
Supplementary Material for: An Exponential Lower
Bound for Linearly-Realizable MDPs with Constant

Suboptimality Gap

1 Proof of Lemma 2

Proof. We first verify the statement for the terminal state f . Observe that at the terminal state
f , regardless of the action taken, the next state is always f and the reward is always 0. Hence
Q∗h(f, ·) = V ∗h (f) = 0 for all h ∈ [H]. Thus Q∗h(f, ·) = 〈φ(f, ·), v(a∗)〉 = 0.

We now verify realizability for other states via induction on h = H,H − 1, · · · , 1. The induction
hypothesis is ∀a1 ∈ [m], a2 6= a1,

Q∗h(a1, a2) =
(〈
v(a1), v(a2)

〉
+ 2γ

)
·
〈
v(a2), v(a∗)

〉
, (1)

and that ∀a1 6= a∗,
V ∗h (a1) = Q∗h(a1, a

∗) =
〈
v(a1), v(a∗)

〉
+ 2γ. (2)

When h = H , (1) holds by the definition of rewards. Next, note that ∀h, (2) follows from (1). This is
because for a2 6= a∗, a1,

Q∗h(a1, a2) =
(〈
v(a1), v(a2)

〉
+ 2γ

)
·
〈
v(a2), v(a∗)

〉
≤ 3γ2,

while

Q∗h(a1, a
∗) =

〈
v(a1), v(a∗)

〉
+ 2γ ≥ γ > 3γ2.

In other words, (1) implies that a∗ is always the optimal action. Thus, it remains to show that (1)
holds for h assuming (2) holds for h+ 1. By Bellman’s optimality equation,

Q∗h(a1, a2) = Rh(a1, a2) + Esh+1

[
V ∗h+1(sh+1)

∣∣ a1, a2

]
= −2γ

[〈
v(a1), v(a2)

〉
+ 2γ

]
+ Pr[sh+1 = a2] · V ∗h+1(a2) + Pr[sh+1 = f ] · V ∗h+1(f)

= −2γ
[〈
v(a1), v(a2)

〉
+ 2γ

]
+
[〈
v(a1), v(a2)

〉
+ 2γ

]
·
(〈
v(a1), v(a∗)

〉
+ 2γ

)
=
(〈
v(a1), v(a2)

〉
+ 2γ

)
·
〈
v(a1), v(a∗)

〉
.

This is exactly (1) for h. Hence both (1) and (2) hold for all h ∈ [H].

2 Proof of Lemma 5

Proof. We state a proof of this lemma for completeness. By Lemma 4, ∀s,

max
a∈A

φ(s, a)>Σ−1
s φ(s, a) ≤ d.

It follows that ∀a ∈ A,
φ(s, a)φ(s, a)> 4 dΣs.
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Therefore,

Es∼ν
[
max
a∈A

φ(s, a)>Σ−1φ(s, a)

]
= Es∼ν max

a∈A
Tr
(
φ(s, a)φ(s, a)>Σ−1

)
≤ Es∼νTr

(
dΣsΣ

−1
)

= d2.

3 Addressing Footnote 3

Let us redefineMa∗ as follows. The state space is again {1̄, · · · , m̄, f}. The action space is [m]
for every state. We will also use the same set of m d-dimensional vectors {v1, · · · , vm}. In this
construction, we will reset γ := 1

6 .

Features. The feature map now maps state-action pairs to d+ 1 dimensional vectors, and is defined
as follows.

φ(a1, a2) :=
(

0,
(〈
v(a1), v(a2)

〉
+ 2γ

)
· v(a2)

)
, (∀a1, a2 ∈ [m], a1 6= a2)

φ(a1, a1) :=

(
3

4
γ, 0

)
, (∀a1 ∈ [m])

φ(f, 1) = (0,0) ,

φ(f, a) := (−1,0) . (∀a 6= 1)

Note that the feature map is again independent of a∗. Define θ∗ := (1, v(a∗)).

Rewards. For 1 ≤ h < H , the rewards are defined as

Rh(a1, a
∗) :=

〈
v(a1), v(a∗)

〉
+ 2γ, (a1 6= a∗)

Rh(a1, a2) := −2γ
[〈
v(a1), v(a2)

〉
+ 2γ

]
, (a2 6= a∗, a2 6= a1)

Rh(a1, a1) :=
3

4
γ, (∀a1)

Rh(f, 1) := 0,

Rh(f, a) := −1. (a 6= 1)

For h = H , rH(s, a) := 〈φ(s, a), v(a∗)〉 for every state-action pair.

Transitions. The initial state distribution is set as a uniform distribution over {1̄, · · · , m̄}. The
transition probabilities are set as follows.

Pr[f |a1, a
∗] = 1,

Pr[f |a1, a1] = 1,

Pr[·|a1, a2] =

a2 :
〈
v(a1), v(a2)

〉
+ 2γ

f : 1−
〈
v(a1), v(a2)

〉
− 2γ

, (a2 6= a∗, a2 6= a1)

Pr[f |f, ·] = 1.

We now check realizability in the new MDP. Note that now we want to show Q∗h(s, a) = φ(s, a)>θ∗,
where θ∗ = (1, v(a∗)). We claim that ∀h ∈ [H],

V ∗h (a1) = 〈v(a1), v(a∗)〉+ 2γ, (a1 6= a∗)

Q∗h(a1, a2) = (〈v(a1), v(a2)〉+ 2γ) · 〈v(a2), v(a∗)〉, (a2 6= a1)

Q∗h(a1, a1) =
3

4
γ. (∀a1)
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To see this, first notice that the expression of Q∗h implies that the optimal action is a∗ for any non-
terminal state. Suppose a1 6= a∗, then for a2 6= a1, a

∗, Q∗h(a1, a2) ≤ 3γ2 < γ ≤ Q∗h(a1, a
∗).

