
Appendix - An Image is Worth More Than a Thousand Words:
Towards Disentanglement in The Wild

Table of Contents
A Semi-Supervised Disentanglement with Residual Attributes 14
A.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
A.2 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A.3 Baseline Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A.4 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
A.5 Training Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B Semi-Supervised Disentanglement without Residual Attributes 18

C Zero-shot Labeling with CLIP 18
C.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
C.2 Attribute Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

D Datasets 20

E Extended Qualitative Visualizations 21

F License of Used Assets 29

A Semi-Supervised Disentanglement with Residual Attributes

A.1 Implementation Details

Recall that our generative model gets as input the assignment of the attributes of interest together
with the residual attributes and generates an image:

x = G(f̃1, ..., f̃k, r) (9)

where f̃ j is the output probability vector (over mj different classes) of the classifier Cj . Generally,
the embedding dimension of an attribute of interest j within the generator is dj . The embedding
of each attribute of interest is obtained by the following projection: f̃ j · P j where P j ∈ Rmj×dj

.
The parameters of P j are optimized together with the rest of the parameters of the generator G. All
the representations of the attributes of interest are concatenated along with the representation of the
residual attributes before being fed into the generator G.

Architecture for Synthetic Experiments To be inline with the disentanglement literature, we set
dj = 1 in the synthetic experiments, i.e. each attribute of interest should be represented in a single
latent dimension. The entire latent code is therefore composed of d = 10 dimensions, k of which
are devoted for k attributes of interest and 10 − k are for the residual attributes. The generator G
is an instance of the architecture of the betaVAE decoder, while each of the classifiers Cj and the
residual encoder Er is of the betaVAE encoder form. Detailed architectures are provided in Tab. 13
and Tab. 14 for completeness.

Architecture for Experiments on Real Images In order to scale to real images in high resolu-
tion, we replace the betaVAE architecture with the generator architecture of StyleGAN2, with two
modifications; (i) The latent code is adapted to our formulation and forms a concatenation of the
representations of the attributes of interest and the residual attributes. (ii) We do not apply any noise
injection, unlike the unconditional training of StyleGAN2. Note that in these experiments we train an
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Table 3: Attribute splits for the synthetic benchmarks.

Dataset Attributes of Interest Residual Attributes

Shapes3D floor color, wall color, object color scale, shape, azimuth
Cars3D elevation, azimuth object
dSprites scale, x, y orientation, shape
SmallNORB elevation, azimuth, lighting category, instance

additional adversarial discriminator to increase the perceptual quality of the synthesized images. A
brief summary of the architectures is presented in Tab. 15 and 16 for completeness. The architecture
of the feed-forward residual encoder trained in the second stage is influenced by StarGAN-v2 [8] and
presented in Tab. 17.

Optimization All the modules of our disentanglement model are trained from scratch, including
the generator G, classifiers C1, ..., Ck and a residual latent code ri per image xi. While in the
synthetic experiments each of the k attributes of interest is embedded into a single dimension, we set
the dimension of each attribute to 8 and of the residuals to 256 in the experiments on real images. We
set the learning rate of the latent codes to 0.01, of the generator to 0.001 and of the attribute classifiers
to 0.0001. The learning rate of the additional discriminator (only trained for real images) is set to
0.0001. The practice of using a higher learning rate for the latent codes is motivated by the fact that
the latent codes (one per image) are updated only once in an entire epoch, while the parameters of the
other modules are updated in each mini-batch. For each mini-batch, we update the parameters of the
models and the relevant latent codes with a single gradient step each. The different loss weights are
set to λcls = 0.001, λent = 0.001, λres = 0.0001. In order to stabilize the training, we sample both
supervised and unsupervised samples in each mini-batch i.e. half of the images in each mini-batch
are labeled with at least one true attribute of interest.

