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In this document we provide further details of the constraint basis construction as well as additional
simulation results are given in Section A. We then provide the proofs of the four main theorems of the
paper in Section B. Finally, Section C provides details about the conditional constrained distribution
π(x|Ax = b).

A Further details of the basis construction and simulations

In Algorithm 2 it was not explained how the reordering of the A matrix is done. This is illustrated in
Algorithm 6 where we show how to build the sub-matrices {Ã}mk=1.

Algorithm 6 Find all non-overlapping sub-
matrices
Require: A (a k × n matrix)

1: {Ã1,B} ← overlap(A)
2: m← 1
3: while B 6= ∅ do
4: m← m+ 1
5: {Ãm,B} ← overlap(B)
6: end while
7: Return {Ã}mk=1

Algorithm 7 overlap(A)Find first sub-matrix
Require: A (a k × n matrix)

1: U ← {1}
2: d← 0
3: D ← id(AU,·)
4: while 1 do
5: D ← id(AU,·)

6: U ← id
(
(A·,D)

>
)

7: if d = |U | then
8: break
9: end if

10: d← |U |
11: end while
12: Ã = A·,U

13: Ã
c
= A·,Uc

14: Return {Ã, Ã
c
}

In Section 6.1 in the main article, we provided results for α = 2 and α = 4. In Figure 1 the
corresponding results are provivded for α = 1 and α = 3.

B Proofs

In this section we prove the four main theorems of the paper.

Proof of Theorem 1. We first transform the density of AX to the basis represented by T,

πAX(b) = πAT>X∗(b) = πX∗C
(
H−1b

) ∣∣|H|−1∣∣ = πX∗C
(
H−1b

)
|AA>|−1/2.
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Likelihood, α = 1
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Likelihood, α = 3
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Sampling
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Figure 1: Average computation times (based on 10 replications) for one likelihood evaluation (left)
and one sample from X|AY X = y (top right) of the Matérn model with α = 1 and α = 3 as
functions of the number of observations k. The computation times for the new GMRF method
includes the time needed to construct the basis matrix T, which also is shown separately.

In order to derive the density X∗C , note that the density of X∗ is

πX∗C (x
∗) =

|Q|†/2

(2π)
n−s
2

exp

(
−1

2
Q(x∗)

)
,

where the quadratic form Q(x∗) is

Q(x∗) =

[
x∗U − µ∗U
x∗C − µ∗C

]> [
Q∗U U Q∗CU
Q∗CU Q∗CC

] [
x∗U − µ∗U
x∗C − µ∗C

]
=(x∗C − µ∗C )

>
Q∗CC (x∗C − µ∗C ) + (x∗C − µ∗C )

>
Q∗CU (x∗U − µ∗U )

+ (x∗U − µ∗U )
>

Q∗U C (x∗C − µ∗C ) + (x∗U − µ∗U )
>

Q∗U U (x∗U − µ∗U )

=(x∗C − µ∗C )>Q∗CC (x∗C − µ∗C )− (x∗C − µ∗C )
>

Q∗CU Q∗†U U Q∗U C (x∗C − µ∗C )+

+
(
x∗U − µ∗U + Q∗†U U Q∗U C (x∗C − µ∗C )

)>
Q∗U U

(
x∗U − µ∗U + Q∗†U U Q∗U C (x∗C − µ∗C )

)
.

Here we in the last step wrote the expression so that we easily can integrate out X∗U on the complement
to the null space of Q∗U U . Doing so yields the desired result,

π(x∗C ) =

∫
πX∗C (x

∗)dx∗U ∝
|Q|†/2

|Q∗U U |†/2
exp

(
−1

2
Q̂(x∗C )

)
,

where
Q̂(x∗C ) = (x∗C − µ∗C )

>
(
Q∗CC −Q∗CU Q∗†U U Q∗U C

)
(x∗C − µ∗C ) .

To prove Theorem 2 we need the following lemma.
Lemma 1. Under Assumption 1 one has rank (Q∗CC ) = k−k0 and rank (Q∗U U ) = n−s−(k−k0).

