, with probability 1− δ

3: g ∼ N (0, I)
4: vi ← 〈g,Xi〉 for all Xi ∈ T
5: Partition T into equivalence classes {Tj}j∈[m], where indices i, i′ are in the same Tj if there is

a path of distinct i1 = i, i2, . . . i` = i′ so that each consecutive |via − via+1 | ≤ 4
√
n log n

δ
6: return Clusters in {Tj}j∈[m] with at least αn points

Proof. The runtime bound is immediate; Lines 3 and 4 clearly take time O(nd), and Line 5 can be
performed by sorting the values {vi}i∈T and greedily forming clusters, creating disjoint paths from
the smallest value to the largest. To show correctness, condition on the conclusion of Lemma 11
occuring (giving the failure probability). We begin with the claim that all of S is contained in a
single cluster; to see this, if Xi, Xj ∈ S, then combining Lemma 10 and Lemma 11 implies that

(vi − vj)2 ≤
(

4 log
n

δ

)
(4n) =⇒ |vi − vj | ≤ 4

√
n log

n

δ
.

Furthermore, suppose two points Xi, Xi′ are in the same cluster, witnessed by a path of length
` ≤ n starting at i1 = i and ending at i` = i′. Then, by triangle inequality

|vi − vi′ | ≤
`−1∑
a=1

|via − via+1 | ≤ 4

√
n3 log

n

δ

=⇒ (〈g,Xi −Xi′〉)2 ≤ 16n3 log
n

δ
=⇒ ‖Xi −Xi′‖22 ≤

16n7

δ2
log

n

δ
≤ 16n8

δ4
.

In the last implication, we used the upper bound in Lemma 11.

5.3 Putting it all together

Finally, we put together the pieces we have developed to give our final algorithm.

Algorithm 8 ListDecodableMeanEstimation(T, δ)

1: Input: T ⊂ Rd with |T | = n satisfying Assumption 1, Tslow ⊂ Rd with |Tslow| = O( log d/δ
α2 )

satisfying Assumption 1 for 1
α fixed O( log d/δ

α )-dimensional subspaces (cf. Remark 1, where we
use R = poly(d, δ−1) as below, where n = poly(d)), δ ∈ (0, 1)

2: Output: L ⊂ Rd with |L| ≤ 2
α satisfying (8) with probability ≥ 1− δ

3: {Tj}j∈[m] ← PreProcess(T, δ2)

4: Lj ← FastSIFT(Tj ,
δα
2 ,ProduceGoodTuple), for all j ∈ [m], with R = 4n4

δ2
, and αj = α|T |

|Tj | , reusing

the same datapoints Tslow for each call to FastSIFT
5: Lj ← PostProcess(Lj , αj), for all j ∈ [m]
6: return L←

⋃
j∈P Lj , where P = {j ∈ [m] | |Lj | ≤ 2

αj
}

32



Theorem 4. Under Assumption 1, with probability at least 1 − δ, ListDecodableMeanEstimation
outputs a list of size at most 2

α , and attains error

min
µ∈L
‖µ− µ∗‖2 = O

(
1√
α

)
.

The overall runtime is

O

(
nd

α
log2(d) log3

(
d

δ

)
log

(
1

α

)
+

1

α6
log4

(
d

δ

))
.

Proof. We will show correctness and complexity of Algorithm 8 separately.

Correctness guarantee. First, note there are at most α−1 clusters outputted by PreProcess, so by a
union bound, with probability at least 1− δ, both PreProcess and all FastSIFT calls succeed. Note
that whichever cluster Tj that contains all of S indeed satisfies Assumption 1, with |S| = αj |Tj |,
by definition of αj . Thus, Corollary 1 and Lemma 9 imply that index j will belong to the output
set P , and an element of Lj will meet the error guarantee (8). The list size follows from

|L| ≤
∑
j∈[m]

2

αj
=

2

α
.

Finally, we remark that we can reuse the same slow dataset Tslow for each of the at most 1
α runs of

FastSIFT in Line 4, corresponding to different clusters, up to a 1
α factor in the failure probability

of Proposition 1. This is because (as in Remark 1), the low-dimensional subspaces produced by
ProduceGoodTuple are each independent of any randomness used in generating the set Tslow.

Complexity guarantee. The cost of PostProcess given in Lemma 9 never dominates the cost of
FastSIFT given in Corollary 1; similarly, it is clear that the cost of PreProcess given in Lemma 12
never dominates. Thus, it suffices to bound the costs of all calls to FastSIFT in Line 4. To this end,
we bound contributions of the two terms in the runtime of Corollary 1. Because each αj ≥ α and
the sum of the sizes of the {Tj}j∈[m] is n,

∑
j∈[m]

|Tj |d
αj
≤ |T |d

α
=
nd

α
.

Similarly, denoting kj = 1
αj

and k = 1
α , since

∑
j∈[m] kj = k by design,

∑
j∈[m]

k6
j ≤

∑
j∈[m]

kj

6

=
1

α6
.

5.4 Trading off accuracy for runtime

In this section, we give a simple alternative to the algorithm ListDecodableMeanEstimation which
removes the lower-order term in the runtime (so that the complexity is just the cost of polylogarith-
mically many calls to a k-PCA routine), at the cost of a slight loss in the accuracy term. We first

note that unless α−1 = ω
(√

d
)

, the term with dependence α−6 will not dominate the complexity
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of Theorem 4. This is because we choose our sample complexity (following Assumption 1) to be on
the order of d

α , so that asymptotically,

1

α6
>
nd

α
=⇒ d2 <

1

α4
.

We now give the main result of this section, which shows in this regime of α−1, it suffices to
randomly sample in the last stage of each run of FastSIFT rather than apply SIFT. The following
Algorithm 9 (FasterSIFT) is a simple modification of FastSIFT, which is the same for the first three
lines, as well as the last. The only difference is that in Line 4, the list Lslow is formed by random
sampling points from Tslow and projecting into the subspace BB>.

Algorithm 9 FasterSIFT(T, δ,ProduceGoodTuple)

1: Input: T = Tfast∪Tslow ⊂ Rd with |Tfast| = n satisfying Assumptions 1 and 2, |Tslow| = O( logR
α2 )

satisfying Assumption 1 for a fixed O( logR
α )-dimensional subspace, δ ∈ (0, 1), subroutine

ProduceGoodTuple which returns a good tuple with specified failure probability
2: (B, w)← ProduceGoodTuple(Tfast,

δ
2)

3: µfast ← (I−BB>)µw(T )
4: Lslow ← {BB>Xi where i ∈ Tslow is sampled uniformly at random}, with list size |Lslow| =
d 2
α log 4

δαe
5: return L← {µslow + µfast | µslow ∈ Lslow}

Corollary 2. Consider running ListDecodableMeanEstimation with a modification: in Line 4, use
FasterSIFT (Algorithm 9) in place of FastSIFT (Algorithm 2). The resulting list has size at most 2

α .
Under Assumption 1, with probability at least 1− δ, the overall runtime is

O

(
nd

α
log2(d) log3

(
d

δ

)
log

(
1

α

))
,

and the error guarantee is

min
µ∈L
‖µ− µ∗‖2 = O

√ log 1
δα

α

 .

Proof. We first discuss list size and error guarantee. It suffices to show that for the cluster Tj
containing all of S, we can modify Lemma 9 to obtain a list size 2

αj
and error guarantee on the order

of
√

log(1/δα)/α. To see this, all arguments in Lemma 9 follow identically, except that the random

sampling occured in a O( logR
αj

)-dimensional space. Hence, the error guarantee is correspondingly

amplified, where we recall R = poly(d, δ−1), but the list size argument is the same (e.g. we only keep
means which contain at least O(|Tj |αj) points within their cluster, and all clusters are disjoint).