A.2 Evaluation Protocol

We assess the learned representations of the attributes of interest using DCI [13] which measures
three properties: (i) Disentanglement - the degree to which each variable (or dimension) captures at
most one generative factor. (ii) Completeness - the degree to which each underlying factor is captured
by a single variable (or dimension). (iii) Informativeness - the total amount of information that a
representation captures about the underlying factors of variation. Tab. 1 summarizes the quantitative
evaluation of our method and the baselines on the synthetic benchmarks using DCI and two other
disentanglement metrics: SAP [26] and MIG [5].

Regarding the fully unlabeled residual attributes, we only require the learned representation to be
informative of the residual attributes and disentangled from the attributes of interest. As we cannot
expect the codes here to be disentangled from one another, we cannot use the standard disentanglement
metrics (e.g. DCI). For evaluating these criteria, we train a set of linear classifiers, each of which
attempts to predict a single attribute given the residual representations (using the available true labels).
The results and comparisons can be found in Sec. A.4.

The specific attribute splits used in our synthetic experiments are provided in Tab. 3.

A.3 Baseline Models

A.3.1 Synthetic Experiments

Semi-Supervised betaVAE (Locatello et al. [30]): We compare with the original implementation1

of the semi-supervised variant of betaVAE provided by Locatello et al. [30]. Note that we consider
the permuted-labels configuration in which the attribute values are not assumed to exhibit a semantic
order. While the order of the values can be exploited as an inductive bias to disentanglement, many
attributes in the real world (e.g. human gender or animal specie) are not ordered in a meaningful way.

LORD (Gabbay and Hoshen [14]): As this method assumes full-supervision on the attributes of
interest, we make an effort to adapt to the proposed setting and regularize the latent codes of the

1https://github.com/google-research/disentanglement_lib
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unlabeled images with activation decay penalty and Gaussian noise. We do it in a similar way to
the regularization applied to the residual latent codes. While other forms of regularization might be
considered, we believe it is the most trivial extension of LORD to support partially-labeled attributes.

A.3.2 Real Images Experiments

LORD (Gabbay and Hoshen [14]): We use the same method as in the synthetic experiments, but
adapt it to real images. Similarly to the adaptation applied for our method, we replace the betaVAE
architecture with StyleGAN2, add adversarial discriminator, and increase the latent codes dimensions.
The limited supervision here is supplied by CLIP [35] as in our method.

StyleCLIP (Patashnik et al. [32]): We used the official repository2 of the authors. The parameters
were optimized to obtain both visually pleasing and disentangled results. Two configurations were
chosen, one for the "StyleCLIP+" comparison (α = 4.1), and one for "StyleCLIP-" (α = 2.1). We
always used β = 0.1.

TediGAN (Xia et al. [43]): To optimize the trade-off between visually pleasing results and applying
the desired manipulation, the value of ”clip_loss” = 5.0 was chosen. Other parameters were given
their default value in the official supplied code3.

We note that to obtain the results presented in StyleCLIP and TediGAN papers, the authors adjusted
these parameters per image. While this might be a reasonable practice for an artist utilizing these
methods, it is not part of our setting.

A.3.3 Relation to LORD [14]

Recall that we aim to achieve disentanglement in the absence of full supervision on the attributes
of interest (i.e. the supervised class in [14]). We stress and show that methods as LORD [14] that
indeed aim to disentangle the attributes of interest from a unified set of residual attributes, only work
when full supervision is available on the attributes of interest and struggle when only partial labels
are provided (see Tab. 1 and Fig. 6,7,8). More specifically, our method can be seen as an extension of
LORD [14] for cases where the attributes of interest are observed only in a very few samples. Our
method can therefore also leverage off-the-shelf zero-shot image classifiers such as CLIP, in order to
be applied without the need to manually annotate even a small set of images. The few labels obtained
with CLIP can not be used effectively by LORD [14], as demonstrated in our experiments.

From a technical perspective, there are two fundamental differences between our method and LORD
[14]: (i) LORD is a fully latent-based model i.e. no classifiers are trained with the generator in the
first stage. The latent codes of the attributes of interest are optimized directly (and shared between all
instances with the same label). Here we provide a hybrid latent-amortized approach where attribute
codes are learned in a latent fashion, similarly to LORD, but they are weighted using the probabilities
emitted by an amortized classifier. (ii) We introduce an additional term Lent which enables our
method to perform well when very limited supervision exists for the attributes of interest.

