
A Additional Details on MQNLI

A.1 Dataset Description

The MQNLI dataset contains sentences of the form

QS AdjS NS Neg Adv V QO AdjO NO

where NS and NO are nouns, V is a verb, AdjS and AdjO are adjectives, and Adv is an adverb. These
categories all have 100 words. Neg is does not, and QS and QO can be every, not every, some, or no.
Additionally, AdjS, AdjO, Adv, and Neg can be the empty string ε.

NLI examples are constructed so that non-identical non-empty nouns, adjectives, verbs, and adverbs
with identical positions in sp and sh are semantically unrelated. This means that the learning task
is trivial for these lexical items, as the correct relation is equivalence when they are identical and
independence when they are not identical.

For our experiments, we used a train set with 500K examples, a dev set with 60k examples, and a test
set with 10K examples – the most difficult generalization scheme of Geiger et al. [10].

A.2 A Natural Logic Causal Model

Geiger et al. [10] construct a natural logic model that solves MQNLI using a formalization they
call composition trees, which is easily translated into the causal model we call CNatLog. Natural
logic is a flexible approach to doing logical inference directly on natural language expressions
[14, 17, 29] where the semantic relations between phrases are compositionally computed from
the semantic relations between aligned subphrases and projectivity signatures, which encode how
semantic operators interact compositionally with their arguments (which are semantic relations).
The causal model CNatLog performs inference on aligned semantic parse trees that represent both the
premise and hypothesis as a single structure and calculates semantic relations between all subphrases
compositionally.

B Model Training and Interchange Experiment Details

We evaluated two models on MQNLI: a multi-layered bidirectional LSTM baseline and a Transformer-
based model trained to do masked language modeling and next-sentence prediction [8]. We rely on
the uncased BERT-base initial parameters from Hugging Face transformers [31]. For both models,
we concatenate the premise sp and hypothesis sh into one string with special separator tokens: [CLS]
sp [SEP] sh [SEP].

For the BiLSTM, we concatenate the hidden state above the last [SEP] and the [CLS] in the last layer
for the forward and backward directions respectively to obtain a representation for the whole input,
and then apply three linear transformations on top of that. The final transformation outputs a logit
score for each class in the label space.

For the BERT model, we apply one linear transformation to the final layer’s hidden representation
above the [CLS] token to obtain a logit score for each label class.

B.1 Tokenization

In the original setting of MQNLI, some positions in the premise and hypothesis consist of two words
such as not every in QS and QO and does not in the leaf nodes NegP and NegH (as shown in the
beginning of Section A.1). We treat them as two separate tokens in order to utilize BERT’s knowledge
of these function words. To ensure all sentences have identical length, we introduce one extra empty
string tokens ε to single-word quantifiers and two such tokens in the place of NegP and NegH for
sentences without negation.

For consistency, we use the same tokenization method for both models.

14

Table 2: Ablation results.
Model Dev Test

Fine-tuned BERT 88.25 88.50
Without augmented examples 55.42 54.51

B.2 Dataset Augmentation with Labeled Subphrases

The hard but fair MQNLI generalization task requires the dataset to explicitly expose the model to
labels for each intermediate node that is a relation in CNatLog. For each training example (sp, sh, y) ∈
S, we create an additional example (sNp , s

N
h , y

N) for each node N . (sNp , s
N
h) is a subphrase pair

made up of all the leaf tokens under node N in the original input (sp, sh), and yN is the relation
computed by CNatLog for that subphrase pair. The set of labels we use for these subphrase examples
is disjoint from that of the full-sentence examples. During training, the augmented examples are
coupled with original examples in each batch. For BERT, the subphrase pairs occupy their original
positions in the sentence, while we pad and apply an attention mask over all other positions. For the
BiLSTM, we align them to the left, with [SEP] in between the two parts of the pair.

We performed an ablation experiment to test whether removing the augmented examples would affect
BERT’s performance. Using the same grid-search setting, we see that BERT’s dev set accuracy
decreased from 88.25% to 55.42%, and test set accuracy decreased from 88.50% to 54.51%. This
indeed shows that the above data augmentation method is important for BERT to learn the type of
generalization required for the hard MQNLI task.

B.3 Training Procedure

For the BiLSTM, we use 256 dimensions for token embeddings and 128 dimensions for the hidden
states in each LSTM direction. We grid search for {2, 4, 6} layers. We randomly initialize each
element in the token embeddings from the distribution N (0, 1) scaled down by a factor of 0.1. We
use a batch size of 768 = 64× 12, with 64 original examples per batch and 11 augmented examples
for each one. We apply a dropout of 0.1, and grid search for learning rates in {0.001, 0.0001}. We
train for a maximum of 400 epochs and perform early stopping when the dev set accuracy does not
increase for 20 epochs. We train each grid search setting 3 times with different random seeds.