We now discuss runtime. The cost of all runs of FastSIFT remains the same, up until the step where
SIFT is run; clearly, the cost of random sampling is cheaper than running ProduceGoodTuple, once
the projections into the coordinate system of B have already been formed. Finally, the only place
that we can lose runtime due to working in a larger-dimensional subspace is in the complexity of
PostProcess, where operations are done in O( logR

α ) dimensions. Mirroring the proof of Lemma 9,
this only adds a logR overhead, and it is straightforward to check that the cost of all runs of
PostProcess do not dominate, since for d ≥ α−1 and our choice of n, nd

α ≥
1
α4 .
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6 Ky Fan matrix multiplicative weights

We give a regret guarantee for a Ky Fan matrix multiplicative weights procedure, as well as its
efficient implementation. We first state a general-purpose regret bound in Section 6.1, using a key
divergence bound shown in Section 6.2. We then show how to use a more fine-grained analysis of
simultaneous power iteration developed in Section 6.3 to prove correctness and a complexity bound
on our overall method (tolerant to approximation error), given in Section 6.4.

Throughout this entire section, all variables (unless otherwise specified) will be either d-dimensional
vectors or d× d matrices, and we let k ∈ [d] be some smaller dimensionality.

6.1 Regret bound

Throughout this section, we define a “dual set” and regularizer inducing dual variables as follows:

Y := {Y | 0 � Y � I, Tr(Y) = k} , r(Y) := 〈Y, log Y〉 − Tr(Y). (18)

Finally, we define the projection operator for any symmetric matrix S,

∇r∗(S) := argminY∈Y {〈−S,Y〉+ r(Y)} , where r∗(S) := max
Y∈Y
{〈S,Y〉 − r(Y)} . (19)

Here, we remark that it is a direct application of convex duality and the following fact (which is
standard, and follows from e.g. the arguments of [Yu13]) that ∇r∗ is unique, and is the gradient of
r∗, the Fenchel dual of r over the set Y.

Fact 3. Function r defined in (18) is 1
k -strongly convex over Y in ‖·‖tr, and has range k log d

k .

We prove a helper lemma about the structure of ∇r∗, using its closed form derived in [CMY20].

Fact 4 ([CMY20], Lemma 7.3). Given symmetric matrix S with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd
and corresponding eigenvectors {vj}j∈[d], we can compute ∇r∗(S) as follows. Define

τ(S) := max

{
τ

∣∣∣∣ τ > 0,
exp(τ)∑

j∈[d] exp(min(τ, λj))
≤ 1

k

}
. (20)

Then,

∇r∗(S) =
∑
j∈[d]

k exp(min(τ(S), λj))∑
j′∈[d] exp(min(τ(S), λj′))

vjv
>
j .

Algorithm 10 KFMMW(k, {Gt}t≥0, η)

1: Input: Gain matrices {Gt}t≥0, step size η > 0
2: Y0 ← k

dI, S0 ← ∇r(Y0) = log(kd )I
3: for t ≥ 0 do
4: St+1 ← St + ηGt

5: Yt+1 ← ∇r∗(St+1)
6: end for

In other words, ∇r∗ exponentiates its argument and normalizes the trace to be k, with the exception
of “large” coordinates which are truncated so that the resulting matrix is operator norm bounded
(as in the definition of Y). We now give a “refined regret bound” for Algorithm 10 when all
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gain matrices {Gt}t≥0 are positive and bounded. The bound is refined in the sense that it depends
directly on the inner products 〈Gt,Yt〉 rather than a looser, more standard bound such as k ‖Gt‖op

(cf. discussion in [ZLO15]). In proving Proposition 6, we will rely on a new bound on Bregman
divergences with respect to r∗, which is stated here, and proven in the following Section 6.2.

Lemma 13. For symmetric matrix S, positive semidefinite G, and scalar η > 0 let S′ = S + ηG.
Suppose that ‖ηG‖op ≤

1
2 . Then,

V r∗
S

(
S′
)
≤ 〈ηG,∇r∗(S)〉 .

Proposition 6. Suppose the input gain matrices to Algorithm 10 satisfy the bound, for all t ≥ 0,

0 � ηGt �
1

2
I.

Then, we have the guarantee for all T ≥ 1, and all U ∈ Y,

1

T

T−1∑
t=0

〈Gt,U〉 ≤
2

T

T−1∑
t=0

〈Gt,Yt〉+
k log d

ηT
.

Proof. Fix some U ∈ Y throughout this proof, and note that by Fact 3, V r
Y0

(U) ≤ k log d as Y0

minimizes r. Moreover, fix Ψ := ∇r(U); it is a straightforward computation that the inverse
mapping ∇r∗(Ψ) = U holds, via Fact 4. For each iteration t,

〈ηGt,U−Yt〉 = 〈St+1 − St,∇r∗(Ψ)−∇r∗(St)〉
= V r∗

Ψ (St)− V r∗
Ψ (St+1) + V r∗

St (St+1) ≤ V r∗
Ψ (St)− V r∗

Ψ (St+1) + 〈ηGt,Yt〉 .
(21)

The second equality is the well-known three-point equality of Bregman divergence and follows from
expanding definitions, and in the last inequality we used Lemma 13. Telescoping (21) across all
iterations and dividing by ηT , we arrive at the bound

1

T

T−1∑
t=0

〈Gt,U−Yt〉 ≤
1

T

T−1∑
t=0

〈Gt,Yt〉+
V r∗

Ψ (S0)

ηT
.

The conclusion follows by rearrangement and using that (from Fact 3 and ∇r(Y0) = S0)

V r∗
Ψ (S0) = r∗(S0)− r∗(Ψ)− 〈U,S0 −Ψ〉

= (〈Y0,S0〉 − r(Y0))− (〈U,Ψ〉 − r(U))− 〈U,S0 −Ψ〉
= r(U)− r(Y0)− 〈∇r(Y0),U−Y0〉 = V r

Y0
(U) ≤ k log d.

In Section 6.4, where we will only have approximate access to the {Yt}t≥0, we give a simple bound
showing that the guarantee in Proposition 6 does not significantly deteriorate as Corollary 4.

6.2 Refined divergence bound

In this section, we prove Lemma 13. The proof is patterned from calculations in [CDST19, JLL+20]
tailored towards the specific properties of the functions r, r∗ in (18), (19). We define the vector
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variants of these functions, denoted rvec : Yvec → R and r∗vec : Rd → R, by

rvec(y) := 〈y, log y〉 − ‖y‖1 , r
∗
vec(s) := min

y∈Yvec
{〈−s, y〉+ r(y)} ,

where Yvec is the set of nonnegative vectors with `1 norm k and maximum entry bounded by 1.
Here, we use log y to denote the entrywise logarithm of a vector.

Lemma 14. For s ∈ Rd, overload τ(s) to mean (20) applied to a matrix whose eigenvalues are
given by s. Then, r∗vec is twice-differentiable at s if and only if no coordinate of s is equal to τ(s).

Proof. Suppose without loss throughout this proof that s is sorted so s1 ≥ . . . ≥ sd; we may do this
since r∗vec is symmetric in its arguments. Also, define (overloading (20) appropriately for vectors)

N(s) :=
∑
j∈[d]

exp(min(τ(s), sj)) =⇒ [∇r∗vec(s)]j =
k exp(min(τ(s), sj))

N(s)
. (22)

This implication is via a direct modification of the calculations leading to Fact 4 (alternatively, this
follows from Corollary 3.3 of [Lew96] since r∗ is a spectral function).

Twice-differentiable case. We first prove that r∗vec(s) is twice-differentiable when no coordinate of
s is τ(s); suppose that for some 0 ≤ ` ≤ k − 1, exactly ` coordinates of s are (strictly) larger than
τ(s).7 If ` = 0, it is clear that r∗vec is twice-differentiable, so we focus on the case ` 6= 0; in this
case, by the definition of τ(s) (summing over indices larger and smaller than τ separately),

N(s) = k exp(τ(s)) = ` exp(τ(s)) +
∑
j 6∈[`]

exp(sj) =⇒ exp(τ(s)) =

∑
j 6∈[`] exp(sj)

k − `
.

We thus compute

∂

∂sj
exp(τ(s)) =

{
0 j ∈ [`]
exp(sj)
k−` j 6∈ [`]

,
∂

∂sj
N(s) =

{
0 j ∈ [`]
k exp(sj)
k−` j 6∈ [`]

. (23)

It is then a straightforward calculation that ∇2
ijr
∗
vec(s) exists in all cases, upon differentiating

coordinates of ∇r∗vec as computed in (22). In particular,

∇2
ijr
∗
vec(s) =


k exp(si)
N(s) −

k exp(si)
2

N(s)2
i = j 6∈ [`]

−k exp(si) exp(sj)
N(s)2

i, j 6∈ [`], i 6= j

0 otherwise

. (24)

This also shows that all ∇2
ijr
∗
vec are continuous in a small neighborhood of s, so we conclude r∗vec is

twice-differentiable at s.