A.4 Additional Results

A.4.1 Synthetic Experiments

Disentanglement of the Residual Code We report the accuracy of linear classifiers in predicting
the values of the different attributes from the residual code in Tab. 7. Ideally, the residual code should
contain all the information about the residual attributes, and no information about the attributes of
interest. Therefore, for each dataset we expect the attributes of interest (first row of each dataset,
colored in red) to be predicted with low accuracy. The residual attributes (second row, in green) are
the ones that should be encoded by the residual code.

We see that our method almost always provides better disentanglement (worse prediction) between
the residual code and the attributes of interest. Although the residual code in the method by Locatello
et al. [30] sometimes provide better predictions regarding the residual attributes, it comes at the
expense of containing a lot information regarding the attributes of interest. Keeping in mind that our

2https://github.com/orpatashnik/StyleCLIP
3https://github.com/IIGROUP/TediGAN
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Table 4: Ablation for Lent using 1000 [or 100] labels per attribute of interest.

D C I SAP MIG

Shapes3D Ours w/o Lent 0.99 [0.99] 0.98 [0.98] 0.98 [0.98] 0.28 [0.26] 0.94 [0.91]
Ours 1.00 [1.00] 1.00 [1.00] 1.00 [1.00] 0.30 [0.30] 1.00 [0.96]

Cars3D Ours w/o Lent 0.74 [0.39] 0.74 [0.40] 0.71 [0.43] 0.22 [0.11] 0.57 [0.34]
Ours 0.80 [0.40] 0.80 [0.41] 0.78 [0.56] 0.33 [0.15] 0.61 [0.35]

Table 5: Ablation for Lres using 1000 labels per attribute of interest (lower is better).

floor color wall color object color

Shapes3D
Ours w/o Lres 0.23 0.28 0.18
Ours 0.11 0.12 0.14
Random Chance (optimal) 0.10 0.10 0.10

goal is to disentangle the attributes of interest between themselves, and from the residual code, we
conclude the our suggested method performs better on this metric as well.

Regularization Terms We provide an ablation study of the different terms in Eq. 8. We first show
in Tab. 4 that without the entropy penalty Lent we obtain inferior disentanglement of the attributes
of interest. For evluating the importance of the residual codes regularization Lres we measure the
accuracy of classifying the attributes of interest from the residual representations using logistic
regression. The results in Tab. 5 highlight the contribution of this term.

Pseudo-labels We show in Tab. 8 a full version of the average ablation table of attribute classifica-
tion supplied on the main text (Tab. 2). The results suggest that the attribute classification accuracy is
improved by our method, compared to using the same architecture as a classifier trained only on the
labeled samples.

A.4.2 Real Images Experiments

Quantitative Evaluation The quantitative evaluation of disentanglement in real images is chal-
lenging as no ground truth annotations are available for all the attributes and the attributes are not
completely independent. For evaluation purposes, the paper includes quantitative metrics on synthetic
benchmarks and many qualitative comparisons on real images. We further consider quantitative
metrics for evaluation of our method on real images of human faces. We assess the performance by
Attribute-Dependency (AD) (proposed in [42]): we measure the degree to which manipulation of a
certain attribute induces changes in other attributes, as measured by classifiers for these attributes.
We rely on 40 pretrained classifiers for attributes in CelebA, in order to cope with real images, where
the exact factors of variation are not observed. Intuitively, disentangled manipulations should induce
smaller changes in other attributes (lower AD is better). In addition, we report the manipulation
strength for each attribute, as measured by the normalized change to the logit of the classifier of the
target attribute. Note that the manipulation strength can be negative in cases where the manipulation
causes an opposite effect to the attribute.

