
Appendix for Graph Neural Networks with Adaptive Residual

A Convergence Guarantee

In Section 3, we provide the convergence guarantee and practical parameter setting for AMP in
Theorem 1. In this section, we first restate the theorem for convenience, followed by the proof.

Theorem 1 (Convergence of AMP). Under the stepsize setting γ < 1
(1−λ)‖L̃‖2

, the proposed adaptive
message passing scheme (AMP) in Eq. (9) and Eq. (10) converges to the optimal solution of the
problem defined in Eq. (8). In practice, it is sufficient to choose any γ < 1

2(1−λ) since ‖L̃‖2 ≤ 2.
Moreover, if the connected components of the graph G are not bipartite graphs, it is sufficient to
choose γ = 1

2(1−λ) since ‖L̃‖2 < 2.

Proof. The objective that the iterations in AMP try to optimize is

argmin
X∈Rn×d

L(X) := λ‖X−Xin‖21︸ ︷︷ ︸
g(X)

+(1− λ)tr(X>(I− Ã)X)︸ ︷︷ ︸
f(X)

, (17)

where f and g are both convex functions. Moreover, g is a non-smooth function, while f is a smooth
function. In particular, f is L-smoothness where L = 2(1− λ)‖L̃‖2 = 2(1− λ)‖I− Ã‖2 due to

‖∇f(X1)−∇f(X2)‖F = ‖2(1− λ)L̃(X1 −X2)‖F ≤ 2(1− λ)‖L̃‖2 ‖X1 −X2‖F . (18)

AMP essentially applies a forward-backward splitting on the composite objective g(X) + f(X):

Xk+1 = (I+ γ∂g)−1(Xk − γ∇f(Xk)) (19)

= argmin
X

1

2
‖X− (Xk − γf(Xk))‖2F + γg(X), (20)

which is known as proximal gradient method. The convergence of this forward-backward splitting is
ensured if the stepsize satifies γ < 2

L according to Lemma 4.4 in [39]. Therefore, AMP provably
converges to the optimal solution under the setting γ < 1

(1−λ)‖L̃‖2
. For the symmetrically normalized

Laplacian matrix, we have ‖L̃‖2 ≤ 2 [40] and thus 1
2(1−λ) ≤

1
(1−λ)‖L̃‖2

. Therefore, any γ < 1
2(1−λ)

will be sufficient. Moreover, according to [40], if the connected components of the graph G are not
bipartite graphs, we have ‖L̃‖2 < 2 and thus γ = 1

2(1−λ) <
1

(1−λ)‖L̃‖2
is sufficient.

B Data Statistics

In the experiments, the data statistics (full graphs) used in Section 4.2 are summarized in Table 3.
The data statistics (largest connected components) used in Section 4.3 are summarized in Table 4.
We use fixed data splits for Cora, CiteSeer, PubMed and ogbn-arxiv datasets, and random data split
for other datasets.

Table 3: Data statistics on benchmark datasets.

Dataset Classes Nodes Edges Features Training Nodes Validation Nodes Test Nodes
Cora 7 2708 5278 1433 20 per class 500 1000
CiteSeer 6 3327 4552 3703 20 per class 500 1000
PubMed 3 19717 44324 500 20 per class 500 1000
Coauthor CS 15 18333 81894 6805 20 per class 30 per class Rest nodes
Coauthor Physics 5 34493 247962 8415 20 per class 30 per class Rest nodes
Amazon Computers 10 13381 245778 767 20 per class 30 per class Rest nodes
Amazon Photo 8 7487 119043 745 20 per class 30 per class Rest nodes
obgn-arxiv 40 169343 1166243 128 54% 18% 28%
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Table 4: Dataset statistics for adversarially attacked datasets.

Dataset NLCC ELCC Classes Features
Cora 2,485 5,069 7 1,433

CiteSeer 2,110 3,668 6 3,703
PubMed 19,717 44,338 3 500

C Additional Results for the Preliminary Study

In this section, we provide additional results on CiteSeer and PubMed datasets for the preliminary
study in Section 2. The results on these two datasets are showed in Figure 8, 9, 10 and 11. It can
be observed that residual connection helps obtain better performance on normal features but it is
detrimental to abnormal features, which aligns with the findings in Section 2.
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Figure 8: Node classification accuracy on abnormal nodes (CiteSeer)
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Figure 9: Node classification accuracy on normal nodes (CiteSeer)
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Figure 10: Node classification accuracy on abnormal nodes (PubMed)
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Figure 11: Node classification accuracy on normal nodes (PubMed)

D Additional Experiments for the Proposed Method

In this section, we provide more experiments and ablation study for the proposed AirGNN.