Non-twice-differentiable case. Next, suppose we are in the case where some coordinate s` = τ(s).
We claim that ∂

∂s`
∂
∂s`
r∗vec(s) does not exist. In particular, perturbing s` in a positive direction does

not affect τ(s), and thus does not affect N(s) either, so the derivative from above of ∂
∂s`
r∗vec(s) with

respect to s` vanishes. To compute the derivative from below, suppose without loss of generality
that s` ≥ τ(s) but s`+1 < τ(s). We handle the case where ` ≥ 2 here, and discuss ` = 1 at the end.

7From the definition of τ , we cannot have ` ≥ k since otherwise the sum of the k largest elements is too large.
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We first compute the effect on negatively perturbing s` on τ(s); for vanishing δ > 0, let s′ = s−δe`.
Since τ is weakly monotone in its argument, clearly sj ≥ τ(s) > s′` for j ∈ [`− 1], so since

k exp(s′`) ≤ ` exp(s′`) + (k − `) exp(τ(s)) = ` exp(s′`) +
∑
j 6∈[`]

exp(sj) =
∑
j∈[d]

exp
(
min(s′`, s

′
j)
)
,

we have by the definition (20) that τ(s′) ≥ s′`. Next, by

k exp(τ(s′)) = (`− 1) exp(τ(s′)) + exp
(
s′`
)

+
∑
j 6∈[`]

exp(sj)

=⇒ exp(τ(s′)) =
exp (s′`) +

∑
j 6∈[`] exp(sj)

k − (`− 1)
=

exp (s′`) + (k − `) exp(τ(s))

k − (`− 1)
,

we see that τ(s′) < τ(s) since s′` decreased. It is straightforward to see from this that since[
∂

∂s`

]
−

exp(τ(s)) =
exp(s`)

k − (`− 1)
=⇒

[
∂

∂s`

]
−

∑
j∈[d]

exp (min(τ(s), sj)) =
k exp(s`)

k − (`− 1)
,

where [ ∂
∂s`

]− is the derivative from below, we have [
∂

∂s`

]
−

k exp(s`)∑
j∈[d] exp (min(τ(s), sj))

=
k(∑

j∈[d] exp (min(τ(s), sj))
)2

exp(s`)
∑
j∈[d]

exp (min(τ(s), sj))−
k exp(s`)

2

k − (`− 1)

 6= 0.

The last inequality is by∑
j∈[d]

exp (min(τ(s), sj)) = k exp(τ(s)) 6= k

k − (`− 1)
exp(τ(s)) =

k

k − (`− 1)
exp(s`).

Thus, the derivatives from above and below do not agree as desired. Finally, consider when ` = 1;
the above calculations imply that τ(s′) =∞ (since then no element needs to be truncated). Hence,

[
∂

∂s`

]
−

k exp(s`)∑
j∈[d] exp (min(τ(s), sj))

=
k(∑

j∈[d] exp (sj)
)2

exp(s`)
∑
j∈[d]

exp (sj)− exp(s`)
2

 6= 0.

We next prove a bound on quadratic forms with respect to the (matrix) Hessian of r∗, at symmetric
matrices S where the function is twice-differentiable. We crucially use formulas for the derivatives
of spectral functions (permutation-invariant scalar-valued functions on symmetric matrices which
depend only on the eigenvalues), from [Lew96, LS01].

Lemma 15. Let S = U>diag (s) U be a symmetric matrix with eigenvalues s sorted so that
s1 ≥ . . . ≥ sd, and U is an orthonormal basis. Then, r∗ is twice-differentiable at S if and only
if no coordinate of s equals τ(S). Further, when r∗ is twice-differentiable at S, for any positive
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semidefinite G,
∇2r∗(S)[G,G] ≤

〈
∇r∗(S),G2

〉
.

Proof. The first claim is a direct consequence of Lemma 14 and the first part of Theorem 3.3 of
[LS01], which states that when r∗ is a spectral function of S, it is twice-differentiable at S if and
only if r∗vec is twice-differentiable at s. Moreover, Theorem 3.3 of [LS01] gives the formula

∇2r∗(S)[G,G] = ∇2r∗vec(s)
[
diagvec(G̃),diagvec(G̃)

]
+
〈
A, G̃ ◦ G̃

〉
,

where G̃ = UGU>, Aij =

{
0 i = j
∇ir∗vec(s)−∇jr∗vec(s)

si−sj i 6= j
,

(25)

◦ is the Hadamard (entrywise) product, and diagvec : Rd×d → Rd returns the vector whose entries
are the diagonal of the input matrix. Here, we assume that no two entries of s are identical since
it is clear that the scalar-valued Hessian is continuous at s by the formula (24), so Theorem 4.2
of [LS01] shows that ∇2r∗ is also continuous at S (thus we can perturb S infinitesimally so the
eigenvalues are unique). Now, let s̃ = min(τ(s), s) entrywise. We first have

∇2r∗vec(s)
[
diagvec(G̃),diagvec(G̃)

]
≤ diag

({
k exp(si)

N(s)

}
si≤τ(s)

)[
diagvec(G̃),diagvec(G̃)

]
≤ k

N(s)

∑
i∈[d]

exp(s̃i)
(
G̃ii

)2
.

(26)
Here, we used that ∇2r∗vec(s) is a diagonal matrix minus a rank-one term, restricted to eigenvalues
which are at most τ(s) as calculated in (24). Next, we claim that for any tuple i 6= j ∈ [d],

exp(s̃i)− exp(s̃j)

si − sj
≤ exp(s̃i) + exp(s̃j)

2
.

Without loss of generality assume si > sj . This claim is obvious for any tuple where si > sj ≥ τ(s).

For all other cases, we recall the identity exp(a)−exp(b)
a−b ≤ exp(a)+exp(b)

2 for all a 6= b (cf. Lemma B.3,
[JLL+20]). Then, if sj ≤ si < τ(s), a direct application of this identity yields the claim; for the
final case where sj < τ(s) ≤ si, this follows from also using si − sj ≥ s̃i − s̃j . Continuing,〈

A, G̃ ◦ G̃
〉

=
k

N(S)

∑
i 6=j∈[d]

exp(s̃i)− exp(s̃j)

si − sj

(
G̃ij

)2

≤ k

N(S)

∑
i 6=j∈[d]

exp(s̃i) + exp(s̃j)

2

(
G̃ij

)2
.

(27)
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Combining (26) and (27) in the formula (25),

∇2r∗(S)[G,G] ≤ k

N(S)

∑
i,j∈[d]

exp(s̃i) + exp(s̃j)

2

(
G̃ij

)2

=
k

N(S)

∑
i,j∈[d]

exp(s̃i)
(
G̃ij

)2
=

k

N(S)

∑
i∈[d]

exp(s̃i)

∑
j∈[d]

(
G̃ij

)2


=
∑
i∈[d]

k exp(s̃i)

N(S)

[
G̃2
]
ii

=
〈
diag (∇r∗vec(s)) , G̃

2
〉
.

Finally, note that G̃2 = UG2U>, so the last expression is equal to
〈
U>diag (∇r∗vec(s)) U,G2

〉
by

the cyclic property of trace. We conclude by the fact that ∇r∗(S) = U>diag (∇r∗vec(s)) U, since
r∗ is a spectral function, due to Corollary 3.3 of [Lew96].

We conclude with the desired proof of Lemma 13.

Lemma 13. For symmetric matrix S, positive semidefinite G, and scalar η > 0 let S′ = S + ηG.
Suppose that ‖ηG‖op ≤

1
2 . Then,

V r∗
S

(
S′
)
≤ 〈ηG,∇r∗(S)〉 .