Tab. 6 shows the AD scores and manipulation strength of all methods while manipulating different
attributes of interest. We stress that quantitative measurements of this sort are not perfect and can
sometimes be misleading. However, let us briefly review the main trends reflected by these metrics
(the same trends are clearly visualized in Fig. 6,7,8): (i) StyleCLIP tends to over manipulate the
desired attribute and causes changes to other attributes of the input image, resulting in inferior
disentanglement and leading to higher AD scores. This can be clearly seen when changing gender.
(ii) LORD struggles to disentangle attributes which are not perfectly uncorrelated e.g. manipulating
gender does not affect the input image at all (low manipulation strength which results in a misleading
low AD score) while adding beard to females leads to gender swapping (higher AD scores). Note that
TediGAN mostly introduces artifacts without manipulating the desired attribute (low manipulation
strengths), and therefore maintains misleading low AD scores. The manipulation strength of the
ethnicity attribute is not reported due to the lack of a pretrained classifier, and the manipulation
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Table 6: Evaluation of disentanglement measured by Attribute Dependency (↓) and [manipulation
strength (↑)], on real human face images.

Age Beard Ethnicity Gender Glasses Hair Color

TediGAN [43] 0.39 [0.04] 0.38 [-] 0.41 [-] 0.40 [0.02] 0.31 [0.18] 0.37 [0.28]
StyleCLIP [32] 0.45 [-0.07] 0.42 [-] 0.40 [-] 0.78 [0.57] 0.35 [0.22] 0.44 [0.17]
LORD [14] 0.41 [0.13] 0.65 [-] 0.38 [-] 0.36 [0.04] 0.46 [0.19] 0.38 [0.26]
Ours 0.40 [0.12] 0.36 [-] 0.40 [-] 0.44 [0.20] 0.49 [0.23] 0.37 [0.28]

strength of beard is not assessed as this attribute is correlated with other attributes (e.g. gender) and
the manipulation should not cause any effect in many cases.

Qualitative Visualizations We provide more qualitative results on FFHQ (Fig. 6,7,8) along with
a comparison to TediGAN, StyleCLIP and LORD. More qualitative results on AFHQ and Cars are
shown in Fig. 9 and Fig. 10.

A.5 Training Resources

Training our models on the synthetic datasets takes approximately 3− 5 hours on a single NVIDIA
RTX 2080 TI. Training our model on the largest real image dataset (FFHQ) at 256× 256 resolution
takes approximately 4 days using two NVIDIA V100 GPU.

B Semi-Supervised Disentanglement without Residual Attributes

We evaluate our method on the synthetic datasets with all the factors of variation treated as attributes
of interest, holding out no residual factors at all. This is the setting studied by Locatello et al. [30].
While this is not the task we aim to solve in this paper, our method performs better than [30], using
the same beta-VAE based architecture, as can be seen in Tab. 9. This highlights the advantage of
latent optimization for disentanglement as discussed in [14].

C Zero-shot Labeling with CLIP

C.1 Implementation Details

We will provide here a comprehensive description of our method to annotate given images according
to the attributes supplied by the user, utilizing the CLIP [35] network. For the annotation, the user
provides a list of attributes, and for each attribute, a list of possible values indexed by w ∈ [mj ]:
swj (see Sec. C.2). For each attribute j and every possible value index w, we infer its embedding
uwj ∈ R512 using language embedding head of the CLIP model φlang:

uwj = φlang(s
w
j ) (10)

To obtain a similar embedding for images, we pass each image x1, x2, ..., xn ∈ X through the
vision-transformer (ViT) head of the clip model φvis. We obtain the representation of each image in
the joint embedding space vi ∈ R512:

vi = φvis(xi) (11)

We are now set to assign for each image i and each attribute j their assignment value aij (one of the
[mj ] possible values, or alternatively, the value "−1"). For each image we set the value w ∈ [mj ] to
aij , if the image embedding vi is among the top K similar images to the value embedding uwj in the
cosine similarity metric (noted by d). With a slight abuse of notation:

aij = {w |
∣∣{l | d(uwj , vl) ≤ d(uwj , vi)}∣∣ ≤ K} (12)

where
∣∣ · ∣∣ is the number of elements in a set.