For BERT, we use the same model architecture for the uncased base variant. We use a batch size
of 192 = 16 × 12, and grid search for learning rates in {2.0 × 10−5, 5.0 × 10−5}. We train for a
maximum of {3, 4} epochs. We warm up the learning rate linearly from 0 to the specified value in
the first 25% of steps of the first epoch, and linearly decrease the learning rate to 0 following that
until the end of training.

All models were trained with 1 GPU core on a cluster with models including GeForce RTX 2080
Ti, GeForce GTX Titan X, Titan XP and Titan V, each with 11-12GB memory. Each instance of the
grid search took on average 5.5 hours to train. We repeated each grid search setting with 4 different
random seeds and took the instance with the highest dev set accuracy.

B.4 Interchange experiment details

There are 14 intermediate nodes in the high-level causal model (NegP, QPObj, QSubj, NPSubj, AdjSubj,
NSubj, Neg, VP, Adv, V, QObj, NPObj, AdjObj, NObj). For each high-level node, we conducted a set of
interchange experiments on each one of 11 BERT layers (excluding the final layer, since only the
[CLS] token causally impacts the output). Each high-level node has its own fixed set of hand-specified
intervention locations in the time-step/sentence length dimension, and we use the same intervention
locations on each layer. For each of the 14× 11 = 154 interchange experiments, it took on average
1.15 hours to run using the same computation resources mentioned above.

15

C Probing Details

C.1 Probe Models

Our probe models are single-layer softmax classifiers: yi ∝ softmax(Ahi + b) where hi is a hidden
representation and yi ∈ R. Following Hewitt and Liang [12], to control the dimensionality of A, we
factorize it in the form A = LR where L ∈ R|R|×` and R ∈ R`×d where d is the dimensionality of
hi.

We train the probes on hidden representations of a set of 12,800 examples that are randomly selected
from the model’s original training set. We additionally take 2,000 examples to form a development
set for early stopping. We filter out examples for which the model outputs a wrong prediction.

For training, we perform a grid search, maximizing for selectivity. We set a dropout of 0.1, and
apply early stopping when the development set loss does not increase for 4 epochs. We train for a
maximum of 40 epochs. We also anneal the learning rate by a factor of 0.5 if the dev set loss did not
increase in the last epoch. We use a batch size of 512, learning rates in {0.001, 0.01}, weight decay
regularization constants in {0.01, 0.1}. We set ` ∈ {8, 32} for restricting the maximum rank of the
linear matrix A.

Using the same computation resources described above, each grid search setting took approxi-
mately 5 hours to run. For each grid search setting we trained a separate probe for every possible
〈causal model node, BERT representation〉 combination, where for the latter we use the intervention
locations outlined in the “Alignment Search" part of Section 5.1 on each BERT layer.

C.2 Control Task

For each high-level node N , we construct a random mapping ControlN : SN 7→ LN where SN
is the set of all aligned subexpressions under the node N and LN is the output label space. For
phrasal nodes (VP,NegP, etc.) and aligned verbs and nouns, LN is the set of 7 possible relations
{#,≡,@,A, |, ˆ,^} from MacCartney and Manning [17]. For aligned quantifiers, the label space is
the set of all projectivity signatures that can be produced by their composition.

Similar to Hewitt and Liang [12], ControlN will assign the same control label regardless of the
context as long as its input consists of the same tokens. Consequently, the possible input space SN
grows exponentially larger if N corresponds to longer subphrases (such as NegP and QPObj), and the
control task becomes much more difficult to solve, resulting in near random accuracies.

C.3 Extended Probe Analysis

In Figures 5–7 we report some more representative selectivity and accuracy results for our probing
experiments on BERT trained on the hard variant, juxtaposed against intervention experiments on the
same model. For open-class words and full phrases, probing and intervention show similar trends. For
aligned closed-class words, we find near-zero selectivity because the domain of the control function
is so small.

In general, probing and intervention experiments for relations between aligned single open-class
words (i.e., NSubj, AdjSubj, NObj, AdjObj, Adv, V) show similar trends, which can be seen in Figures 4c–
4b. Every location except those above the [CLS] and [SEP] tokens has a near-100% accuracy, while
selectivity is only high in the last few layers. Lower layers of BERT contains more information about
word identity and hence may allow the probe to memorize each input pair, resulting in higher control
task accuracy and lower selectivity for lower layers.

Probing experiments for relations between aligned multi-word subphrases (i.e., NPSubj, VP, NPObj,
QPObj and NegP) show similar trends as shown in the row of figures 6m to 6h. As described in
Section C.2, all control probes for these achieve near-random performance, so selectivity and accuracy
differ by the random baseline accuracy, which is evident by comparing figures 6m and 6n.