Proof. We first claim that without loss of generality, everywhere on the straight-line path from S
to S′ except for a measure-zero set (in R1), r∗ is twice-differentiable. To see this, the Alexandrov
theorem says that since r∗ is convex, it is twice-differentiable everywhere except a measure-zero
set in the space of its argument. However, by perturbing S and S′ by a random matrix with
eigenvalues distributed uniformly at random ∈ [−δ, δ], for vanishing δ > 0, with probability one the
line between perturbed matrices only intersects the non-twice-differentiable set on a measure-zero
set (this follows from the disintegration theorem). Thus, by continuity of V r∗ in both arguments
(since ∇r∗ is Lipschitz by Lemma 15.3 of [Sha07], as r∗ is the dual of a strongly convex function),
we assume S, S′ have this property, so we may write

V r∗
S (S′) =

∫ 1

0

∫ s

0
∇2r∗(St)[G,G]dtds

≤
∫ 1

0

∫ s

0

〈
∇r∗(St), η2G2

〉
dtds ≤ 1

2

∫ 1

0

∫ s

0
〈∇r∗(St), ηG〉 dtds.

(28)

Here, for t ∈ [0, 1] we define St = S + tηG, and used Lemma 15 in the second line (almost
everywhere) as well as the assumed bound on ‖ηG‖op so that η2G2 � 1

2ηG. Define p(t) := r∗(St)

and v(t) := V r∗
S (St); then,∫ s

0
〈∇r∗(St), ηG〉 dt = p(s)− p(0) = v(s) + 〈∇r∗(S), sηG〉 ≤ v(1) + 〈∇r∗(S), sηG〉 .

In the last inequality, we used that v is increasing, which can be seen via

tv′(t) = 〈tηG,∇r∗(St)−∇r∗(S)〉 ≥ 0.
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Substituting back into (28),

V r∗
S (S′) ≤ 1

2

∫ 1

0
(v(1) + 〈∇r∗(S), sηG〉) ds ≤ 1

2
v(1) +

1

2
〈∇r∗(S), ηG〉 .

Rearranging and using that V r∗
S (S′) = v(1) yields the desired bound.

6.3 Refined k-PCA guarantees

We show a refined bound on the guarantees of simultaneous power iteration for approximately
learning the top k eigenvectors of a positive semidefinite matrix (i.e. k-PCA). In particular, the
main result of this section (Proposition 7) strengthens Theorem 6.1 in [CMY20] by a factor of k.

Algorithm 11 Power(A, λmax, λmin, k, ε, δ)

1: Input: Positive semidefinite A ∈ Rd×d with λminI � A � λmaxI, accuracy ε ∈ (0, 1), k ∈ [d],
δ ∈ (0, 1)

2: N ← Θ
(

1
ε log

(
d
δε ·

λmax
λmin

))
for a sufficiently large universal constant

3: G ∈ Rd×k entrywise ∼ N (0, 1)
4: return V ∈ Rd×k, an orthonormal basis for the column span of ANG

For the remainder of this section, we will fix a particular positive semidefinite matrix A =
U>diag (λ) U, where U ∈ Rd×d is orthonormal and λ1 ≥ λ2 ≥ . . . ≥ λd are the ordered eigenvalues
of A. We will also define three sets which partition [d]:

L := {j ∈ [d] | λj > (1 + ε
4)λk+1},

M := {j ∈ [d] | (1 + ε
4)λk+1 ≥ λj ≥ (1− ε

4)λk+1},
S := {j ∈ [d] | λj < (1− ε

4)λk+1}.
(29)

In particular, L, M , and S are the “large”, “medium”, and “small” eigenvalues of A. We first give
two key structural results, which say that with high probability, the span of V contains essentially
all the `2 mass of any vector in L, and essentially none of the `2 mass of any vector in S.

Lemma 16. Let P := VV> where V is the output of Algorithm 11. With probability at least

1− δ
3 − exp(−Ck) for a universal constant C, for all j ∈ S, ‖Puj‖2 ≤

λ2d
λ21
· ε2

64d2
, where uj is row j

of U, and we follow notation in (29).

Proof. By rotational invariance of Gaussian matrices, it suffices to consider the case where A is
diagonal and U is the identity; henceforth in this lemma, uj is the jth standard basis vector. Recall
that P is the projection onto the column span of ANG. We explicitly compute

P = ANG
(
G>A2NG

)−1
G>AN =⇒ ‖Puj‖22 = u>j ANG

(
G>A2NG

)−1
G>ANuj . (30)

Here, we used that P2 = P. Now, notice that (where Gj: is row j of G)

G>A2NG =
∑
j∈[d]

λ2N
j Gj:G

>
j: � λ2N

k

∑
j∈[k]

Gj:G
>
j:.
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However, Theorem 1.1 of [RV09] shows that with probability δ
6 + exp(−Ck) for some constant C,

the smallest eigenvalue of a k × k Gram matrix for independent Gaussian entries is at least δ
6
√
k
.

Assuming that this happens, we then continue to bound

λ2N
k

∑
j∈[k]

Gj:G
>
j: �

λ2N
k δ

6
√
k

I =⇒ ‖Puj‖22 ≤
6
√
k

δλ2N
k

u>j ANGG>ANuj

=
6
√
k

δ

(
λj
λk

)2N [
GG>

]
jj

≤ 6
√
k

δ
exp

(
−εN

2

)∑
i∈[k]

G2
ji.

In the first implication, we combined the lower bound we just derived with (30). Using standard chi-
squared concentration bounds (cf. Lemma 1, [LM00]), the probability that

∑
i∈[k] G

2
ji ≥ 2k+3 log 6

δ

is no more than δ
6 . Performing a union bound, with failure probability at most δ

3 + exp(−Ck), we

have that for sufficiently large N = Θ
(

1
ε log

(
d
δε ·

λmax
λmin

))
, since k ≤ d,

‖Puj‖22 ≤
12k1.5 + 18

√
k log 6

δ

δ
exp

(
−εN

2

)
≤ λ2

min

λ2
max

· ε2

64d2
≤
λ2
d

λ2
1

· ε2

64d2
.

Finally, adjusting the failure probability of the chi-squared tail bound by a factor of d, the conclusion
follows by union bounding over all j ∈ S.

Lemma 17. Let P := VV> where V is the output of Algorithm 11. With probability at least

1− δ
3 − d exp(−Ck) for a universal constant C, for all j ∈ L, ‖Puj‖22 ≥ 1− λ2d

λ21
· ε2

64d2
, where uj is

row j of U, and we follow notation in (29).

Proof. By definition of L, it is clear that j ∈ [k]. Again we consider the case where A is diagonal
and U is the identity without loss of generality. Let G[k]: be the first k rows of G, and let

G̃ := G
(
G[k]:

)−1
.

Observe that the first k rows of G̃ are exactly I. Also, with probability at least 1− δ
6 − exp(−Ck),

the largest singular value of
(
G[k]:

)−1
is bounded above by 6

√
k
δ , again by Theorem 1.1 of [RV09].

Condition on this event for the remainder of the proof. Since in this case G[k]: is invertible, where
Span denotes column span,

Span
(
G̃
)

= Span (G) =⇒ Span
(
ANG̃

)
= Span

(
ANG

)
.

Fix some j ∈ L. To show the conclusion, it suffices to show that there exists a unit vector v∗ in the

span of ANG̃ with (〈uj , v∗〉)2 ≥ 1− λ2d
λ21
· ε2

64d2
. To see this, let {vi}i∈[k] be any orthonormal basis for

Span
(
ANG̃

)
with v1 = v∗; then

‖Puj‖22 = u>j Puj =
∑
i∈[k]

(〈uj , vi〉)2 ≥ (〈uj , v∗〉)2 ≥ 1−
λ2
d

λ2
1

· ε2

64d2
.
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We will choose v∗ to be the normalization of ANG̃:j which has unit `2 norm, where G̃:j is column

j of G̃. By standard chi-squared concentration bounds, with probability at least 1 − δ
6 , all rows

i 6∈ [k] of the matrix G have squared `2 norm at most

2k + 3 log
6d

δ
.

Here, we adjusted the failure probability of Lemma 1 in [LM00] by a factor of d and union bounded
over all i 6∈ [k]. Now, this implies that for all i 6∈ [k],∥∥∥∥((G[k]:

)−1
)>

G>i:

∥∥∥∥2

2

≤
72k2 + 108k log 6d

δ

δ2
=⇒ G̃2

ij ≤
72k2 + 108k log 6d

δ

δ2
for all j ∈ [k].