The value "−1" is assigned to aij in cases where our zero shot classification deem that image
uncertain: if an image not among the top K matches for any of the values uwj , or if it is among the
top K matches for more than one of them.
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Table 7: Accuracy of factor predictions from the residual code on the synthetic benchmarks, using
1000 [or 100] labels per attribute of interest. We indicate beside each attribute its number of values.
Lower accuracy in predicting the attributes of interest and higher accuracy in predicting the residual
attributes indicate better disentanglement.

Dataset: Shapes3D Attributes: floor, wall, object Residuals: scale, shape, azimuth

floor color [10] wall color [10] object color [10]

Locatello et al. [30] 1.00 [1.00] 1.00 [1.00] 0.87 [1.00]
LORD [14] 0.96 [0.80] 0.87 [0.75] 0.35 [0.49]
Ours 0.11 [0.13] 0.12 [0.15] 0.14 [0.15]

scale [8] shape [4] azimuth [15]

Locatello et al. [30] 0.15 [0.34] 0.29 [0.32] 0.59 [0.77]
LORD [14] 0.25 [0.17] 0.38 [0.37] 0.20 [0.15]
Ours 0.75 [0.47] 0.97 [0.79] 0.79 [0.48]

Dataset: Cars3D Attributes: elevation, azimuth Residuals: object

elevation [4] azimuth [24]

Locatello et al. [30] 0.44 [0.46] 0.86 [0.88]
LORD [14] 0.35 [0.36] 0.43 [0.55]
Ours 0.29 [0.33] 0.28 [0.26]

object [183]

Locatello et al. [30] 0.64 [0.44]
LORD [14] 0.37 [0.27]
Ours 0.51 [0.23]

Dataset: dSprites Attributes: scale, x, y Residuals: orientation, shape

scale [6] x [32] y [32]

Locatello et al. [30] 0.38 [0.35] 0.24 [0.20] 0.18 [0.34]
LORD [14] 0.33 [0.31] 0.20 [0.15] 0.26 [0.18]
Ours 0.20 [0.20] 0.04 [0.05] 0.04 [0.04]

orientation [40] shape [3]

Locatello et al. [30] 0.04 [0.03] 0.44 [0.44]
LORD [14] 0.03 [0.03] 0.43 [0.42]
Ours 0.06 [0.06] 0.40 [0.41]

Dataset: SmallNORB Attributes: elevation, azimuth, lighting Residuals: category, instance

elevation [9] azimuth [18] lighting [6]

Locatello et al. [30] 0.16 [0.17] 0.12 [0.10] 0.91 [0.91]
LORD [14] 0.16 [0.17] 0.11 [0.12] 0.89 [0.87]
Ours 0.16 [0.18] 0.10 [0.10] 0.24 [0.24]

category [5] instance [10]

Locatello et al. [30] 0.48 [0.54] 0.14 [0.14]
LORD [14] 0.47 [0.50] 0.14 [0.14]
Ours 0.59 [0.41] 0.16 [0.14]

A high value of K indicates that many images will be labeled for each value uwj , resulting in a more
extensive, but sometime noisy supervision. Many images are not mapped in a close proximity to
the embedding of all the sentences describing them, or are not described by any of the user supplied
values. Therefore, we would not like to use very large values for K. A low value of K sets a more
limited supervision, but with more accurate labels. The value of K chosen in practice is indicated in
the tables in Sec. C.2.
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Table 8: Attribute classification accuracy using 1000 [or 100] labels per attribute.

Dataset Attribute [No. of Values] Pseudo-labels Ours

Shapes3D
floor color [10] 1.00 [0.92] 1.00 [1.00]
wall color [10] 1.00 [0.91] 1.00 [1.00]
object color [10] 1.00 [0.68] 1.00 [0.98]

Cars3D elevation [4] 0.81 [0.51] 0.85 [0.52]
azimuth [24] 0.83 [0.40] 0.85 [0.49]

dSprites
scale [6] 0.45 [0.36] 0.51 [0.47]
x [32] 0.46 [0.23] 0.76 [0.33]
y [32] 0.46 [0.25] 0.76 [0.42]

SmallNORB
elevation [9] 0.28 [0.19] 0.28 [0.16]
azimuth [18] 0.34 [0.11] 0.36 [0.11]
lighting [6] 0.92 [0.86] 0.92 [0.90]

Table 9: Evaluation on synthetic benchmarks in the setting where there are no residual attributes [30],
using 1000 labels per attribute of interest (mean [std]).