Moreover,

Q∗h(a1, a1) =
3

4
γ < γ ≤ Q∗h(a1, a

∗).

Thus, a∗ is indeed the optimal action for a1 if a1 6= a∗.

For a∗, a1 6= a∗, Q∗h(a∗, a1) ≤ 3γ2 < 3
4γ = Q∗h(a∗, a∗). Therefore, a∗ is the optimal action for all

states (besides f ).

As for f , it is easy to see that Q∗h(f, 1) = 0, and that ∀a 6= 1, Q∗h(f, a) = −1.

What remains is show the statements for all h via induction. Suppose that
Q∗h+1(a1, a2) = (〈v(a1), v(a2)〉+ 2γ) · 〈v(a2), v(a∗)〉. (a2 6= a1)

Then indeed V ∗h+1(a1) = Q∗h+1(a1, a
∗) = 〈v(a1), v(a∗)〉+ 2γ. It follows that ∀a2 6= a∗

Q∗h(a1, a2) = Rh(a1, a2) + Esh+1

[
V ∗h+1(sh+1)

∣∣ a1, a2

]
= −2γ

[〈
v(a1), v(a2)

〉
+ 2γ

]
+ Pr[sh+1 = a2] · V ∗h+1(a2) + Pr[sh+1 = f ] · V ∗h+1(f)

= −2γ
[〈
v(a1), v(a2)

〉
+ 2γ

]
+
[〈
v(a1), v(a2)

〉
+ 2γ

]
·
(〈
v(a1), v(a∗)

〉
+ 2γ

)
=
(〈
v(a1), v(a2)

〉
+ 2γ

)
·
〈
v(a1), v(a∗)

〉
.

Suboptimality Gap. InMa∗ , ∀a1 6= a∗, ∀a2 6= a∗, Q∗h(a1, a2) ≤ max{3γ2, 3
4γ}. Thus

∆h(a1, a2) ≥ γ −max{3γ2,
3

4
γ} =

1

24
.

For a∗, V ∗h (a∗) = 1− γ, while for a1 6= a∗,

Q∗h(a∗, a1) = (〈v(a∗), v(a1) + 2γ) · 〈v(a∗), v(a1)〉 ≤ 3γ2.

Thus ∆∗h(a∗, a1) ≥ 3
4γ − 3γ2 = 1

24 . As for the terminal state f , the suboptimality gap is obviously
1. Therefore ∆min ≥ 1

24 in this new MDP.

Information theoretic arguments. The modifications here do not affect the proof of Theorem 1.
Suppose action a2 is taken at state a1. If a1 6= a2, then the behavior (transitions and rewards) would
be identical to the original MDP. If a1 = a2 6= a∗, neither the transition and the rewards depend on
a∗. Hence, we can still construct a reference MDP as in the proof of Theorem 1, such that information
on a∗ can only be gained by: (1) either taking a∗; (2) or reaching sH 6= f .

4 Proof of Theorem 1

Theorem 1. Consider an arbitrary online RL algorithm that takes the feature mapping φ : S ×
A → Rd as input. In the online RL setting, there exists an MDP with a feature mapping φ
satisfying Assumption 1 and Assumption 2 with ∆min = Ω(1), such that the algorithm requires
min{2Ω(d), 2Ω(H)} samples to find a policy π with

Es1∼µV π(s1) ≥ Es1∼µV ∗(s1)− 0.05

with probability 0.1.

Proof. We consider K episodes of interaction between the algorithm and the MDPMa. Since each
trajectory is a sequence of H states, we define the total number of samples as KH . Denote the state,
the action and the reward at episode k and timestep h by skh, akh and rkh respectively.

Consider the following reference MDP denoted byM0. The state space, action space, and features
of this MDP are the same as those of the MDP family. The transitions are defined as follows:

Pr[·|a1, a2] =

a2 :
〈
v(a1), v(a2)

〉
+ 2γ

f : 1−
〈
v(a1), v(a2)

〉
− 2γ

, (∀a1, a2 s.t. a1 6= a2)

Pr[f |f, ·] = 1.
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The rewards are defined as follows:

Rh(a1, a2) := −2γ
[〈
v(a1), v(a2)

〉
+ 2γ

]
, ( ∀a1, a2 s.t. a1 6= a2)

Rh(f, ·) := 0.

Intuitively, this MDP is very similar to the MDP family, except that the optimal action a∗ is removed.
More specifically,M0 is identical toMa except when the action a is taken at a non-terminal state,
or when an episode ends at a non-terminal state.

More specifically, we claim that for t < H , ∀st, at such that at 6= a,

PrMa
[st+1|st, at] = PrM0

[st+1|st, at],

and that for t < H , ∀st, at such that at 6= a,

rMa
t (st, at) = rM0

t (st, at).

Also, rMa

H (st, at) = rM0

H (st, at) if st = f . It follows that

PrMa

[
s1

1, a
1
1, r

1
1, · · · skh, akh, rkh

∣∣∣a /∈ Akh,∀k′ ≤ k, sk′H = f
]

=PrM0

[
s1

1, a
1
1, r

1
1, · · · skh, akh, rkh

∣∣∣a /∈ Akh,∀k′ ≤ k, sk′H = f
]
.