We conclude that the column vector G̃:j has the property that

G̃2
ij


= 1 i = j

= 0 i 6= j, i ∈ [k]

≤ 72k2+108k log 6d
δ

δ2
i 6∈ [k].

Here, the first two cases are by design, and the last is by our earlier derivation. Thus, by choosing

N = Θ
(

1
ε log

(
d
δε ·

λmax
λmin

))
to be sufficiently large (as in the ending of the proof of Lemma 16), we

see that ANG̃:j places all but a negligible amount of `22 mass on coordinate j, where we use that
λNj ≥ (1 + ε

4)NλNi for all i 6∈ [k].

We also give a simple helper calculation for demonstrating Loewner orderings.

Lemma 18. Let A,B ∈ Rd×d be positive semidefinite and suppose for any fixed unit test vector
v ∈ Rd and some ε ∈ (0, 1), ∣∣∣v> (A−B) v

∣∣∣ ≤ εv>Bv.

Then, (1− ε)B � A � (1 + ε)A.

Proof. The upper bound follows from

v>Av ≤ v>Bv +
∣∣∣v> (A−B) v

∣∣∣ ≤ (1 + ε)v>Bv.

The lower bound follows similarly.

Our main bound follows from an application of the above three results.

Proposition 7. Let P := VV> where V is the output of Algorithm 11. With probability at least
1− 2δ

3 − 2 exp(−Ck) for a universal constant C,

(1− ε) (PAP + (I−P) A (I−P)) � A � (1 + ε) (PAP + (I−P) A (I−P)) . (31)

Proof. Condition on the conclusions of Lemmas 16 and 17 holding for the rest of this proof. We
note

A− (PAP + (I−P) A (I−P)) = PA (I−P) + (I−P) AP.
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Hence, applying Lemma 18, for any fixed unit test vector v ∈ Rd, this proposition asks to show

2
∣∣∣y>Ax

∣∣∣ ≤ ε(x>Ax+ y>Ay
)
, where x := Pv and y := (I−P) v.

Recall that A =
∑

j∈[d] λjuju
>
j . Letting x̃ := Ux and ỹ := Uy, it suffices to show∣∣∣∣∣∣
∑
j∈[d]

λj x̃j ỹj

∣∣∣∣∣∣ ≤ ε

2

∑
j∈[d]

λj
(
x̃2
j + ỹ2

j

)
. (32)

Since 〈x̃, ỹ〉 = 〈x, y〉 = 0 by the definition of x, y,∣∣∣∣∣∣
∑
j∈[d]

λj x̃j ỹj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈[d]

(λj − λk+1)x̃j ỹj

∣∣∣∣∣∣ ≤ ε

4

∑
j∈M

λk+1|x̃j ỹj |+

∣∣∣∣∣∣
∑
j 6∈M

(λj − λk+1)x̃j ỹj

∣∣∣∣∣∣ .
Here we used the definition of j ∈M , so that |λj − λk+1| ≤ ε

4λk+1. We first bound

ε

4

∑
j∈M

λk+1|x̃j ||ỹj | ≤
ε

4(1− ε
4)

∑
j∈M

λj |x̃j ||ỹj | ≤
ε

4

∑
j∈M

λj
(
x̃2
j + ỹ2

j

)
≤ ε

4

∑
j∈[d]

λj
(
x̃2
j + ỹ2

j

)
. (33)

Moreover, by Lemma 16, for each j ∈ S, we have

|x̃j | =
∣∣∣u>j Pv

∣∣∣ ≤ ‖Puj‖2 ‖v‖2 ≤ λd
λ1
· ε

8d
,

and similarly for each j ∈ L, ỹj ≤ λd
λ1
· ε8d by Lemma 17. Thus, since all |x̃j | and |ỹj | are at most 1,∣∣∣∣∣∣

∑
j∈S

(λj − λk+1)x̃j ỹj

∣∣∣∣∣∣ ≤ λ1

∑
j∈S
|x̃j | ≤

ε

8
λd ≤

ε

8

∑
j∈[d]

λj
(
x̃2
j + ỹ2

j

)
,

∣∣∣∣∣∣
∑
j∈L

(λj − λk+1)x̃j ỹj

∣∣∣∣∣∣ ≤ λ1

∑
j∈L
|ỹj | ≤

ε

8
λd ≤

ε

8

∑
j∈[d]

λj
(
x̃2
j + ỹ2

j

)
.

(34)

Finally, combining (33) and (34), we have the desired bound (32).

An unfortunate consequence of Proposition 7 is that its failure probability is exponentially related
to k, rather than d. However, for sufficiently small k = O(log 1

δ ), we can use an alternative analysis
of the power method due to [CMY20] to conclude that the desired bound (31) holds.

Corollary 3. There is an algorithm (either Algorithm 11 of this paper, or Algorithm 5 of [CMY20])
which takes as input positive semidefinite A ∈ Rd×d with λminI � A � λmaxI, k ∈ [d], and accuracy
parameter ε ∈ (0, 1), and returns with probability at least 1−δ a set of orthonormal vectors V ∈ Rd×k
such that for P := VV>, (31) holds. The number of matrix-vector products to A required is

O

(
k

ε
log2

(
d

δε

λmax

λmin

))
.

Proof. In the case where k ≥ log 6/δ
C for C the universal constant in Proposition 7, the conclusion
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is immediate from Proposition 7. In the other case, we have that k = O(log 1
δ ). Hence, we can run

Algorithm 5 of [CMY20] with an accuracy parameter which is O(k) times smaller, and use their
Theorem 6.1 to obtain the desired conclusion. The iteration complexity of Algorithm 5 of [CMY20]
depends linearly on the inverse accuracy, so the bound loses an additional logarithmic factor.

6.4 Implementation

In this section, we give an algorithm (Algorithm 12) which takes as input a matrix S and produces
a matrix Ŷ such that for some choice of input ∆ ≥ 0, we have∥∥∥Ŷ −∇r∗(S)

∥∥∥
tr
≤ k∆. (35)

We will use this at the end of the section to give a complete (computationally efficient) implemen-
tation of an approximate variant of Algorithm 10, and give its guarantees as Corollary 4.

Algorithm 12 ApproxProject(S, λmax, λmin, k,∆, δ)

1: Input: Positive semidefinite S = M>M ∈ Rd×d for some explicitly given M ∈ Rn×d with
λminI � S � λmaxI, k ≤ d ≤ n, accuracy ∆ ∈ (0, 1), k ∈ [d], δ ∈ (0, 1)

2: Output: Ŷ satisfying
∥∥∥Ŷ −∇r∗(S)

∥∥∥
tr
≤ k∆ with probability ≥ 1− δ

3: V← Power(S, λmax, λmin, k,
∆

8λmax
, δ2) (or when k ≤ log 12/δ

C , use Algorithm 5 of [CMY20])

4: {uj}j∈[k] ← eigenvectors of V>M>MV ∈ Rk×k, left-multiplied by V

5: For j ∈ [k], λ̃j ← u>j PSPuj where P := VV>

6: Ŝ←
∑

j∈[k] λ̃juju
>
j + (1− ∆

4λmax
)(I−P)S(I−P)

7: T̂ ← (1± ∆
8 )-approximation to Tr exp

(
(1− ∆

4λmax
)(I−P)S(I−P)

)
with probability 1− δ

2

8: τ̂ ← fixed point of k exp(τ̂) =
∑

j∈[k] exp(min(τ̂ , λ̃j)) + T̂

9: Ŷ ← k∑
j∈[k] exp(min(τ̂ ,λ̃j))+T̂

(∑
j∈[k] exp(min(τ̂ , λ̃j))uju

>
j + exp

(
(1− ∆

4λmax
)(I−P)S(I−P)

))
10: return Ŷ

Proposition 8. With probability at least 1 − δ, the output Ŷ of Algorithm 12 satisfies (35). The
complexity of Lines 3-8 of the algorithm is

O

(
ndk · λmax

∆2
log2

(
d

∆δ

λmax

λmin

))
.

Moreover, for any ε ∈ (0, 1), the complexity of providing (1 ± ε)-approximate access to quadratic
forms through Ŷ for any n fixed vectors {vi}i∈[n] ⊂ Rd with probability at least 1− δ is

O

(
nd · λmax

ε2
log

(
1

ε

)
log

(
nd

δ

))
.