On the other hand, probing experiments for aligned closed-class words (quantifiers and negation)
have near-zero selectivity, as shown in Figure 6a. This is because the domain of the control function
is the small set of closed-class word pairs, so memorizing the identity of these words becomes trivial
for the probe.

16

D Probing and Intervention Heatmaps

(a) NPObj Probe selectivity. (b) NPObj Probe accuracy.
Random baseline: 25%

(c) NPObj Clique size. (d) NPObj Interchange suc-
cess.

(e) NObj Probe selectivity. (f) NObj Probe accuracy.
Random baseline: 14.3%

(g) NObj Clique size. (h) NObj Interchange suc-
cess.

(i) AdjObj Probe selectivity. (j) AdjObj Probe accuracy.
Random baseline: 14.3%

(k) AdjObj Clique size. (l) AdjObj Interchange suc-
cess.

(m) VP Probe selectivity. (n) VP Probe accuracy.
Random baseline: 25%

(o) VP Clique size. (p) VP Interchange suc-
cess.

(q) V Probe selectivity. (r) V Probe accuracy. Ran-
dom baseline: 14.3%

(s) V Clique size. (t) V Interchange success.

(u) Adv Probe selectivity. (v) Adv Probe accuracy.
Random baseline: 14.3%

(w) Adv Clique size. (x) Adv Interchange suc-
cess.

Figure 5: Full probing and interchange intervention results for high-level nodes NPObj, NObj, AdjObj,
VP, V, and Adv. Vertical axes denote BERT layers and horizontal axes denote the token position of
hidden representations. Intervention success rates are based on experiments with a change in the
output label. Clique sizes are reported as a percentage of all examples.

17

(a) QObj Probe selectivity. (b) QObj Probe accuracy.
Random Baseline: 6.25%

(c) QObj Clique size. (d) QObj Interchange suc-
cess.

(e) QPObj Probe selectivity. (f) QPObj Probe accuracy.
Random Baseline 14.3%

(g) QPObj Clique size. (h) QPObj Interchange suc-
cess.

(i) Neg Probe selectivity. (j) Neg Probe accuracy.
Random Baseline 25%

(k) Neg Clique size. (l) Neg Interchange suc-
cess.

(m) NegP Probe selectiv-
ity.

(n) NegP Probe accuracy.
Random Baseline 25%

(o) NegP Clique size. (p) NegP Interchange suc-
cess.

(q) NPSubj Probe selectiv-
ity.

(r) NPSubj Probe accuracy.
Random baseline: 25%

(s) NPSubj Clique size. (t) NPSubj Interchange suc-
cess.

(u) NSubj Probe selectivity. (v) NSubj Probe accuracy.
Random baseline: 14.3%

(w) NSubj Clique size. (x) NSubj Interchange suc-
cess.

Figure 6: Full probing and interchange intervention results on the high level nodes QObj, QPObj, Neg,
NegP, NPSubj and NSubj. Vertical axes denote BERT layers and horizontal axes denote the token
position of hidden representations. Intervention success rates are based on experiments with a change
in the output label. Clique sizes are reported as a percentage of all examples.

18

(a) AdjSubj Probe selectiv-
ity.

(b) AdjSubj Probe accuracy.
Random baseline: 14.3%

(c) AdjSubj Clique size. (d) AdjSubj Interchange suc-
cess.

(e) QSubj Probe selectivity. (f) QSubj Probe accuracy.
Random Baseline: 6.25%

(g) QSubj Clique size. (h) QSubj Interchange suc-
cess.

Figure 7: Full probing and interchange intervention results for high-level nodes AdjSubj and QSubj.
Vertical axes denote BERT layers and horizontal axes denote the token position of hidden representa-
tions. Intervention success rates are based on experiments with a change in the output label. Clique
sizes are reported as a percentage of all examples.

Figure 8: Integrated Gradients values for examples in which the premise and hypothesis differ by in
exactly one aligned position. ‘Different’ refers to the IG value for this position, and ‘Matched’ is a
randomly selected different position from each example. The two populations are different according
to a Wilcoxon signed-rank test (p < 0.00001). The ‘Different’ positions have positive attribution on
average, aligning with our expectation that they tend to be decisive for the output prediction.

E Integrated Gradients

We report attributions for the first BERT layer; later layers tend to concentrate importance onto the
[CLS] token, since it is the direct basis for the classifier head in our model. To simplify the analysis,
we restrict attention to examples in which exactly one position is different across the premise and
hypothesis, and ‘Matched’ is a randomly selected position from elsewhere in the example. We see
that the ‘Matched’ are positive in general, which aligns with our expectation that they are the most
important positions in these examples (Figure 8).