Here Akh is a shorthand for
{
a1

1, a
1
2, · · · , a1

H , · · · , akh
}

, i.e. all actions taken up to timestep h for
episode k. By marginalizing the states and the actions, we get

PrMa

[
akh

∣∣∣a /∈ Akh,∀k′ ≤ k, sk′H = f
]

= PrM0

[
akh

∣∣∣a /∈ Akh,∀k′ ≤ k, sk′H = f
]
.

It then follows that

PrMa

[
akh = a

∣∣∣a /∈ Akh,∀k′ ≤ k, sk′H = f
]

= PrM0

[
akh = a

∣∣∣a /∈ Akh,∀k′ ≤ k, sk′H = f
]
.

Next, we prove via induction that

PrMa

[
a ∈ Akh

∣∣∣∀k′ ≤ k, sk′H = f
]

= PrM0

[
a ∈ Akh

∣∣∣∀k′ ≤ k, sk′H = f
]
. (3)

Suppose that (3) holds up to (k, h− 1). Then

PrMa

[
a ∈ Akh

∣∣∣∀k′ ≤ k, sk′H = f
]

=PrMa

[
a /∈ Akh−1

]
PrMa

[
akh = a

∣∣∣a /∈ Akh−1,∀k′ ≤ k, sk
′

H = f
]

+ PrMa

[
a ∈ Akh−1

∣∣∣∀k′ ≤ k, sk′H = f
]

=PrM0

[
a /∈ Akh−1

]
PrM0

[
akh = a

∣∣∣a /∈ Akh−1,∀k′ ≤ k, sk
′

H = f
]

+ PrM0

[
a ∈ Akh−1

∣∣∣∀k′ ≤ k, sk′H = f
]

=PrM0

[
a ∈ Akh

∣∣∣∀k′ ≤ k, sk′H = f
]
.

That is, (3) holds for h, k as well. By induction, (3) holds for all h, k. Thus,

PrMa

[
a ∈ Akh

]
≤ PrMa

[
a ∈ Akh

∣∣∣∀k′ ≤ k, sk′H = f
]

+ Pr
[
∃k′ ≤ k, sk

′

H 6= f
]

≤ PrM0

[
a ∈ Akh

∣∣∣∀k′ ≤ k, sk′H = f
]

+ k ·
(

3

4

)H
.

Since |Akh| ≤ kH ,
∑
a∈[m] PrM0

[
a ∈ Akh

∣∣∣∀k′ ≤ k, sk′H = f
]
≤ kH . It follows that there exists

a∗ ∈ [m] such that

PrM0

[
a∗ ∈ AKH

∣∣∣∀k′ ≤ K, sk′H = f
]
≤ KH

m
= KH · e−Θ(d).

As a result

PrMa∗

[
a∗ ∈ AKH

]
≤ KH · e−Θ(d) +K

(
3

4

)H
.
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In other words, unless KH = 2Ω(min{d,H}), the probability of taking the optimal action a∗ in the
interaction withMa∗ is o(1).

From the suboptimality gap condition, it follows that if Es1∼µV π(s1) ≥ Es1∼µV ∗(s1) − 0.05,
Pr
[
a1 6= a∗ ∧ s1 6= a∗

]
·∆min ≤ 0.05. Hence

Pr [a1 = a∗] ≥ 1−
(

0.8 +
1

m

)
= 0.2− 1

m
.

Therefore, if the algorithm is able to output such a policy with probability 0.1, it is able to take the
action a∗ in the next episode with Θ(1) probability by executing π. However, as proved above, this is
impossible unless KH = 2Ω(min{d,H}).

5 Proof of Theorem 2

Recall the statements of Assumptions 3 and 4.
Assumption 3 (Low variance condition). There exists a constant 1 ≤ Cvar <∞ such that for any
h ∈ [H] and any policy π,

Es∼Dπh
[
|V π(s)− V ∗(s)|2

]
≤ Cvar ·

(
Es∼Dπh [|V π(s)− V ∗(s)|]

)2
.

Assumption 4. There exists a constant 1 ≤ Chyper <∞ such that for any h ∈ [H] and any policy
π, the distribution of φ(s, a) with (s, a) ∼ Dπh is (Chyper, 4)-hypercontractive. In other words, ∀π,
∀h ∈ [H], ∀v ∈ Rd,

E(s,a)∼Dπh

[
(φ(s, a)>v)4

]
≤ Chyper ·

(
E(s,a)∼Dπh [(φ(s, a)>v)2]

)2

.

Theorem 2. Assume that Assumption 1, 2, and one of Assumption 3 and 4 hold. Also assume that

ε ≤ poly(∆min, 1/Cvar, 1/d, 1/H) (Under Assumption 3)
or ε ≤ poly(∆min, 1/Chyper, 1/d, 1/H). (Under Assumption 4)

Let µ be the initial state distribution. Then with probability 1− ε, running Algorithm 1 on input 0
returns a policy π which satisfies Es1∼µV π(s1) ≥ Es1∼µV ∗(s1)− ε using poly(1/ε) trajectories.