D.1 Experiments on More Datasets

In this subsection, we provide additional experiments for Section 4. In particular, we conduct
the experiments for the noisy feature scenario on the following 5 datasets: Coauthor CS [22],
Coauthor Physics [22], Amazon Computers [22], Amazon Photo [22], and ogbn-arxiv [23]. The node
classification accuracy are showed in Figures 12, 13, 14, 15, and 16, respectively. Specifically, the
accuracy on abnormal nodes and normal nodes are plotted separately in (a) and (b), with respect to
the ratio of noisy nodes.

When the ratios of noisy nodes are within a reasonable range, we can observe that (1) AirGNN
obtains much better accuracy on abnormal nodes on all datasets, which verifies its stronger resilience
to abnormal features; and (2) AirGNN achieves better or sometimes comparable accuracy on normal
nodes in most cases, which shows its capability to maintain good performance for normal nodes.

However, when the noise ratio is very high, the performance of AirGNN drops quickly. This is
because the modulation hyperparameter λ is tuned based on the clean dataset such that it is far away
from being optimal for highly noisy dataset. But it can be significantly improved by adjusting the
hyperparameter λ as discussed in next subsection.

These results suggest the significant advantages of adaptive residual in AirGNN, and confirm the
conclusion in the main paper. The adversarial attack on larger graphs is computationally expensive so
we omit the results on more datasets in the adversarial feature scenario.
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Figure 12: Node classification accuracy in noisy features scenario (Coauthor CS)
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Figure 13: Node classification accuracy in noisy features scenario (Coauthor Physics)
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Figure 14: Node classification accuracy in noisy features scenario (Amazon Computers)
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Figure 15: Node classification accuracy in noisy features scenario (Amazon Photo)
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Figure 16: Node classification accuracy in noisy features scenario (ogbn-arxiv)
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D.2 AirGNN with Adjusted λ

Note that in Figures 12, 13, 14, 15, and 16, the performance of AirGNN drops significantly when
the noise ratio is very large. This is because the modulation hyperparameter λ is tuned based on
the clean dataset such that it is far away from being optimal for highly noisy dataset. In fact, the
performance of AirGNN can be significantly improved by adjusting λ during test time according
to the performance on the validation set. Taking the Coauthor CS [22] dataset as an example, we
compare AirGNN with APPNP and we tune the hyperparameter λ and α for them (denoted as
AirGNN-tuned and APPNP-tuned) for a fair comparison as showed in Figure 17. The result verifies
that AirGNN-tuned gets tremendous improvement on both abnormal and normal nodes by adjusting λ.
However, APPNP-tuned only focuses on improving global performance and overlooks the abnormal
nodes after adjusting α based on validation performance so that the performance on abnormal node
are much worse.
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Figure 17: Node classification accuracy in noisy features scenario with adjustment (Coauthor CS)

D.3 Detailed Comparison with APPNP

Figure 1 in Section 2 shows that APPNP without residual performs well on the noisy nodes. Therefore,
in order to demonstrate the advantages of AirGNN, it is of interest to make a detailed comparison
between AirGNN and the two variants of APPNP (w/Res and wo/Res). We evaluate their performance
on noisy nodes, normal nodes, and overall nodes on Cora dataset, and the results under varying noise
ratio are summarized in Table 5, Table 6, and Table 7. We can make the following observations:

• In Table 5, both AirGNN and APPNP wo/Res significantly outperform APPNP w/Res on noisy
nodes, and AirGNN achieves comparable performance with APPNP wo/Res. This verifies that
the residual connection in GNN amplifies the vulnarability to abnormal features, and AirGNN is
able to adaptively adjust the residual connections for abnormal nodes to reduce the vulnerability.