19

Figure 9: Schematic depicting constructive abstraction [1]. The variables of the low-level model
(left) are divided into partitions (center) such that each low-level partition corresponds to a high level
variable from the high-level model (right). The circles represent variables and the arrows represent
causal dependencies. Blue circles are variables that are not being intervened on and red circles are
variables that are being intervened on. Observe that a low-level causal dependence between partitions
does not necessarily result in a high-level causal dependence between variables and that not every
low-level intervention results in a high level intervention.

F Background on Causal Models and Causal Abstraction

In this appendix we provide relevant background on causal models and causal abstraction, sufficient
to define the notion of constructive abstraction.

F.1 Causal Models

Definition F.1. (Signatures) A signature S is a pair (V,R), where V is a set of variables and R is
a function that associates with every variable X ∈ V a nonempty set R(X) of possible values. If
X = (X1, . . . , Xn),R(X) denotes the cross productR(X1)× · · · × R(Xn).
Definition F.2. (Causal models) A causal model M is a pair (S,F), where S is a signature and F
defines a function that associates with each variable X a structural equation FX giving the value of
X in terms of the values of other variables. Formally, the equation FX mapsR(V − {X}) toR(X),
so FX determines the value of X , given the values of all the other variables in V .
Definition F.3. (Dependence) X causes Y according to M , denoted X Y , if there is some setting
of the variables other than X and Y such that varying the value of X results in a variation in the
value of Y ; that is, there is a setting z of the variables Z = V − {X,Y } and values x and x′ of X
FY (x, z) 6= FY (x′, z).
Definition F.4. (Intervention) An intervention i has the form X ← x, where X is a vector of
variables. Intuitively, this means that the values of the variables in X are set to x. Setting the value of
some variables X← x in a causal model M = (S,F) results in a new causal model, denoted i(M),
which is identical to M , except that F is replaced by i(F): for each variable Y 6∈ X, i(FY) = FY
(i.e., the equation for Y is unchanged), while for each X ′ ∈ X , i(FX

′
) is the constant function

sending all arguments to x′ (where x′ is the value in x corresponding to Xi).

When we write out the structured equations for a variable X , for simplicity’s sake, we treat FX as a
map fromR({Y ∈ V : Y X}) toR(X).

Note that interventions X← x correspond 1–1 with variable settings x. We make use of this in what
follows.

F.2 Constructive Abstraction

The following definitions are in agreement with the definitions from Beckers and Halpern [1], but
differ somewhat in presentation. We additionally omit exogenous variables, as they play no role in
our deterministic setting. In this section we take causal models to be pairs (M, I), with a set I of
admissible interventions made explicit.
Definition F.5. (Projection and Inverse Projection) Given some v ∈ R(V) and X ⊆ V , define
Proj(v,X) to be the restriction of v to the variables in X. Given some x ⊆ V(X), the inverse

20

Proj−1(x) is defined as usual:

{v ∈ R(V) : x is the restriction of v to X}.

We are interested in (possibly partial) functions τ : RL(VL) → RH(VH) mapping settings of
low-level variables to settings of high-level variables. Such a function τ naturally induces a function
ωτ between sets of interventions, where ωτ (x) = y just in case

τ(Proj−1(x)) = Proj−1(y).

We are now in a position to define τ -abstraction:

Definition F.6. (τ -abstraction) Fix a function τ : RL(VL) → RH(VH), which in turn fixes ωτ :
IL → IH . We say (MH , IH) is a τ -abstraction of (ML, IL) if the following hold:

1. τ is surjective.

2. ωτ is surjective.

3. for all iL ∈ IL we have τ(iL(ML)) = ωτ (iL)(MH).

One way to think of this is: τ is a map fromR(VL) toR(VH), which in turn induces a map ωτ from
the space of projections onR(VL) to projections onR(VH). The conditions on τ -abstraction below
then simply become that τ and ωτ are both total and surjective on their respective (co)domains, and a
second condition that can be easily encoded in terms of potential outcomes. For any setting/projection
x at the low-level, we require that ML |= vx iff MH |= τ(v)ωτ (x).

Finally, to be a constructive τ -abstraction we simply require that τ decompose into a family of
“component” functions, as below.

Definition F.7 (Constructive τ -abstraction). (MH , IH) is a constructive τ -abstraction of (ML, IL) if,
in addition to being a τ -abstraction, we can associate with eachXH a subset PXH of VL, such that the
mapping τ : R(VL)→ R(VH) decomposes into a family of functions τXH : R(PXH)→ R(XH).
We say MH is a constructive abstraction of ML if it is a constructive τ -abstraction for some τ .