Proof under Assumption 3. Let us set β = 8, λridge = ε2, λr = ε6, B = 2d log( d
λr

), ε1 = ε2,

ε2 = λr
2B , N = d·log(1/ε2)

ε22
. Recall that ε ≤ poly(∆min, 1/Cvar, 1/d, 1/H). First, by Lemma 8, the

event Ω holds with probability 1 − ε; we will condition on this event in the following proof. By
lemma 10, when the algorithm terminates, |Πh| ≤ B for all h ∈ [H]. Note that the this implies that
Algorithm 1 is called or restarted at most H · (1 +B) times. In each call or restart of Algorithm 1, at
most NB +N trajectories are sampled. Therefore, when the algorithm terminates, at most

H(1 +B) · (NB +N) ≤ poly (1/ε)

trajectories are sampled.

It remains to show that the greedy policy with respect to θ1, · · · , θH is indeed ε-optimal with high
probability. To that end, let us state the following claims about the algorithm.

1. Each time Line 9 is reached in Algorithm 1, ∀π ∈ Πh, define π̃h as in (6), ∀h′ > h,

E
sh′∼D

π̃h
h′

[
sup
a∈A

∣∣φ(sh′ , a)>(θh′ − θ∗h′)
∣∣2] ≤ ∆2

minε

4H
. (4)

2. Each time when θh is updated at Line 17, ∀π ∈ Πh, define the associated covariance matrix
at step h as Σπh = Esh∼Dπh ,ah∼ρsh

[
φ(sh, ah)φ(sh, ah)>

]
. Then ‖θh−θ∗h‖2Σπh ≤ 6BCvarε

2.
It follows that

Esh∼Dπh

[
sup
a∈A

∣∣φ(sh, a)>(θh − θ∗h)
∣∣2] ≤ ∆2

minε

4H
. (5)

5



Note that by the first claim with h = 0, it follows that for the greedy policy π̂ (π̃0 is always the greedy
policy) w.r.t. {θh}h∈[H], ∀h ∈ [H],

Esh∼Dπ̂h

[
sup
a∈A

∣∣φ(sh, a)>(θh − θ∗h)
∣∣2] ≤ ∆2

minε

4H
.

Consequently by Markov’s inequality,

Pr
sh∼Dπ̂h

[
∃a ∈ A :

∣∣φ(sh, a)>(θh − θ∗h)
∣∣ > ∆min

2

]
≤ ε

H
.

By Assumption 2 and the fact that π̂ takes the greedy action w.r.t. θh, this implies that

Pr
sh∼Dπ̂h

[π̂h(sh) 6= π∗h(sh)] ≤ ε

H
.

Thus for a random trajectory induced by π̂, with probability at least 1− ε, π̂h(sh) = π∗h(sh) for all
h = 1, · · · , H , which proves the theorem.

It remains to prove the two claims.

Proof of (5). We first prove the second claim based on the assumption that the first claim holds when
Line 9 is reached in the same execution of LearnLevel. By the first claim and the same arguments
above, ∀π ∈ Πh, construct π̃h as

π̃h(sh′) =


π(sh′) (if h′ < h)

Sample from ρsh(·) (if h′ = h)

arg maxa φh′(sh′ , a)>θh′ (if h′ > h)

, (6)

then Pr
sh′∼D

π̃h
h′

[π̃h(sh′) 6= π∗(sh′)] ≤ ε/H . Thus,

E
sh+1∼D

π̃h
h+1

[
V π̃hh+1(sh+1)

]
≥ E

sh+1∼D
π̃h
h+1

[
V ∗h+1(sh+1)

]
− ε.

By Assumption 3, this suggests that

E
sh+1∼D

π̃h
h+1

[(
V π̃hh+1(sh+1)− V ∗h+1(sh+1)

)2
]
≤ Cvarε

2.

When (sh, ah, y) is sampled,

E [y|sh, ah] = E
[
R(sh, ah) + V π̃hh+1(sh+1)|sh, ah

]
= Q∗(sh, ah) + E

[
V π̃hh+1(sh+1)− V ∗h+1(sh+1)|sh, ah

]
,

where the expectation is over trajectories induced by π̃h. In other words, yi :=
∑
h′≥h r

i
h can be

written as φ(sih, a
i
h)>θ∗h + bi + ξi, where ξi is mean-zero independent noise with |ξi| ≤ 2 almost

surely and bi :=
∑
h′>h r

i
h′ − V ∗h+1(sih+1) satisfies E[b2i ] ≤ Cvarε

2. Note that θh is the ridge
regression estimator for this linear model. By Lemma 7,

Eπ∼Unif(Πh),sh∼Dπh ,ah∼ρsh

[∣∣φ(sh, ah)>(θh − θ∗h)
∣∣2] ≤ 4(Cvarε

2 + ε1 + λridge) ≤ 6Cvarε
2.

It follows that ∀π ∈ Πh,

Esh∼Dπh ,ah∼ρsh
[∣∣φ(sh, ah)>(θh − θ∗h)

∣∣2] ≤ |Πh| · 6Cvarε
2 ≤ 6BCvarε

2.

Now, by Lemma 5,

Esh∼Dπh

[
sup
a∈A

∣∣φ(sh, a)>(θh − θ∗h)
∣∣2]

≤Esh∼Dπh

[
sup
a∈A
‖φ(sh, a)‖2(Σπh)−1

]
· ‖φh − φ∗h‖2Σπh

≤d2 · 6BCvarε
2 ≤ ∆2

minε

4H
.

This proves the second claim.
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Proof of (4). Now, let us prove the first claim, assuming that the second claim holds for the last
update of any θh. By observing Algorithm 1, if Line 9 is reached, during the last execution of the first
for loop (i.e. Lines 1 to 8), the if clause at Line 5 must have returned False every time (otherwise
the algorithm will restart). It follows that during the last execution of Lines 1 to 8, neither {θh}h∈[H]

nor {Πh}h∈[H] is updated.