DCI Disentanglement SAP MIG

Shapes3D Locatello [30] 0.99 [0.001] 0.23 [0.01] 0.75 [0.05]
Ours 1.00 [0.001] 0.37 [0.001] 0.99 [0.01]

Cars3D Locatello [30] 0.58 [0.05] 0.14 [0.01] 0.25 [0.01]
Ours 0.59 [0.06] 0.19 [0.01] 0.49 [0.01]

dSprites Locatello [30] 0.46 [0.03] 0.07 [0.001] 0.33 [0.01]
Ours 0.62 [0.01] 0.09 [0.01] 0.39 [0.01]

SmallNORB Locatello [30] 0.43 [0.02] 0.13 [0.01] 0.24 [0.01]
Ours 0.68 [0.01] 0.31 [0.22] 0.52 [0.01]

C.2 Attribute Tables

We include the entire list of the attributes and their possible values for each of the datasets annotated
with CLIP. These values are used by our method, and by the LORD [14] baseline. The lists were
obtained as follows. FFHQ: We aggregated human face descriptors, similar to the ones used by other
methods, to obtain the attributes in Tab. 10. AFHQ: To obtain candidate values for animal species
we used an online field guide. We randomly selected 200 images of the AFHQ dataset and identified
them to obtain the list in Tab. 11. Cars: We used a few cars types and colors as described in Tab. 12.

For comparison with competing methods we used the attribute descriptions brought in their cited
paper, or in the code published by the authors. If no similar attribute appeared in the competing
methods, we tried a few short descriptions of the attribute, similar to the ones used by our method.

D Datasets

FFHQ [20] 70, 000 high-quality images containing considerable variation in terms of age, ethnicity
and image background. We use the images at 256× 256 resolution. We follow [21] and use all the
images for training. The images used for the qualitative visualizations contain random images from
the web and samples from CelebA-HQ.

AFHQ [8] 15, 000 high quality images categorized into three domains: cat, dog and wildlife. We use
the images at 128× 128 resolution, holding out 500 images from each domain for testing.

Cars [25] 16, 185 images of 196 classes of cars. The data is split into 8, 144 training images and
8, 041 testing images. We crop the images according to supplied bounding boxes, and resize the
images to 128× 128 resolution (using "border reflect" to avoid distorting the image due to aspect
ratio changes).
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E Extended Qualitative Visualizations
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Input Kid Asian Gender Glasses Shades Beard Red hair
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Figure 6: Zero-shot manipulation of human faces. StyleGAN-based approaches (TediGAN and
StyleCLIP) mainly disentangle highly-localized visual concepts (e.g. beard) while global concepts
(e.g. gender) seem to be entangled with identity and expression. Moreover, their manipulation
requires manual calibration, leading to negligible changes (e.g. invisible glasses) or extreme edits
(e.g. translation to asian does not preserve identity). LORD does not require calibration but struggles
to disentangle attributes which are not perfectly uncorrelated (e.g. the gender attribute is ignored
and remains entangled with beard and hair color). Our method generates highly disentangled results
without manual tuning.
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Input Kid Asian Gender Glasses Shades Beard Red hair
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Figure 7: Zero-shot manipulation of human faces. StyleGAN-based approaches (TediGAN and
StyleCLIP) mainly disentangle highly-localized visual concepts (e.g. beard) while global concepts
(e.g. gender) seem to be entangled with identity and expression. Moreover, their manipulation
requires manual calibration, leading to negligible changes (e.g. invisible glasses) or extreme edits
(e.g. translation to asian does not preserve identity). LORD does not require calibration but struggles
to disentangle attributes which are not perfectly uncorrelated (e.g. the gender attribute is ignored
and remains entangled with beard and hair color). Our method generates highly disentangled results
without manual tuning. Note that all manipulations are subject to attribute correlation e.g. beard is
not significantly added to females.
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Figure 8: Zero-shot manipulation of human faces. StyleGAN-based approaches (TediGAN and
StyleCLIP) mainly disentangle highly-localized visual concepts (e.g. beard) while global concepts
(e.g. gender) seem to be entangled with identity and expression. Moreover, their manipulation
requires manual calibration, leading to negligible changes (e.g. invisible glasses) or extreme edits
(e.g. translation to asian does not preserve identity). LORD does not require calibration but struggles
to disentangle attributes which are not perfectly uncorrelated (e.g. the gender attribute is ignored
and remains entangled with beard and hair color). Our method generates highly disentangled results
without manual tuning. Note that all manipulations are subject to attribute correlation e.g. beard is
not significantly added to females.
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Input Boerboel Labradoodle Husky Chihuahua Cheetah Jaguar Bombay cat