In other words, for a constructive abstraction it suffices to define the component functions τXH , as
these completely determine τ . In fact, the maps τXH more generally induce a (partial) function
from projections ofR(VL) to (in fact, onto) projections ofR(VH) in the following sense. For any
setting h = [h1 . . . hk] of high-level variables H1, . . . ,Hk we can find low-level setting y such that
projections of y map via τHi to hi. Slightly abusing notation, denote this (partial) low-level setting y
as τ−1(h). So, in particular when h corresponds to an intervention in IH , the setting τ−1(h) should
specify a corresponding intervention in IL. Indeed, point (2) of Def. F.6 tells us that (the intervention
corresponding to) τ−1(h) should be mapped via ωτ to (the intervention corresponding to) h.

G Causal Abstraction Analysis of C+

G.1 Formal Definition of C+

We define the causal model C+ = (V+,R+,F+) as follows (where Nk = {0, . . . , k}):
V+ = {X,Y, Z,W, S1, S2}

R+(V) = N9, for V ∈ {X,Y, Z,W}
R+(S1) = N18

R+(S2) = N27

FX+ = FY+ = FZ+ = 0

∀z ∈ R(Z) : FW+ (z) = z

∀(x, y) ∈ R(X)×R(Y) : FS1
+ (x, y) = x+ y

∀(s1, w) ∈ R(S1)×R(W) : FS2
+ (s1, w) = s1 + w

21

G.2 Formal Definition of N+

In the main text, we did not provide a specific identity for N+. Here, we define N+ to be a feed
forward network, which we represent directly as a causal model CN+

= (VN+
,RN+

,FN+
). The

location L1 from Figure 1 is the hidden unit H3, the location L2 is the hidden unit H1.

Let W ∈ R30×3; for k ∈ {1, 3} let Wjk = j mod 10 if 0 ≤ j ≤ 20, otherwise Wjk = 0, and let
Wj2 = 0 if 0 ≤ j ≤ 20, otherwise Wj2 = j mod 10. Let U ∈ R3 and U = [1, 1, 0].

VN+ = {Dx, Dy, Dz, H1, H2, H3, O}

RN+(Dx) = RN+(Dy) = RN+(Dz) = {0, 1}10

RN+
(O) = RN+

(H1) = RN+
(H2) = RN+

(H3) = R

FDxN+
= FDyN+

= FDzN+
= 0

∀x ∈ RN+(Dx)×RN+(Dy)×RN+(Dz) : [FH1

N+
(x),FH2

N+
(x),FH3

N+
(x)] = ReLU(xW)

∀h ∈ RN+
(H1)×RN+

(H2)×RN+
(H3) : FON+

(h) = ReLU(hU)

This network uses one-hot representations dx, dy, dz ∈ {0, 1}10 to represent inputs from N9.

G.3 Proving C+ is an abstraction of N+

We now prove that C+ is an abstraction CN+

We define the mapping τ : RN+
(VN+

) → R+(V+) as follows. We first partition the variables of
N+ into cells: PX = {Dx}, PY = {Dy}, PZ = {Dz}, PW = {H1}, PS1

= {H3}, PS2
= {O},

P∅ = {H2}. To define τ it suffices to define the component functions τV for V ∈ V+. Let
B : {0, 1}10 → N9 be the partial function s.t. B([v1, v2, . . . , v10]) = k if vk = 1 and vj = 0 for
j 6= k. Set τX , τY , τZ all equal to B, and let τW , τS1

, τS2
all be the identity function.

Let I+ be the set of all interventions on C+ that determine values for (at least) X , Y , and Z. Let
IN+

= dom(ωτ). That is, IN+
includes exactly the (interventions corresponding to) projections of

RN+
(VN+

) that map via ωτ to some admissible intervention on C+. Because elements of I+ always
determine values for X,Y, Z, every intervention in IN+

determines a value for each of Dx, Dy, Dz .
In fact, these values are guaranteed to be in the domains of τX , τY , τZ , respectively.

We now prove the three conditions guaranteeing (C+, I+) is a τ -abstraction of (CN+ , IN+).

(1) The first point is that the map τ is surjective. Take an arbitrary (x, y, z, w, s1, s2) ∈ R+(V+).
We determine an element of RN+

(VN+
) as follows: [dxdydz] = B−1([x, y, z]), [h1h2h3] =

[s1d2s1], and o = s2. It’s then clear that τ(dx, dy, dz, h1, h2, h3, o) = (x, y, z, w, s1, s2). As
(x, y, z, w, s1, s2) was chosen arbitrarily, τ is surjective.

(2) The second point is that ωτ must also surject onto the set I+ of all interventions on C+. Any
intervention i+ ∈ I+ can be identified with a vector i+ of values of variables in V+. By definition of
I+, i+ fixes at least the values of X,Y, Z. Consider the intervention iN+

that sets Dx, Dy, and Dz

to the one-hot representations of X , Y , and Z for the values they were set. Furthermore, if i+ sets W
to w then iN+ sets H1 to w and if i+ sets S2 to s2, then iN+ sets H3 to s2. It suffices to show that
ωτ (iN+

) = i+. In other words, we need to show that τ(Proj−1(iN+)) = Proj−1(i+).