Consider the if clause when checking π ∈ Πh for layer h′. Recall that

Σπ̃hh′ = E
sh′∼D

π̃h
h′ ,ah′∼ρsh′

[
φ(sh′ , ah′)φ(sh′ , ah′)

>] .
Also define Σ∗h′ := λr

|Πh′ |
I + Eπ∼Unif(Πh′ )Σ

π
h′ . Then by Lemma 9,

‖ (Σ∗h′)
− 1

2 Σπ̃hh′ (Σ∗h′)
− 1

2 ‖2 ≤ 3β|Πh′ |.

It follows that

‖θh′ − θ∗h′‖2Σπ̃h
h′

= (θh′ − θ∗h′)>Σπ̃hh′ (θh′ − θ
∗
h′)

=
(

(Σ∗h′)
1
2 (θh′ − θ∗h′)

)> (
(Σ∗h′)

− 1
2 Σπ̃hh′ (Σ∗h′)

− 1
2

)(
(Σ∗h′)

1
2 (θh′ − θ∗h′)

)
≤ ‖θh′ − θ∗h′‖2Σ∗

h′
· ‖ (Σ∗h′)

− 1
2 Σπ̃hh′ (Σ∗h′)

− 1
2 ‖2

≤ 3βB ·

(
λr ·

(
2

λridge

)2

+ 6BCvarε
2

)
≤ 24B2 · 10Cvarε

2.

By Lemma 5,

E
sh′∼D

π̃h
h

[
sup
a∈A
‖φ(sh′ , a)‖2

(Σ
π̃h
h′ )−1

]
≤ d2.

As a result,

E
sh′∼D

π̃h
h′

[
sup
a∈A

∣∣φ(sh′ , a)>(θh′ − θ∗h′)
∣∣2] ≤ E

sh′∼D
π̃h
h

[
‖θh′ − θ∗h′‖2Σπ̃h

h′
· sup
a∈A
‖φ(sh′ , a)‖2

(Σ
π̃h
h′ )−1

]
≤ 240B2Cvarε

2 · d2 ≤ ε∆2
min

4H
.

This proves the first claim. The failure probability of the algorithm is controlled by Lemma 8.

Proof under Assumption 4. The proof under Assumption 4 is quite similar, except that we will use
Lemma 14 instead of Lemma 7 for the analysis of ridge regression. The different analysis of ridge
regression results in a slightly different choice of algorithmic parameters.

Let us set β = 8, ε0 = ε2, λridge = ε3, λr = ε9, B = 2d log( d
λr

), ε1 = ε3, ε2 = λr
2B , N = d

ε32
.

Recall that ε ≤ poly(∆min, 1/Chyper, 1/d, 1/H). We will state similar claims about the algorithm.

1. Each time Line 9 is reached in Algorithm 1, ∀π ∈ Πh, define π̃h as in (6), ∀h′ > h,

E
sh′∼D

π̃h
h′

[
sup
a∈A

∣∣φ(sh′ , a)>(θh′ − θ∗h′)
∣∣2] ≤ ∆2

minε0
4H

. (7)

2. Each time when θh is updated at Line 17, ∀π ∈ Πh, define the associated covariance matrix
at step h as Σπh = Esh∼Dπh ,ah∼ρsh

[
φ(sh, ah)φ(sh, ah)>

]
. Then ‖θh − θ∗h‖2Σπh ≤

∆2
minε0

120HBd2 .
It follows that

Esh∼Dπh

[
sup
a∈A

∣∣φ(sh, a)>(θh − θ∗h)
∣∣2] ≤ ∆2

minε0
4H

. (8)

As in the proof under Assumption 3, these two claims are sufficient to guarantee that the greedy
policy induced by {θh}h∈[H] is ε-optimal. We now prove the two claims in similar fashion.
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Proof of (8). We first prove the second claim based on the assumption that the first claim holds
when Line 9 is reached in the same execution of LearnLevel. By the first claim, ∀π ∈ Πh, construct
π̃h as in (6), then

Pr
sh′∼D

π̃h
h′

[π̃h(sh′) 6= π∗(sh′)] ≤ ε0/H. (9)

When (sh, ah, y) is sampled,

E [y|sh, ah] = E
[
R(sh, ah) + V π̃hh+1(sh+1)|sh, ah

]
= Q∗(sh, ah) + E

[
V π̃hh+1(sh+1)− V ∗h+1(sh+1)|sh, ah

]
,

where the expectation is over trajectories induced by π̃h. In other words, yi :=
∑
h′≥h r

i
h can be

written as φ(sih, a
i
h)>θ∗h + bi + ξi, where ξi is mean-zero independent noise with |ξi| ≤ 2 almost

surely, and bi is defined as

bi := −
∑
h′>h

(
V ∗(sih′)−Q∗(sih′ , aih′)

)
.

Here E[ξi] = 0 because

E[ξi] = E

∑
h′≥h

rih′

−Q∗h(sih, a
i
h)−E[bi] = Qπ̃h(sih, a

i
h)−Q∗(sih, aih)+

(
Q∗(sih, a

i
h)−Qπ̃h(sih, a

i
h)
)

= 0.

By (9), Pr[bi 6= 0] ≤ ε0. Thus by Lemma 14,

Eπ∼Unif(Πh),sh∼Dπh ,ah∼ρsh

[∣∣φ(sh, ah)>(θh − θ∗h)
∣∣2] ≤ 8 (ε1 + λridge) + 288ε1.50 C2.5

hyperd
4.5

(
2B

ε

)0.5

≤ 16ε3 + 288ε2.5C2.5
hyperd

4.5(2B)0.5.