Proof. We have rank(Q∗) = rank(Q) = n− s since T is orthonormal matrix. Further, using the
eigen-decomposition of Q we can express Q∗ as

Q∗ =

[
TC

TU

] [
E0c

E0

] [
Λ 0
0 0

] [
E0c

E0

]> [
TC

TU

]>
,
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where Λ is a diagonal matrix with the non-zero eigenvalues of Q. Since rank(AE0) = k0 it follows
that also rank(TC E0) = k0 and rank(TU E0) = s − k0. By Theorem 4.3.28 of [HJ13] there
exists an eigenvector, e, of Q∗U U that has a corresponding eigenvalue 0 if and only if Q∗U U e = 0
and Q∗CU e = 0. By construction, any vector constructed by the linear span of TU E0 satisfies this
requirement, and no other vector does. Hence, the rank of Q∗U U is n− k − (s− k0) and the rank of
Q∗CC is k − k0.

Proof of Theorem 2. To derive the distribution we note that the conditional distribution of X∗U |X
∗
C

is proportional to exp(− 1
2Q(x∗)), where

Q(x∗) =

[
x∗U − µ∗U
x∗C − µ∗C

]> [
Q∗U U Q∗CU
Q∗CU Q∗CC

] [
x∗U − µ∗U
x∗C − µ∗C

]
= (x∗U − µ∗U )

>
Q∗U U (x∗U − µ∗U ) + 2 (x∗U − µ∗U )

>
Q∗U C (x∗C − µ∗C ) + C,

where C is a constant independent of x∗U . Now, since Q∗U U (Q∗U U )
†
Q∗U C = Q∗U C , the quadratic

form Q(x∗) can be written as a constant plus v>Q∗U C v, where

v = x∗U − µ∗U + Q∗†U U Q∗U C (x∗C − µ∗C ).

Hence

X∗U |X
∗
C = b∗ ∼ NC

(
Q∗U U

(
µ∗U −Q∗†U U Q∗U C (b∗ − µ∗C )

)
,Q∗U U

)
. (10)

Combining this with the fact that X = T>X∗ gives the desired expression for the distribution of
X|AX = b. Finally, since T is orthonormal, the rank of QX|b is the same as the rank of QU U , and
the result follows from Lemma 1.

We start by proving Theorem 4 as we will use result from that proof in the proof of Theorem 3.

Proof of Theorem 4. First, note that the density

πY|X∗U ,X∗C
(y|x∗U ,b∗) =

1

(2π)
m
2 σm

Y

exp

(
− 1

2σ2
Y

(
y −B∗

[
b∗

x∗U

])(
y −B∗

[
b∗

x∗U

]))
, (11)

can, as a function of x∗U , be written as

πY|X∗C ,X∗U
(y|b∗,x∗U ) ∝ exp

(
−x∗>U B∗>U B∗U x∗U

2σ2
Y

+
y∗>B∗U x∗U

σ2
Y

)
.

Further, from (10), we have that, as a function of x∗U ,

πX∗U |X∗C (x
∗
U |b

∗) ∝ exp

(
−1

2

(
x∗U − µ̃∗U

)>
Q∗U U

(
x∗U − µ̃∗U

))
,

where µ̃∗U = µ∗U − Q∗†U U Q∗U C (b∗ − µ∗C ). Since πX∗U |Y,X∗C
(x∗U |y,b

∗) is proportional to
πY|X∗C ,X∗U

(y|b∗,x∗U )π(x∗U |b
∗), it follows that

πX∗U |Y,X∗C
(x∗U |y,b

∗) ∝ exp

−1

2
x∗>U

B∗>U B∗U
σ2
Y

x∗U +

(
B∗>U y∗

σ2
Y

)>
x∗U

 ·
exp

(
−1

2
x∗>U Q∗U U x∗U +

(
Q∗U U µ̃∗U

)>
x∗U

)
∝ exp

(
−1

2

(
x∗U − µ̂∗U

)>
Q̂
∗
U U

(
x∗U − µ̂∗U

))
.