Proof. We will show correctness and complexity of Algorithm 12 separately.

Correctness guarantee. We begin with proving correctness, which we complete in two parts. In
particular, we show that the following two bounds hold:∥∥∥∇r∗(S)−∇r∗(Ŝ)

∥∥∥
tr
≤ k∆

2
,
∥∥∥Ŷ −∇r∗(Ŝ)

∥∥∥
tr
≤ k∆

2
. (36)
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By combining the two parts of (36) and applying the triangle inequality, we have the desired
conclusion. To show the former bound, because the convex conjugate of any 1

k -strongly convex
function in ‖·‖tr is k-smooth in ‖·‖op (cf. Lemma 15.3, [Sha07]), and Fact 3 states that r is strongly
convex, it suffices to show that∥∥∥Ŝ− S

∥∥∥
op
≤ ∆

2
=⇒

∥∥∥∇r∗(Ŝ)−∇r∗(S)
∥∥∥

tr
≤ k

∥∥∥Ŝ− S
∥∥∥

op
≤ k∆

2
. (37)

Assume first that Power was used in computing Line 3. By Proposition 7, we have that

‖S− (PSP + (I−P) S (I−P))‖op ≤
∆

8λmax
‖S‖op ≤

∆

8
. (38)

Next, we claim that {uj}j∈[k] are the eigenvectors of PSP, so that∑
j∈[k]

λ̃juju
>
j = PSP.

To see this, let wj ∈ Rk be an eigenvector of V>M>MV with eigenvalue λ̃j , and let uj = Vwj , as
in Line 4 of Algorithm 12. Then indeed we have (since V>V is the identity)

PSPuj = VV>SVV>Vwj = V
(
V>M>MVwj

)
= λ̃jVwj = λ̃juj .

We then compute, using the definition of Ŝ in Line 6,∥∥∥(PSP + (I−P) S (I−P))− Ŝ
∥∥∥

op
=

∆

4λmax
‖(I−P)S(I−P)‖op ≤

3∆

8λmax
‖S‖op ≤

3∆

8
. (39)

Here, we used Proposition 7 once more to (loosely) upper bound (I−P)S(I−P) by 1.5S. Combining
(37), (38), and (39) gives the first conclusion in (36).

We next claim the top eigenvalue of (I−P)S(I−P) is at most (1 + ∆
4λmax

)λ̃k; this follows from the
second and third parts of Theorem 1 of [MM15]. Thus, by scaling down (I−P)S(I−P) by a factor
1− ∆

4λmax
, we have that its largest eigenvalue is smaller than the smallest of PSP. Let {λ̃j}j∈[d]\[k],

{uj}j∈[d]\[k] complete an eigendecomposition of Ŝ. We conclude that none of the eigenvalues of

Ŝ−PSP will be truncated in the projection since they are not in the top k, so Fact 4 yields that

∇r∗(Ŝ) =
k∑

j∈[k] min(σ, αj) + T

∑
j∈[k]

min(σ, αj)uju
>
j +

∑
j 6∈[k]

αjuju
>
j

 ,

where T := Tr exp

((
1− ∆

4λmax

)
(I−P)S(I−P)

)
,

and σ := exp(τ(λ̃)), αj := exp(λ̃j) for all j ∈ [d].

Specifically, this form is clear for the first k eigenvectors, and for the remainder the ∇r∗ operation
applies an exponentiation and scaling (since they will not be truncated), which does not affect
the relevant basis. Finally, by applying the following Lemma 19 with γ = ∆

6 , and using that the

eigenvectors of our returned Ŷ align exactly with those of Ŝ, we have the desired second bound in
(36). We remark that the only place we used the fact that Power was used in Line 3 thus far in this
proof was in citing Theorem 1 of [MM15]; however, if Algorithm 5 of [CMY20] is used, a similar
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statement on the top eigenvalue of Ŝ−PSP follows by their Remark 6.9.

Complexity guarantee. When S is given in the form M>M, the cost of a matrix-vector product in
S is O(nd). So, from Corollary 4 the cost of Line 3 is bounded by

O

(
ndk · λmax

∆
log2

(
d

∆δ

λmax

λmin

))
.

In Line 4, the cost of forming the matrix MV is O(ndk), and forming its Gram matrix and
performing an eigendecomposition takes time O(k2d+ k3); left-multiplying all resulting vectors by
V also takes time O(k2d). The cost of Line 5 for each j ∈ [k] is O(nd+kd), so the overall cost is also
O(ndk). Line 8 is a scalar optimization problem and will not dominate the complexity (tolerance
to error in a binary search is guaranteed via Lemma 19). The only remaining cost is in Line 6.

To estimate Tr exp(A) to 1 ± γ accuracy for a positive semidefinite matrix 0 � A � λmaxI (here,
we note Proposition 7 guarantees A = (1 − ∆

4λmax
)(I −P)S(I −P) � S � λmaxI), we will use two

facts well-known in the approximate semidefinite programming literature. First, Theorem 4.1 of
[SV14] shows that a degree-O(λmax log 1

γ ) polynomial p has the property that(
1− γ

3

)
exp(A) � p(A) �

(
1 +

γ

3

)
exp(A).

Moreover, the Johnson-Lindenstrauss lemma (e.g. the implementation given in [Ach03]) shows
that to estimate Tr exp(A) it suffices to sample a random ± 1√

r
matrix G ∈ Rd×r for some r =

O(log(dδ )γ−2) and then compute

∑
j∈[r]

∥∥∥∥p(1

2
A

)
G:j

∥∥∥∥2

2

≈1± γ
3

∑
j∈[r]

∥∥∥∥exp

(
1

2
A

)
G:j

∥∥∥∥2

2

= Tr

(
exp

(
1

2
A

)
GG> exp

(
1

2
A

))
.

This last quantity is a 1 ± γ
3 approximation of Tr exp(A) with probability 1 − δ

2 . The cost of this
whole procedure is dominated by O(rλmax log 1

γ ) matrix-vector multiplies to A; for our choice of
A, each multiplication costs O(nd) time, leading to an overall complexity of (as γ = Θ(∆))

O

(
nd · λmax

∆2
log

(
1

∆

)
log

(
d

δ

))
.

For any v ∈ Rd, essentially the same strategy of sampling a random G ∈ Rd×r and computing

v>p

(
1

2
A

)
GG>p

(
1

2
A

)
v =

∑
j∈[r]

(〈
G:j , p

(
1

2
A

)
v

〉)2

.

suffices for estimating the quadratic form in exp(A) to 1 ± ε accuracy, where now r and the
polynomial degree depend on ε rather than γ. We can first apply the polynomial to each column of
G and then compute inner products with v. To compute approximate quadratic forms in Ŷ, every
part of Ŷ is explicitly given except for the component exp(A) for A = (1− ∆

4λmax
)(I−P)S(I−P),

which we can approximate with the above strategy in the desired time.

Finally, for a batch of n vectors {vi}i∈[n], note that we can first compute all the vectors p(1
2A)G:j

in the desired time, at which point the cost of computing each quadratic form is reduced to O(dr).
Thus, the overall complexity is O(ndr), where we adjust the logarithm in the definition of r by a
factor of n to union bound the failure probability.
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We now provide the helper Lemma 19, which we remark crucially improves the error analysis in
Section 7.3 of [CMY20] by a factor of k, allowing us to avoid an additional poly(k) dependence.

Lemma 19. Let γ ∈ (0, 1), k ∈ [d]. Given nonnegative {αj}j∈[d] sorted with α1 ≥ . . . ≥ αd, let

T :=
∑

j 6∈[k] αj, and let T̂ ∈ [(1− γ)T, (1 + γ)T ]. Define σ and σ̂ to be fixed points of

kσ =
∑
j∈[k]

min (σ, αj) + T, kσ̂ =
∑
j∈[k]

min (σ̂, αj) + T̂ .

Then, we have

∑
j∈[d]

∣∣∣∣∣ kmin(σ, αj)∑
i∈[k] min (σ, αi) + T

− kmin(σ̂, αj)∑
i∈[k] min (σ̂, αi) + T̂

∣∣∣∣∣ ≤ 3kγ.