It follows that ∀π ∈ Πh,

Esh∼Dπh ,ah∼ρsh
[∣∣φ(sh, ah)>(θh − θ∗h)

∣∣2] ≤ |Πh| ·
(
16ε2 + 288ε2.5C2.5

hyperd
4.5(2B)0.5

)
≤ ∆2

minε0
120HBd2

,

where we used the fact ε ≤ poly(∆min, 1/Chyper, 1/d, 1/H). Now, by Lemma 5,

Esh∼Dπh

[
sup
a∈A

∣∣φ(sh, a)>(θh − θ∗h)
∣∣2] ≤Esh∼Dπh [sup

a∈A
‖φ(sh, a)‖2(Σπh)−1

]
· ‖φh − φ∗h‖2Σπh

≤d2 · ∆2
minε0

120HBd2
≤ ∆2

minε0
4H

.

This proves the second claim.

Proof of (7). Now, let us prove the first claim, assuming that the second claim holds for the last
update of any θh. Consider Line 9 when checking for π ∈ Πh for layer h′. Recall that

Σπ̃hh′ = E
sh′∼D

π̃h
h ,ah′∼ρsh′

[
φ(sh′ , ah′)φ(sh′ , ah′)

>] .
Similar to the proof under Assumption 3, we can bound ‖θh′ − θ∗h′‖Σπ̃h

h′
by

‖θh′ − θ∗h′‖2Σπ̃h
h′
≤ ‖θh′ − θ∗h′‖2Σ∗

h′
· ‖ (Σ∗h′)

− 1
2 Σπ̃hh′ (Σ∗h′)

− 1
2 ‖2

≤ 3βB ·

(
λr ·

(
2

λridge

)2

+
∆2

minε0
120HBd2

)

≤ 96Bε3 +
∆minε0
5Hd2

.
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By Lemma 5, E
sh′∼D

π̃h
h

[
supa∈A ‖φ(sh′ , a)‖2

(Σ
π̃h
h′ )−1

]
≤ d2. Consequently

E
sh′∼D

π̃h
h′

[
sup
a∈A

∣∣φ(sh′ , a)>(θh′ − θ∗h′)
∣∣2] ≤ E

sh′∼D
π̃h
h

[
‖θh′ − θ∗h′‖2Σπ̃h

h′
· sup
a∈A
‖φ(sh′ , a)‖2

(Σ
π̃h
h′ )−1

]
≤ 96Bε3d2 +

∆minε0
5H

≤ ∆minε0
4H

.

In the last inequality we used ε0 = ε2 and ε ≤ poly(∆min, 1/d, 1/H). This proves (7). Finally the
failure probability is controlled in Lemma 8.

Lemma 6 (Covariance concentration [Tropp, 2015]). Suppose M1, · · · ,MN ∈ Rd×d are i.i.d.
random matrices drawn from a distribution D over positive semi-definite matrices. If ‖Mt‖F ≤ 1

almost surely and N = Ω
(
d log(d/δ)

ε2

)
, then with probability 1− δ,∥∥∥∥∥ 1

N

N∑
i=1

Mt − EM∼D[M ]

∥∥∥∥∥
2

≤ ε.

Lemma 7 (Risk bound for ridge regression, Lemma A.2 Du et al. [2019]). Suppose that (x1, y1),
· · · , (xN , yN ) are i.i.d. data drawn from D with

yi = θ>xi + bi + ξi,

where E(xi,yi)∼D[b2i ] ≤ η, |ξi| ≤ 2n almost surely and E[ξi] = 0. Let the ridge regression estimator
be

θ̂ =

(
N∑
i=1

xix
>
i +Nλridge · I

)−1

·
N∑
i=1

xiyi.

If N = Ω
(
d
ε2N

log(dδ )
)

, then with probability at least 1− δ,

Ex∼D
[(

(θ̂ − θ)>x
)2
]
≤ 4 (η + εN + λridge) .

Lemma 8 (Failure probability). Define the following events regarding the execution of Algorithm 1.

1. Ω1: Each time Σh is updated,∥∥∥Σh − Eπ∼Unif(Πh),sh∼Dπh ,ah∼ρsh

[
φ(sh, ah)φ(sh, ah)>

]∥∥∥
2
≤ ε2. (10)

2. Ω2: Each time θh is updated,

Eπ∼Unif(Πh),s∼Dπh ,a∼ρs

[(
(θh − θ∗h)>φ(s, a)

)2] ≤ 4 (η + ε1 + λridge) , (11)

where η is defined as in Lemma 7.

3. Ω3: Each time θh is updated,

Eπ∼Unif(Πh),s∼Dπh ,a∼ρs

[(
(θh − θ∗h)>φ(s, a)

)2] ≤ 288η1.5C2.5d4.5

(
2B

ε

)0.5

, (12)

where η and C are defined as in Lemma 14.

Then under Assumption 3, Pr[Ω1 ∩ Ω2] ≥ 1− ε. Alternatively, under Assumption 4, Pr[Ω1 ∩ Ω3] ≥
1− ε.

Proof. Note that N ≥ d log(1/ε2)
ε22

where ε2 ≤ ε6

d . Therefore, by Lemma 6, each time Σh is updated,
(10) holds with probability at least 1− ε2.