First, we show for all vL ∈ Proj−1(iN+) that τ(vL) ∈ Proj−1(i+). By construction of i+, any
variables fixed by iN+

will correspond (via τ component functions) to values of variables fixed by
i+, except for the variable H3, which has no corresponding high level variable. We merely need
to observe that for any values of variables not set by iN+

, there exist corresponding values for the
variables that are not set by i+, such that the appropriate τ component functions map the former to
the latter (with the exception of H3, which has no corresponding high level variable). This is obvious
from the definition of the components of τ .

Second, we show for all vH ∈ Proj−1(i+) there is vL ∈ Proj−1(iN+) such that τ(vL) = vH . Again,
by construction of i+, any variables fixed by i+ will correspond (via τ component functions) to
values of variables fixed by iN+

. We merely need to observe that for any values of variables not set
by i+, there exist corresponding values for the variables not set by iN+

, such that the appropriate τ

22

component functions map the former to the latter, with H3 taking on any value. This is obvious from
the definition of the components of τ . This concludes the argument that ωτ (iN+) = i+.

(3) Finally, we need to show for each iN+
∈ dom(ωτ) that τ(iN+

(CN+
)) = ωτ (iN+

)(C+). The
point here is that the two causal processes unfold in the same way, under any intervention.

Indeed, pick any iN+
and suppose that i+ = ωτ (iN+

). We know that i+ fixes values x, y, z of
X,Y, Z, and likewise that iN+

fixes values dx, dy, dz of Dx, Dy, Dz such that τDj (xj) = dj for
j ∈ {1, 2, 3}. Any other variables fixed by i+ from among W,S1, S2 will likewise correspond (via
τW , τS1 , τS2) to values of H2, H1, O fixed by iN+ . We merely need to observe that any variables that
are not set by i+ and iN+ will still correspond via the appropriate τ -component, given their settings
in i+(C+) and iN+(CN+). The mechanisms in CN+ were devised precisely to guarantee this.

Thus we have fulfilled the three requirements and we have shown that C+ is an abstraction CN+
.

The proof that CNatLog is a constructive abstraction of NNLI follows this same pattern.

H Causal Abstraction Analysis of CNatLog

H.1 Formal Definition of CNatLog

We formally define the model CNatLog = (VNatLog,RNatLog,FNatLog) as follows:

VNatLog =

QPSubj,Q

H
Subj,NegPSubj,NegHSubj,N

P
Subj,N

H
Subj,NegP ,NegH ,AdvP ,AdvH ,

VP ,VH ,QPObj,Q
H
Obj,NegPObj,NegHObj,N

P
Obj,N

H
Obj, QSubj,NegSubj, NSubj,Neg,Adv

QObj,NegObj,NObj,NPSubj,VP,NPObj,QPObj,NegP,QPSubj

RNatLog(QPSubj) = RNatLog(QHSubj) = RNatLog(QHSubj) = RNatLog(QHSubj)

= {no, some, every, not every}
RNatLog(NegP) = RNatLog(NegH) = {not, ε}
RNatLog(NegPSubj) = RNatLog(NegHSubj) = NegSubj

RNatLog(NPSubj) = RNatLog(NHSubj) = NSubj

RNatLog(AdvP) = RNatLog(AdvH) = AdvSubj

RNatLog(VP) = RNatLog(VH) = VSubj

RNatLog(NegPObj) = RNatLog(NegHObj) = NegObj

RNatLog(NPObj) = RNatLog(NHObj) = NObj

RNatLog(QObj) = RNatLog(QSubj) = Q
RNatLog(Neg) = N

RNatLog(NegObj) = RNatLog(NegSubj) = RNatLog(Adv) = A
RNatLog(NObj) = RNatLog(NSubj) = RNatLog(V) = {#,≡}
RNatLog(NPSubj) = RNatLog(NPObj) = RNatLog(VP) = {#,≡,@,A}
RNatLog(QPObj) = RNatLog(NegP) = RNatLog(QPSubj) = {#,≡,@,A, |, ˆ,^}

FN = COMP for N ∈ {VP,NPSubj,NPObj,NegP,QPObj,QPSubj}
FN = REL for N ∈ {V,NSubj,NObj}
FN = PROJ for N ∈ {QObj,QSubj,Adv,NegSubj,NegObj,Neg}

The set {#,≡,@,A, |, ˆ,^} contains the seven relations used in the natural logic of MacCartney
and Manning [17]. The set NSubj contains the subject nouns used to create MQNLI, NObj the set of
object nouns, AdjSubj the subject adjectives, AdjObj the object adjectives, V the verbs, and Adv the
adverbs. Additionally,Q is the set of joint projectivity signatures between every, some, not every, and
no, N is the set of joint projectivity signatures between not and ε, A is the set of joint projectivity
signatures between intersective adjectives and adverbs and ε. REL(x, y) outputs the lexical relation

23

between x and y. Finally, COMP(f, x1, x2, . . . , xn) = f(x1, x2, . . . , xn) and PROJ(f, g) = Pf/g
where Pf/g is the joint projectivity signature between f and g. See Geiger et al. [10] for details about
these sets and functions.