• In Table 6 and Table 7, AirGNN consistently outperforms APPNP wo/Res, which verifies the
importance of residual connections in maintaining good performance on normal nodes. AirGNN
exhibits much better performance than APPNP w/Res, which shows the benefits of removing
abnormal features by adaptive residual.

• APPNP wo/Res is a special case of AirGNN with λ = 0. Moreover, as noted in Section D.2, the
performance of AirGNN in Table 5, Table 6, and Table 7 can be further improved by adjusting
the modulation hyperparameter λ for each noise ratio according to validation performance.

As discussed in Section 3, in existing GNNs such as APPNP and GCNII, the conflict between feature
aggregation and residual connection can only be partially mitigated by adjusting the residual weight
α. However, such global adjustment cannot be adaptive to a subset of the nodes, which explains the
advantages of AirGNN in above observations. In the adversarial feature setting, we can make similar
observations but here we omit the comparison.
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Table 5: Comparison between APPNP and AirGNN on abnormal (noisy) nodes (Cora).
Noisy ratio 5% 10% 15% 20% 25% 30%

APPNP w/Res 0.167± 0.034 0.170± 0.070 0.170± 0.027 0.193± 0.031 0.187± 0.024 0.178± 0.026
APPNP wo/Res 0.469± 0.035 0.442± 0.062 0.427± 0.038 0.381± 0.043 0.383± 0.045 0.354± 0.067

AirGNN 0.474± 0.048 0.433± 0.055 0.405± 0.050 0.362± 0.039 0.353± 0.050 0.337± 0.057

Table 6: Comparison between APPNP and AirGNN on normal nodes (Cora).
Noisy ratio 5% 10% 15% 20% 25% 30%

APPNP w/Res 0.773± 0.015 0.712± 0.024 0.669± 0.019 0.622± 0.024 0.580± 0.032 0.530± 0.029
APPNP wo/Res 0.761± 0.014 0.709± 0.025 0.664± 0.015 0.599± 0.025 0.556± 0.035 0.497± 0.049

AirGNN 0.791± 0.015 0.741± 0.021 0.688± 0.024 0.625± 0.034 0.571± 0.039 0.527± 0.042

Table 7: Comparison between APPNP and AirGNN on all nodes (Cora).
Noisy ratio 5% 10% 15% 20% 25% 30%

APPNP w/Res 0.743± 0.015 0.657± 0.026 0.594± 0.017 0.536± 0.024 0.482± 0.025 0.425± 0.025
APPNP wo/Res 0.746± 0.013 0.682± 0.026 0.628± 0.015 0.556± 0.027 0.513± 0.034 0.455± 0.053

AirGNN 0.775± 0.015 0.710± 0.021 0.646± 0.025 0.572± 0.033 0.516± 0.038 0.470± 0.044

D.4 Comparison with Robust Model

To further demonstrate the advantages of the proposed AirGNN, we compare it with a representative
robust model, Robust GCN [24]. Tables 18, 19 and 20 show the performance comparison between
Robust GCN and AirGNN on Cora, Citeseer and PubMed, respectively. The accuracy on abnormal
nodes and normal nodes are plotted separately in (a) and (b), with respect to the ratio of noisy nodes.
These figures show that AirGNN achieves significant better performance than Robust GCN on both
abnormal and normal nodes in the noisy feature scenario.
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Figure 18: Node classification accuracy in noisy features scenario (Cora)
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Figure 19: Node classification accuracy in noisy features scenario (CiteSeer)
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Figure 20: Node classification accuracy in noisy features scenario (PubMed)

D.5 Performance in the Clean Setting

Table 8 shows the overall performance when the dataset does not contain abnormal node features.
The performance of APPNP and AirGNN are comparable, which supports that AirGNN doesn’t need
to sacrifice clean performance for better robustness. AirGNN also outperforms Robust GCN in the
clean data setting.

Table 8: Comparison between AirGNN, APPNP, and Robust GCN in the clean setting.
Dataset Cora CiteSeer PubMed

Robust GCN 0.817± 0.005 0.710± 0.005 0.791± 0.003
APPNP 0.842± 0.004 0.719± 0.004 0.804± 0.003
AirGNN 0.839± 0.004 0.726± 0.004 0.806± 0.003
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