Finally, using the relation X = T>X∗ completes the proof.
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Proof of Theorem 3. First note that πY|AX (y|b) = πY|X∗C (y|b
∗) and

πY|X∗C (y|b∗) =
∫
πX∗U ,Y|X∗C (x∗U ,y|b∗) dx∗U

=

∫
πY|X∗U ,X∗C

(y|x∗U ,b∗)πX∗U |X∗C (x
∗
U |b

∗)dx∗U . (12)

The goal is now to derive an explicit form of the density by evaluating the integral in (12). By the
expressions in the proof of Theorem 4 we have

πY|X∗U ,X∗C
(y|x∗U ,b∗)πX∗U |X∗C (x

∗
U |b

∗) = exp

−1

2
x∗>U

B∗>U B∗U
σ2
Y

x∗U +

(
B∗>U y∗

σ2
Y

)>
x∗U

 ·
exp

(
−1

2
x∗>U Q∗U U x∗U +

(
Q∗U U µ̃∗U

)>
x∗U

)
·

|Q∗U U |†/2

(2π)
c0 σm

Y

exp

(
−1

2

[
y∗>y∗

σ2
Y

+ µ̃∗>U Q∗U U µ̃∗U

])

=πX∗U |Y,X∗C
(x∗U |y,b

∗)
exp

(
1
2 µ̂
∗>
U Q̂

∗
U U µ̂∗U

)
|Q̂
∗
U U |†/2

·

|Q∗U U |†/2

(2π)
c1 σm

Y

exp

(
−1

2

[
y∗>y∗

σ2
Y

+ µ∗>U Q∗U U µ∗U

])
,

where c0 and c1 are positive constants. Inserting this expression in (12) and evaluating the integral,
where one notes that πX∗U |Y,X∗C

(x∗U |y,b
∗) integrates to one, gives the desired result.

C Conditional constrained distribution

In order to derive the conditional density π(x|Ax = b) in (3) we will use what is known as the
disintegration technique. The proof is built on the results in [CP97], which has the following
definition.

Definition 1. Let (X ,A, λ) and (T ,B, µ) be two measure spaces with σ-finite measures λ and µ.
The measure λ has a disintegration {λb} with respect to the measurable map A : (X ,A)→ (T ,B)
and the measure µ, or a (A(x), µ)−disintegration if:

(i) λb is a σ-finite measure on A such that λb (A(x) 6= b) = 0, for µ−almost all b,

and, for each non-negative measurable function f on X :

(ii) b→
∫
fdλb is measurable.

(iii)
∫
fdλ =

∫ ∫
fdλbdµ.

In the following theorem, we use the notation from Appendix B and let λn denote the Lebesgue
measure on Rn. Further, we define λU as the image measure of the projection onto the image of A
(which is not σ-finite), and λC as the image measure of the projection onto the null-space of A.

Theorem 6. Let X be a multivariate random variable with distribution P on (Rn,B(Rn)), where P
has density π (x) with respect to λn . Then the random variable X|AX = b has density

π (x|Ax = b) =
I (Ax = b) |AA>|−1/2π(x)

πAX(b)
,

with respect to the measure Lb(·) = λU (· ∩ {x : Ax = b}) on (Rn,B(Rn)).

The proof is based on the following lemma.

Lemma 2. The measure Lb(·) is the (A,Lk)-disintegration of the Lebesgue measure λn.
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Proof. Thus we need to show that (i), (ii), and (iii) of Definition 1 holds. Clearly, (i) follows
immediate from · ∩ {x : Ax = b}. To show (ii), note that∫

fdLb =

∫
f
(
T>x∗

)
IAT>x∗=b (dx∗) dx∗U

= ||H||
∫
{x∗:x∗C=H−1b}

f∗(x∗C ,x
∗
U )dx∗U = ||H||

∫
f∗(H−1b,x∗U )dx∗U ,

where H =
(
AT>

)
CC

as defined in Section 3.2, ||H|| denotes the absolute value of the determinant
of H, and f∗(x∗) = f(T>x). Since f is a measurable function it follows by Tonelli Theorem
[Pol02] that above partial integral is measurable. Finally, to show (iii), we continue from the equation
above and get ∫∫

fdLbdb =

∫
||H||

∫
f∗(H−1b,x∗U )dx∗U db

= ||H||
∣∣|H|−1∣∣ ∫∫ f∗(b∗,x∗U )dx∗U db∗ =

∫
fdλn.

Proof of Theorem 6. By Lemma 2 above and Theorem 3 (v) in [CP97] it follows that the random
variable has density

π(x|AX = b) =
π(x)

Lbπ(x)
=

π(x)

πAX(b) ||H||
=
|AA>|−1/2π(x)

πAX(b)
,

a.e. with respect to Lb. Finally, it holds that π(x|AX = b) = I (Ax = b)π(x|AX = b) a.e. since
Lb(·) = λU (· ∩ {x : Ax = b}).
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