H.2 Formal Definition of CNNatLog

For some non-leaf node N of the tree in Figure 2a, we define CN
NatLog to be the marginalization of

CNatLog where all variables are removed other than the input variables

V Input
NatLog = QPSubj,Q

H
Subj,NegPSubj,NegHSubj,N

P
Subj,N

H
Subj,NegP ,NegH ,AdvP ,AdvH ,VP ,VH ,

QPObj,Q
H
Obj,NegPObj,NegHObj,N

P
Obj,N

H
Obj

along with the output variable QPSubj and the intermediate variable N . For a definition of marginal-
ization, see Bongers et al. [4].

H.3 Formal definition of NNLI

In the main text, NNLI could represent either our BERT model or our LSTM model. We will maintain
this ambiguity, because while these two models are drastically different at the highest level of detail,
for the sake of our analysis we can view them both as creating a grid of neural representations where
each representation in the grid is caused by all representations in the previous row and causes all
representations in the following row. We will now formally define the causal model CNNLI .

VNNLI = {R11, R12, . . . , R1m, . . . Rnm, O}

For the LSTM model n = 2 and for the BERT model n = 12. m is the number of tokens in a
tokenized version of an MQNLI example.

RNNLI(Rjk) = Rd RNNLI(O) = {entailment, contradiction, neutral}

For all j and k and where d is the dimension of the vector representations.

∀(r(j−1)1, r(j−1)2, . . . , r(j−1)m) ∈ RNNLI(R(j−1)1 ×R(j−1)2 × · · · ×R(j−3)m)

FRjkNNLI
(r(j−1)1, r(j−1)2, . . . , r(j−1)m) = NNjk(r(j−1)1, r(j−1)2, . . . , r(j−1)m)

where NNjk is either the LSTM function or the BERT function that creates the neural representation
at the jth row and kth column.

∀rn1 ∈ RNNLI(Rn1)FONNLI
(rn1) = NNO(rn1)

where NNO is the neural network that makes a three class prediction using the final representation
of the [CLS] token.

See Appendix B for details about these functions.

H.4 Proving CNNatLog is an abstraction of NNLI

We will now formally prove that that CNNatLog is a constructive abstraction of NNLI if the following
holds for all e, e′ ∈ MQNLI, where the representation location L is equivalent to the variable Rjk for
some j and k. This would mean that every single one of our intervention experiments at this location
are successful.

CN←e
′

NatLog (e) = NL←e′
NLI (e) (8)

We define the mapping τ : RNNLI(VNNLI)→ RNNatLog(VNatLog) as follows. We first partition the “low
level” variables of NNLI into partition cells:

PN = {L} PQPSubj
= {O} ∀X ∈ V Input

NatLog
PX = {R1j , R1(j+1), . . . , R1(j+k)}

24

where R1j , R1(j+1), . . . , R1(j+k) are the token vectors associated with the input variable X . Some
of our causal model’s input variables are tokenized into several tokens (see Appendix B for details).

To define τ , it then suffices to define the component functions τV for each V ∈ VNatLog. Let
T : (Rd)+ → V Input

NatLog be the partial function mapping sequences of token vectors to the
input variable they correspond to, where + is the Kleene plus operator. Let P : R3 →
{entailment, neutral, contradiction} be the partial function mapping a vector of logits to the out-
put prediction they correspond to. Finally, let QL : Rd → RNatLog(N) be the partial function such
that for all e ∈ MQNLI, if v is the vector created by NNLI at location L when processing input e and
x is the value realized by CNatLog for the variable N when processing input e, then QL(v) = x.

For all ∀X ∈ V Input
NatLog, we set τX to be T . We additionally set τN to be QL and τQPSubj

to be P .

Let INatLog be the set of all interventions on CNatLog that intervene on (i.e., determine the values for)
at least the elements of V Input

NatLog. Let INNLI be the set of interventions that is the domain of the partial
function ωτ . In other words, INNLI includes exactly the projections ofRNNLI(VNNLI) that map via ωτ
to some intervention on C+. The fact that P , QL, an T are all proper partial functions prevent INNLI

from including all possible interventions on CNNLI .