As for (11), note that N ≥ d log(1/ε2)
ε22

� d
ε21
· log( dε2 ). Thus by Lemma 7, each time θh is updated,

(11) holds with probability at least 1− ε2.
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Similarly, for (12), under the choice of parameters under Assumption 4, N ≥ d
ε32
�(

d
ε22

+ 1
η

)
ln 2dB

ε + 2B
ε . Thus by Lemma 14, the probability that (12) is violated each step is

at most ε/2B.

Note that when the algorithm terminates, the Σh and θh are updated at most |Πh| times. Also note
that, if during the first B updates, neither (10) nor (11) are violated, by Lemma 10 it follows that
|Πh| ≤ B when the algorithm terminates. In other words,

Pr[Ω1 ∪ Ω2] ≥ 1−B · 2ε2 ≥ 1− ε.

Similarly, under Assumption 4,

Pr[Ω1 ∪ Ω3] ≥ 1−B · ε2 −B · ε

2B
≥ 1− ε.

Lemma 9 (Distribution shift error checking). Assume that ε2 < min{ 1
2βλr,

λr
2B }. Consider the if

clause when checking for πh ∈ Πh, i.e. when computing ‖Σ−
1
2

h′ Σ̂h′Σ
− 1

2

h′ ‖2. Define

M1 :=
λr
|Πh′ |

I + Eπ∼Unif(Πh′ ),sh′∼Dπh′ ,ah′∼ρsh′

[
φ(sh′ , ah′)φ(sh′ , ah′)

>] ,
and

M2 := E
sh′∼D

π̃h
h′ ,ah′∼ρsh′

[
φ(sh′ , ah′)φ(sh′ , ah′)

>] .
Then under the event Ω defined in Lemma 8, when ‖Σ−

1
2

h′ Σ̂h′Σ
− 1

2

h′ ‖2 ≤ β|Πh′ |,

‖M−1/2
1 M2M

−1/2
1 ‖2 ≤ 3β|Πh′ |.

When ‖Σ−
1
2

h′ Σ̂h′Σ
− 1

2

h′ ‖2 ≥ β|Πh′ |,

‖M−1/2
1 M2M

−1/2
1 ‖2 ≥

1

4
β|Πh′ |.

Proof. By Lemma 6,

‖M1 − Σh′‖2 ≤ ε2 ≤
λr
2B
≤ 1

2
λmin (Σh′) .

Thus 1
2Σh′ 4M1 4 2Σh′ . Also by Lemma 6, ‖M2− Σ̂h′‖2 ≤ ε2. Therefore, if ‖Σ−

1
2

h′ Σ̂h′Σ
− 1

2

h′ ‖2 ≥
β|Πh′ |,

‖M−1/2
1 M2M

−1/2
1 ‖2 ≥

1

2
‖Σ−1/2

h′ M2Σ
−1/2
h′ ‖2 ≥

1

2
‖Σ−1/2

h′ Σ̂h′Σ
−1/2
h′ ‖2 −

1

2
ε2‖Σ−1

h′ ‖2

≥ 1

2
β|Πh′ | −

1

2
ε2 ·
|Πh′ |
λr
≥ 1

4
β|Πh′ |.

Similarly, when ‖Σ−
1
2

h′ Σ̂h′Σ
− 1

2

h′ ‖2 ≤ β|Πh′ |,

‖M−1/2
1 M2M

−1/2
1 ‖2 ≤ 2‖Σ−1/2

h′ M2Σ
−1/2
h′ ‖2 ≤ 2‖Σ−1/2

h′ Σ̂h′Σ
−1/2
h′ ‖2 + 2ε2‖Σ−1

h′ ‖2

≤ 2β|Πh′ |+ 2ε2 ·
|Πh′ |
λr
≤ 3β|Πh′ |.

Lemma 10 (Lemma A.6 in Du et al. [2019]). Under the event Ω1 defined in Lemma 8, |Πh| ≤ B for
all h ∈ [H].

Proof. We provide a proof for completeness. Fix a level h′ ∈ [H]. Define

A := λrI +
∑
π∈Πh′

E
sh′∼D

π̃h
h′ ,ah′∼ρsh′

[φ(sh′ , ah′)φ(sh′ , ah′)
>].
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By the update rule at Line 6, |Πh′ | is expanded if and only if the if clause at Line 5 returns False
when checking for some π̃h. By Lemma 9, define

M := E
sh′∼D

π̃h
h′ ,ah′∼ρsh′

[
φ(sh′ , ah′)φ(sh′ , ah′)

>] ,
then

‖A−1/2MA−1/2‖2 ≥
1

4
β = 2.

Note that after Πh′ is updated to Πh′ ∪ {π̃h}, A would be updated to A+M . Observe that

det (A+M) = det(A) · det
(
I +A−1/2MA−1/2

)
≥ 3 det(A).

Therefore during the execution of the algorithm,

det(A) ≥ 3|Πh′ | · λdr .

On the other hand, since ‖φ(s, a)φ(s, a)>‖2 ≤ 1,

det(A) ≤ (λr + |Πh′ |)d .

The lemma follows by solving 3|Πh′ | · λdr ≤ (λr + |Πh′ |)d.

6 Analysis of Ridge Regression under Hypercontractivity

Recall that a distribution D is (C, 4)-hypercontractive if ∀v,

Ex∼D[(x>v)4] ≤ C ·
(
Ex∼D[(x>v)2]

)2
.