Proof. We first comment briefly on the existence of σ, σ̂. Note that in the setting of the lemma,

f(σ̂) :=
σ̂∑

i∈[k] min(σ̂, αi) + T̂

is an increasing, continuous function of σ̂ in the range [0,∞) which satisfies f(0) = 0 and f(∞) =∞,
so there must be a unique σ̂ satisfying f(σ̂) = 1

k . Existence of σ is proven similarly. Next, we claim

σ̂ ∈ [(1− γ)σ, (1 + γ)σ]. (40)

By our earlier argument, it suffices to show that f((1 + γ)σ) ≥ 1
k and f((1− γ)σ) ≤ 1

k , so that an
appeal to continuity and monotonicity of f yields (40). To see the former bound, note that

f((1 + γ)σ) =
(1 + γ)σ∑

i∈[k] min((1 + γ)σ, αi) + T̂

≥ (1 + γ)σ

(1 + γ)
∑

i∈[k] min(σ, αi) + (1 + γ)T

=
σ∑

i∈[k] min(σ, αi) + T
=

1

k
.

The last equality used the definition of σ; the only inequality used T̂ ≤ (1 + γ)T by assumption,
and min((1 + γ)σ, αi) ≤ min((1 + γ)σ, (1 + γ)αi) = (1 + γ) min(σ, αi). Similarly,

f((1− γ)σ) =
(1− γ)σ∑

i∈[k] min((1− γ)σ, αi) + T̂

≤ (1− γ)σ

(1− γ)
∑

i∈[k] min(σ, αi) + (1− γ)T
=

1

k
.

Here we used (1−γ) min(σ, αi) ≤ min((1−γ)σ, αi). Now, we claim (40) implies that for all j ∈ [d],∣∣∣∣∣ min(σ, αj)∑
i∈[k] min (σ, αi) + T

− min(σ̂, αj)∑
i∈[k] min (σ̂, αi) + T̂

∣∣∣∣∣ ≤ 3γmin(σ, αj)∑
i∈[k] min (σ, αi) + T

. (41)
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To see this, we may upper and lower bound for each j ∈ [d],

(1− γ) min(σ, αj) ≤ min(σ̂, αj) ≤ (1 + γ) min(σ, αj)

=⇒ (1− γ)

∑
i∈[k]

min(σ, αi) + T

 ≤∑
i∈[k]

min(σ̂, αi) + T̂ ≤ (1 + γ)

∑
i∈[k]

min(σ, αi) + T


=⇒ (1− 3γ) min(σ, αj)∑

i∈[k] min (σ, αi) + T
≤ min(σ̂, αj)∑

i∈[k] min (σ̂, αi) + T̂
≤ (1 + 3γ) min(σ, αj)∑

i∈[k] min (σ, αi) + T
.

(42)

This yields (41), which upon summing and using that min(σ, αj) = αj for all j 6∈ [k], and the
definition of T , yields the final conclusion after multiplying by k.

We additionally state one helper guarantee on the properties of Ŷ.

Lemma 20. With probability at least 1− δ, the output Ŷ of Algorithm 12 satisfies∥∥∥Ŷ∥∥∥
tr
≤
(

1 +
∆

2

)
k,
∥∥∥Ŷ∥∥∥

op
≤ 1 +

∆

2
.

Proof. By the definition of ∇r∗, we have that ∇r∗(Ŝ) ∈ Y so has operator norm at most 1 and
trace norm at most k. For the first conclusion, (36) implies∥∥∥Ŷ∥∥∥

tr
≤
∥∥∥∇r∗(Ŝ)

∥∥∥
tr

+
k∆

2
.

For the second conclusion, (42) and the operator norm bound on Y imply

λmax

(
Ŷ
)
≤ (1 + 3γ)λmax

(
∇r∗(Ŝ)

)
≤ 1 +

∆

2
.

Finally, we state our complete algorithm, an approximate version of the KFMMW method.

Algorithm 13 ApproxKFMMW(k, {Gt}0≤t≤T , η,∆, δ)
1: Input: Gain matrices {Gt}0≤t≤T , step size η > 0, accuracy ∆ ∈ (0, 1), δ ∈ (0, 1)
2: Y0 ← k

dI, S0 ← ∇r(Y0) = log(kd )I
3: for 0 ≤ t < T do
4: St+1 ← St + ηGt

5: Ŷt+1 ← ApproxProject(St+1 + (1 + log( dk ))I, t+ 2, 1, k,∆, δT )
6: end for

Corollary 4. Suppose the input gain matrices to Algorithm 13 satisfy the bound, for all t ≥ 0,

0 � ηGt �
1

2
I.

Further, suppose that the {Gt}t≥0 are weakly decreasing in Loewner order. With probability 1− δ,

‖GT ‖k ≤
2

T

T−1∑
t=0

〈
Gt, Ŷt

〉
+
k log d

ηT
+
k∆

η
.
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The complexity of Algorithm 13 is

O

(
ndk · T

2

∆2
log2

(
dT

∆δ

))
,

and the cost of providing (1 ± ε)-approximate access to quadratic forms for any fixed n vectors
{vi}i∈[n] ⊂ Rd through any Ŷt for any ε ∈ (0, 1), with failure probability at most δ, is

O

(
nd · T

ε
log

(
1

ε

)
log

(
nd

δ

))
.

Proof. We claim first that it suffices to show that the conclusion of Proposition 8 holds in each
iteration t. To see why this is enough, matrix Hölder on the conclusion of Proposition 6 yields

〈Gt,Yt〉 ≤
〈
Gt, Ŷt

〉
+ ‖Gt‖op

∥∥∥Ŷt −Yt

∥∥∥
tr
≤
〈
Gt, Ŷt

〉
+ k∆ ‖Gt‖op ≤

〈
Gt, Ŷt

〉
+
k∆

2η

=⇒ 1

T

T−1∑
t=0

〈Gt,U〉 ≤
2

T

T−1∑
t=0

〈
Gt, Ŷt

〉
+
k log d

ηT
+
k∆

η
.

In the last inequality in the first line, we used the assumption that ηG � 1
2I. Supremizing over

U, and using monotonicity of the gain matrices, yields the conclusion. Next, we prove that calling
ApproxProject is valid. Note ∇r∗ is invariant under shifts by the identity, so it suffices to first shift
S0 to be I and hence λmin = 1 is a valid bound. Since for all t ≥ 0, the change in St (i.e. ηGt)
is positive semidefinite and bounded by I, we can set λmax = t + 2 in the call. Finally, the failure
probability comes from a union bound over all iterations, and the overall complexity is T times the
cost of a single ApproxProject operation, given by Proposition 8.
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[LM00] Béatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional
by model selection. The Annals of Statistics, 28(5):1302–1338, 2000. 6.3, 6.3

[LRV16] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean and co-
variance. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pages 665–674. IEEE, 2016. 1, 1.2

[LS01] Adrian Lewis and Hristo S. Sendov. Twice differentiable spectral functions. SIAM
Journal on Matrix Analysis and Applications, 23(0):368–386, 2001. 6.2, 6.2, 6.2

[LY20] Jerry Li and Guanghao Ye. Robust gaussian covariance estimation in nearly-matrix
multiplication time. In Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual, 2020. 1

[MM15] Cameron Musco and Christopher Musco. Randomized block krylov methods for
stronger and faster approximate singular value decomposition. In Advances in Neu-
ral Information Processing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages
1396–1404, 2015. 1.3, 2, 6.4

[MV18] Michela Meister and Gregory Valiant. A data prism: Semi-verified learning in the
small-alpha regime. In Conference On Learning Theory, pages 1530–1546. PMLR,
2018. 1

[PSBR18] Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep Ravikumar.
Robust estimation via robust gradient estimation. arXiv preprint arXiv:1802.06485,
2018. 1.2

53



[RV09] Mark Rudelson and Roman Vershynin. The smallest singular value of a random rectan-
gular matrix. Communications on Pure and Applied Mathematics, 62(12):1707–1739,
2009. 6.3, 6.3

[RV17] Oded Regev and Aravindan Vijayaraghavan. On learning mixtures of well-separated
gaussians. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 85–96. IEEE, 2017. 1

[RY20] Prasad Raghavendra and Morris Yau. List decodable learning via sum of squares. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 161–180. SIAM, 2020. 1.2