We now prove the three conditions that must hold for (CNatLog, INatLog) to be a τ -abstraction of
(CNNLI , INNLI).

(1) The first point is to show the map τ is surjective. So take an arbitrary element (~vinput, n, q) ∈
RNatLog(VNatLog). We specify an element ofRNNLI(VNNLI) as follows:

l = Q−1L (n) o = P−1(q)

∀vinput ∈ ~vinputT−1(vinput) = (r1j , r1(j+1), . . . , r1(j+k))

where r1j , r1(j+1), . . . , r1(j+k) are the token vectors corresponding to the input variable vinput.

It’s then patent that τ(r11, . . . , rn1, r12, . . . rnm, o) = (~vinput, n, q). As (~vinput, n, q) was chosen
arbitrarily, we have shown τ is surjective.

(2) The second point is that ωτ must also be surjective onto the set INatLog of interventions on CNatLog.
Any intervention iNatLog ∈ INatLog can be identified with with a vector iNatLog of values of variables in
VNatLog. By the definition of INatLog, iNatLog fixes the values of the variables in Vinput and may also
determine N and/or QPSubj. Consider the intervention iNNLI corresponding to iNNLI = τ−1(iNatLog) as
described in Section F.2. It suffices to show that ωτ (iNNLI) = iNatLog. In other words, we need to show
parts 1, 2, and 3 from the definition above.

Part 1 is clear, since by the definition of INatLog we are guaranteed that iNatLog determines values for
Vinput, and hence iNNLI fixes values for R11, . . . , R1m in the domains of τVinput for V ∈ Vinput. Then
any intervention that intervenes only on the values of

Part 2 requires that for every vNNLI ∈ Proj−1(iNNLI), we have τ(vNNLI) ∈ Proj−1(iNatLog). Because
of how we defined iNatLog, any variables fixed by iNNLI will correspond (via τ component functions)
to values of variables fixed by iNatLog, except for the variables Rjk 6∈ Vinput ∪ {L}, which have no
corresponding high level variables. We merely need to observe that, for any values for the variables
that are not set by iNNLI , there exists corresponding values for the variables that are not set by iNatLog
such that the appropriate τ component functions map the former to the latter, except for the variables
Rjk 6∈ Vinput ∪ {L}, which, again, have no corresponding high level variables. This is plainly
obvious from the definition of the components of τ .

Part 3 requires that for any vNatLog ∈ Proj−1(iNatLog), there exists a vNNLI ∈ Proj−1(iNNLI) such that
τ(vNNLI) = vNatLog. Again, because of how we defined iNatLog, any variables fixed by iNatLog will
correspond (via τ component functions) to values of variables fixed by iNNLI . We merely need to
observe that for any values for the variables that are not set by iNatLog, there exists corresponding
values for the variables that are not set by iNNLI , such that the appropriate τ component functions map
the former to the latter, with Rjk 6∈ Vinput ∪ {L} taking on any value. This is plainly obvious from
the definition of the components of τ .

25

Thus, we have shown that ωτ (iNNLI) = iNatLog.

(3) Finally, we need to show for each iNNLI ∈ dom(ωτ) that τ(iNNLI(CNNLI)) = ωτ (iNNLI)(CNatLog).
The point here is that the two causal processes unfold in the same way, under any intervention. Indeed,
pick any iNNLI and suppose that iNatLog = ωτ (iNNLI). We know that iNatLog fixes values for the variables
in Vinput, and likewise that iNNLI fixes values for the variables R11, . . . , R1m. Any other variables
fixed by iNatLog from among N,QPSubj will likewise correspond (via the component functions of τ)
to values of L and O. We merely need to observe that any variables that are not set by iNatLog and
iNNLI will still correspond via the appropriate τ -component, given their settings in iNatLog(CNatLog)
and iNNLI(CNNLI). The intervention experiments on NNLI that we are assuming were successful were
devised precisely to guarantee this.

We have thus fulfilled the three requirements and shown that CNatLog is an abstraction of CNNLI .

26

	Additional Details on MQNLI
	Dataset Description
	A Natural Logic Causal Model

	Model Training and Interchange Experiment Details
	Tokenization
	Dataset Augmentation with Labeled Subphrases
	Training Procedure
	Interchange experiment details

	Probing Details
	Probe Models
	Control Task
	Extended Probe Analysis

	Probing and Intervention Heatmaps
	Integrated Gradients
	Background on Causal Models and Causal Abstraction
	Causal Models
	Constructive Abstraction

	Causal Abstraction Analysis of C+
	Formal Definition of C+
	Formal Definition of N+
	Proving C+ is an abstraction of N+

	Causal Abstraction Analysis of CNatLog
	Formal Definition of CNatLog
	Formal Definition of CNatLogN
	Formal definition of NNLI
	Proving CNatLogN is an abstraction of NNLI