In this section we prove an strengthened version of Lemma 7 for hypercontractive distributions
(Lemma 14), which may be of independent interest.
Lemma 11. Let x be a d-dimensional r.v. If the distribution of x is (C, 4)-hypercontractive and
isotropic (i.e. E[xx>] = I), then

Pr[‖x‖2 > t] ≤ Cd2

t4
.

Proof. Consider a Gaussian random vector v ∼ N(0, I). Then

Ev[(x>v)4] = ‖x‖4 · Eξ∼N(0,1)ξ
4 = 3‖x‖4.

Therefore

Ex[‖x‖4] =
1

3
Ex,v[(x>v)4] ≤ C

3
Ev
(
Ex(x>v)2

)2
≤ C

3
Ev‖v‖4 =

C · (d2 + 2d)

3
≤ d2C.

The claim then follows from Markov’s inequality.

Lemma 12. If the x1, · · · , xn are i.i.d. samples from a (C, 4)-hypercontractive distribution. Let σ(·)
denote the decreasing order of ‖xi‖2. Then with probability 1− δ,

m∑
k=1

‖xσ(k)‖2 = 3δ−1/4n1/4m3/4C1/4d1/2.

Proof. Fix k ∈ [m]. Set t = α
(
Cd2n
k

)1/4

. By Lemma 11,

Pr[‖xσ(k)‖2 > t] ≤
(
n

k

)
Pr[‖x‖ > t]k ≤

(
n

k

)
·
(
Cd2

t4

)k
≤ nk

k!
· kk

α4knk
≤
( e

α4

)k
.
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Choosing α =
(

2e
δ

)1/4
gives Pr[‖xσ(k)‖2 > t] ≤ (δ/2)k. By a union bound, with probability 1− δ,

m∑
i=1

‖xσ(i)‖2 ≤
m∑
k=1

(2e/δ)1/4

(
Cd2n

k

)1/4

≤ 3δ−1/4n1/4m3/4C1/4d1/2.

Lemma 13 (Lemma 3.4 Bakshi and Prasad [2020]). If D is (C, 4)-hypercontractive and x1, · · · , xn
are i.i.d. samples drawn from D. Let Σ := Ex∼D[xx>]. With probability 1− δ,(

1− Cd2

√
nδ

)
Σ 4

1

n

n∑
i=1

xix
>
i 4

(
1 +

Cd2

√
nδ

)
Σ.

Lemma 14 (Risk bound for ridge regression with hypercontractivity). Suppose that (x1, y1), · · · ,
(xN , yN ) are i.i.d. data drawn from D with

yi = θ>xi + bi + ξi,

where Pr[bi 6= 0] ≤ η, ‖b‖∞ ≤ 1, |ξi| ≤ 1, and E[ξi] = 0. Assume that distribution of x is
(C, 4)-hypercontractive (see Assumption 4). Let the ridge regression estimator be

θ̂ =

(
N∑
i=1

xix
>
i +Nλridge · I

)−1

·
N∑
i=1

xiyi.

If N = Ω
(

( d
ε2N

+ 1
η ) log(dδ ) + 1

δ

)
, then with probability at least 1− δ,

Ex∼D
[(

(θ̂ − θ)>x
)2
]
≤ 8 (εN + λridge) + 288η1.5C2.5d4.5δ−0.5.

Proof. Define Σ̂ := 1
N

∑N
i=1 xix

>
i and Σ := Ex∼D[xx>]. Then

θ̂ =
1

N

(
λridgeI + Σ̂

)−1 N∑
i=1

(
xix
>
i θ + xi · ξi + xi · bi

)
=

1

N

(
λridgeI + Σ̂

)−1 N∑
i=1

bixi︸ ︷︷ ︸
(a)

+
1

N

(
λridgeI + Σ̂

)−1 N∑
i=1

(
xix
>
i θ + xi · ξi

)
︸ ︷︷ ︸

(b)

.

By Lemma 7, ‖θ − (b)‖2Σ ≤ 4(εN + λridge). It remains to bound the ‖ · ‖Σ norm of (a).

First, by Hoeffding’s inequality, with probability 1 − δ, ‖b‖0 =
∑n
i=1 I[bi 6= 0] ≤ 2ηN . Define

zi := Σ−1/2xi to be the normalized input. It can be seen that E[ziz
>
i ] = I and that the distribution

of zi is also hypercontractive. By Lemma 12, with probability 1− 2δ,
n∑
i=1

‖zi‖2 · I[bi 6= 0] ≤ 3δ−1/4N1/4(2ηN)3/4(Cd2)1/4.

It follows that with probability 1− 2δ,

‖(a)‖Σ =
1

N

∥∥∥∥∥Σ̂−1
N∑
i=1

xibi

∥∥∥∥∥
Σ

≤ 1

N

N∑
i=1

‖Σ1/2Σ̂−1xibi‖2

=
1

N

N∑
i=1

‖Σ1/2Σ̂−1Σ1/2zibi‖2

≤ 1

N
‖Σ1/2Σ̂−1Σ1/2‖2 ·

N∑
i=1

‖zi‖2 ·H · I[bi 6= 0]

≤ 3H

(
1 +

Cd2

√
Nδ

)
· δ−1/4N−3/4(2ηN)3/4(Cd2)1/4

≤ 12Hη0.75 · C 5
4 d

9
4 δ−

1
4 .
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Therefore

‖θ̂ − θ‖2Σ ≤ 2‖θ̂ − (b)‖2Σ + 2‖(a)‖2Σ
≤ 8(εN + λridge) + 288η1.5C2.5d4.5δ−0.5.
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