[Sha07] Shai Shalev-Shwartz. Online learning: Theory, algorithms, and applications. PhD
thesis, Hebrew University, 2007. 6.2, 6.4

[Ste18] Jacob Steinhardt. Robust Learning: Information Theory and Algorithms. PhD thesis,
Stanford University, 2018. 1.1, 1.2, 1.3, 3.1

[SV14] Sushant Sachdeva and Nisheeth K. Vishnoi. Faster algorithms via approximation
theory. Foundations and Trends in Theoretical Computer Science, 9(2):125–210, 2014.
6.4

[SVC16] Jacob Steinhardt, Gregory Valiant, and Moses Charikar. Avoiding imposters and
delinquents: Adversarial crowdsourcing and peer prediction. In Advances in Neural
Information Processing Systems, pages 4439–4447, 2016. 1

[TLM18] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor
attacks. In Advances in Neural Information Processing Systems, pages 8000–8010,
2018. 1.2

[Tuk60] John W Tukey. A survey of sampling from contaminated distributions. Contributions
to probability and statistics, pages 448–485, 1960. 1, 1.2

[Tuk75] John W. Tukey. Mathematics and the picturing of data. In Proceedings of the In-
ternational Congress of Mathematicians, Vancouver, 1975, volume 2, pages 523–531,
1975. 1, 1.2

[VW04] Santosh Vempala and Grant Wang. A spectral algorithm for learning mixture models.
Journal of Computer and System Sciences, 68(4):841–860, 2004. 1

[Yu13] Yao-Liang Yu. The strong convexity of von neumann’s entropy. http://www.cs.cmu.
edu/~yaoliang/mynotes/sc.pdf, 2013. 6.1

[ZLO15] Zeyuan Allen Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and
regret minimization beyond matrix multiplicative updates. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 237–245, 2015. 1.1, 6.1

54

http://www.cs.cmu.edu/~yaoliang/mynotes/sc.pdf
http://www.cs.cmu.edu/~yaoliang/mynotes/sc.pdf


A List-decodable mean estimation for α−1 = Ω(d)

We give a simple algorithm for list-decodable mean estimation in the regime α−1 = Ω(d).

Algorithm 14 SamplePostProcess(T, δ)

1: Input: T ⊂ Rd with |T | = n satisfying Assumption 1, α ≤ 1
Cd for a universal constant C,

δ ∈ (0, 1)
2: Output: L ⊂ Rd with |L| ≤ 3

α satisfying (8) with probability ≥ 1− δ
3: N ←

⌈
36 log(2/δ)

α

⌉
4: L̃← {Xi}i∈[N ], where each Xi is an independent uniform sample from T

5: G ∈ Rd×c ← entrywise ± 1√
c

uniformly at random, for c = Θ(log( 1
αδ ))

6: Let L be a maximal subset of L̃ such that for each Xi ∈ L,
∥∥G>(Xi −Xj)

∥∥2

2
≤ 8.8d for at least

αN
3 of the Xj ∈ L̃, and

∥∥G>(Xi −Xj)
∥∥2

2
≥ 35.2d, ∀Xj ∈ L

7: return L

Proposition 9. Algorithm 14, SamplePostProcess, meets its output specifications in runtime

O

(
1

α2
log4

(
1

αδ

))
.

Proof. It is straightforward by Assumption 1 (cf. correctness proof of Theorem 3) that at least αn
2

of the points Xi ∈ T satisfy
‖Xi − µ∗‖22 ≤ 2d. (43)

For each i ∈ [N ] indexing the set L̃, let Ei be the event that Xi satisfies the bound (43); each of these
events is an independent Bernoulli variable with mean at least α

2 . Thus, by applying a Chernoff

bound, with probability at least 1 − δ
2 , at least αN

3 of the points in L̃ satisfy (43). Next, by the
Johnson-Lindenstrauss lemma of [Ach03], for a sufficiently large dimensionality c, with probability

at least 1− δ
2 , all of the

∥∥G>(Xi −Xj)
∥∥2

2
are within a 1.1 factor of the corresponding ‖Xi −Xj‖22.

Condition on both of these events for the remainder of the proof.

By definition of the greedy process in Line 6, we have the output size guarantee, since each element
of L̃ is associated with a (disjoint) cluster of αN

3 points, by the separation property. So, for

correctness, it suffices to prove that (8) is met for a universal constant (depending on C). Call S̃
the set of points in T satisfying (43). If any point in S̃ is chosen in L, then indeed

‖Xi − µ∗‖22 ≤ 2d ≤ 2

Cα
,

so (8) is met with constant
√

2
C . Further, observe that the only thing preventing any point in S̃

from being chosen is the separation condition for L. This is because by triangle inequality and the
definition (43), any pair of points Xi, Xj ∈ S̃ satisfies ‖Xi −Xj‖22 ≤ 8d, so after multiplication by

G> they pass the clustering requirement. Thus, suppose no point in S̃ is in L. For any Xi ∈ S̃ ∪ L̃,
this implies there exists a Xj ∈ L̃ with∥∥∥G> (Xi −Xj)

∥∥∥2

2
≤ 35.2d =⇒ ‖Xi −Xj‖22 ≤ 40d.
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By triangle inequality, this implies that (8) is met with constant
√

84
C , via

‖Xj − µ∗‖22 ≤ 84d ≤ 84

Cα
.

Finally, the runtime is dominated by the cost of multiplying all points in L̃ by G>, and performing
all pairwise distance comparisons of the {G>Xi}i∈[N ]. Both of these fit in the allotted time budget.

We make a final remark that up to logarithmic factors, the runtime in Proposition 9 is not larger
than nd

α asymptotically, since we take sample size n ≥ α−1. Thus, in the regime α−1 = Ω(d), we

obtain the correct list size and error bound up to constants, in time Õ(ndα ) as desired.

B Runtime of [CMY20]

For notational convenience in this section, we denote k := α−1. We give a brief discussion of the
dependence on k in the runtime of [CMY20], as it is not explicitly stated there.

Cluster removal: O(k) overhead. At a high level, the [CMY20] algorithm is composed of an
“outer loop” which is repeated O(k) times. Each iteration of the outer loop removes roughly an α
fraction of the overall weight, and this could occur O(k) times.

Ky Fan positive SDP: Õ(k2) overhead. Each run of the outer loop is composed of polyloga-
rithmically many iterations which decrease a particular potential function. The potential function
used is the objective value of a Ky Fan norm positive SDP over a truncated simplex. Each iteration
of the outer loop run is dominated by the cost of approximating the positive SDP. The statement
of the SDP solver, Algorithm 3 of [CMY20], shows that the solver takes Õ(k2) iterations.

Approximate Bregman projections: Õ(k3) overhead. To implement iterations of the SDP
solver, [CMY20] apply approximate Bregman projections based on simultaneous power iteration,
similar to the ones we develop in Section 6. However, their analysis was loose in terms of the
accuracy needed for the simultaneous power iteration. The two places this is most apparent are:

1. Theorem 6.1 of [CMY20] loses a factor of k when compared to Proposition 7.

2. Lemma 7.11 of [CMY20] loses a factor of k when compared to Lemma 19 (note that the
statement of our lemma is scaled up by k).

Under looser analyses, the cost of each projection step is dominated by the cost of computing the
trace product of an approximate matrix exponential and the empirical covariance. Because of the
extra k factor in Lemma 7.11 of [CMY20], the multiplicative accuracy of matrix exponential-vector
products must be on the order of 1

k . The form of the approximate exponential is essentially the
same as that in Line 9 of Algorithm 12, so following the strategy of Proposition 8, it suffices to
implement O(k) (corresponding to the degree of a Taylor expansion) matrix-vector multiplies in a
matrix, each of which costs O(nd) to apply. This matrix exponential-vector product is applied to
Õ(k2) vectors, via the Johnson-Lindenstrauss lemma for the higher accuracy threshold.

In summary, we calculate the dependence on k to be roughly kC for C ≥ 6 in [CMY20]. We remark
a k2 factor can be saved in the Bregman projection step by simply swapping in our more fine-grained
analysis, so the cost of each projection is Õ(ndk), leading to an overall k4 dependence. However
(as discussed in the introduction), the presence of k-dimensional operations and a clustering outer
loop suggests that this approach is likely to depend at least quadratically on k.
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