Figure 9: More zero-shot translation results of animal species on AFHQ.

25



Input Jeep Sports Family Black White Blue Red Yellow

Figure 10: Zero-shot translation results of car types and colors.
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Table 10: Values for each attribute used in ZeroDIM for the FFHQ dataset.

Attribute Values (K = 1000)

age a kid, a teenager, an adult, an old person
gender a male, a female

ethnicity a black person, a white person, an asian person
hair {brunette, blond, red, white, black} hair, bald

makeup makeup, without makeup
beard a person with a {beard, mustache, goatee}, a shaved person

glasses a person with glasses, a person with shades, a person without glasses

Table 11: Values for each attribute used in ZeroDIM for the AFHQ dataset.

Attribute Values (K = 100)

species

russell terrier, australian shepherd, caucasian shepherd, boerboel, golden retriever,
labradoodle, english foxhound, shiba inu, english shepherd, saluki, husky,
flat-coated retriever, charles spaniel, chihuahua, dalmatian, cane corso, bengal tiger,
sumatran tiger, german shepherd, carolina dog, irish terrier, usa shorthair, lion,
snow leopard, lion cat, british shorthair, bull terrier, welsh ke ji, cheetah of asia,
himalayan cat, shetland sheepdog, egyptian cat, bombay cat, american bobtail,
labrador, american wirehair, chinese li hua, chinese kunming dog, snowshoe cat,
maine cat, arctic fox, norwegian forest cat, king shepherd, beagle, ragdoll,
brittany hound, tricolor cat, border collie, stafford bull terrier, ground flycatcher,
manchester terrier, entrebuche mountain dog, poodle, west highland white terrier,
chesapeake bay retriever, hofwald, weimaraner, samoye, hawksbill cat, grey wolf,
grey fox, lionesses, singapore cat, african wild dog, yorkshire dog, persian leopard,
stacy howler, hygen hound, european shorthair, farenie dog, siberia tiger, jaguar

Table 12: Values for each attribute used in ZeroDIM for the Cars dataset.

Attribute Values (K = 500)

type a jeep, a sports car, a family car
color a {black, white, blue, red, yellow} car

Table 13: betaVAE architecture of the generator G in our synthetic experiments.

Layer Kernel Size Stride Activation Output Shape

Input - - - 10
FC - - ReLU 256
FC - - ReLU 4× 4× 64

ConvTranspose 4× 4 2× 2 ReLU 8× 8× 64
ConvTranspose 4× 4 2× 2 ReLU 16× 16× 32
ConvTranspose 4× 4 2× 2 ReLU 32× 32× 32
ConvTranspose 4× 4 2× 2 Sigmoid 64× 64× channels
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Table 14: betaVAE architecture of the classifiers Cj and the residual encoder Er in our synthetic
experiments. D is set to the number of classes mj of attribute j or the residual dimension 10− k.

Layer Kernel Size Stride Activation Output Shape

Input - - - 64× 64× channels
Conv 4× 4 2× 2 ReLU 32× 32× 32
Conv 4× 4 2× 2 ReLU 16× 16× 32
Conv 2× 2 2× 2 ReLU 8× 8× 64
Conv 2× 2 2× 2 ReLU 4× 4× 64
FC - - ReLU 256
FC - - - D

Table 15: StyleGAN2-based generator architecture in our experiments on real images. StyleConv and
ModulatedConv use the injected latent code which is a concatenation of the representations of the
attributes of interest and the residual attributes.

Layer Kernel Size Activation Resample Output Shape

Constant Input - - - 4× 4× 512
StyledConv 3× 3 FusedLeakyReLU - 4× 4× 512
StyledConv 3× 3 FusedLeakyReLU UpFirDn2d 8× 8× 512
StyledConv 3× 3 FusedLeakyReLU - 8× 8× 512
StyledConv 3× 3 FusedLeakyReLU UpFirDn2d 16× 16× 512
StyledConv 3× 3 FusedLeakyReLU - 16× 16× 512
StyledConv 3× 3 FusedLeakyReLU UpFirDn2d 32× 32× 512
StyledConv 3× 3 FusedLeakyReLU - 32× 32× 512
StyledConv 3× 3 FusedLeakyReLU UpFirDn2d 64× 64× 512
StyledConv 3× 3 FusedLeakyReLU - 64× 64× 512
StyledConv 3× 3 FusedLeakyReLU UpFirDn2d 128× 128× 256
StyledConv 3× 3 FusedLeakyReLU - 128× 128× 256
StyledConv 3× 3 FusedLeakyReLU UpFirDn2d 256× 256× 128
StyledConv 3× 3 FusedLeakyReLU - 256× 256× 128

ModulatedConv 1× 1 - - 256× 256× 3

Table 16: StyleGAN2-based discriminator architecture in our experiments on real images.

Layer Kernel Size Activation Resample Output Shape

Input - - - 256× 256× 3
Conv 3× 3 FusedLeakyReLU - 256× 256× 128

ResBlock 3× 3 FusedLeakyReLU UpFirDn2d 128× 128× 256
ResBlock 3× 3 FusedLeakyReLU UpFirDn2d 64× 64× 512
ResBlock 3× 3 FusedLeakyReLU UpFirDn2d 32× 32× 512
ResBlock 3× 3 FusedLeakyReLU UpFirDn2d 16× 16× 512
ResBlock 3× 3 FusedLeakyReLU UpFirDn2d 8× 8× 512
ResBlock 3× 3 FusedLeakyReLU UpFirDn2d 4× 4× 512

Concat stddev 3× 3 FusedLeakyReLU UpFirDn2d 4× 4× 513
Conv 3× 3 FusedLeakyReLU - 4× 4× 512

Reshape - - - 8192
FC - FusedLeakyReLU - 512
FC - - - 1
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Table 17: StarGAN-v2-based encoder architecture for the residual attributes in our experiments on
real images.

Layer Kernel Size Activation Resample Output Shape

Input - - - 256× 256× 3
Conv 3× 3 - - 256× 256× 64

ResBlock 3× 3 LeakyReLU (α = 0.2) Avg Pool 128× 128× 128
ResBlock 3× 3 LeakyReLU (α = 0.2) Avg Pool 64× 64× 256
ResBlock 3× 3 LeakyReLU (α = 0.2) Avg Pool 32× 32× 256
ResBlock 3× 3 LeakyReLU (α = 0.2) Avg Pool 16× 16× 256
ResBlock 3× 3 LeakyReLU (α = 0.2) Avg Pool 8× 8× 256
ResBlock 3× 3 LeakyReLU (α = 0.2) Avg Pool 4× 4× 256

Conv 4× 4 LeakyReLU (α = 0.2) - 1× 1× 256
Reshape - - - 256

FC - - - D

F License of Used Assets

The assets CLIP [35], TediGAN [43] and StyleCLIP [32] use the ’MIT License’.

StyleGAN2 [21] uses the ’Nvidia Source Code License-NC’.
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